FINITELY GENERATED SUBRINGS OF $R[x]$

ANDRZEJ NOWICKI

ABSTRACT. In this article all rings and algebras are commutative with identity, and we denote by $R[x]$ the ring of polynomials over a ring R in one variable x. We describe rings R such that all subalgebras of $R[x]$ are finitely generated over R.

INTRODUCTION

Let K be a field and let L be a subfield of $K(x_1,\ldots,x_n)$ containing K. In 1954, Zariski in [15], proved that if $n \leq 2$, then the ring $L \cap K[x_1,\ldots,x_n]$ is finitely generated over K. This is a result concerning the fourteenth problem of Hilbert. Today we know ([8], [9], [7]) that a similar statement for $n \geq 3$ is not true. Many results on this subject one can find, for example, in [4], [5], [10], [13], and also in the author articles ([11], [12]) published by University of Lodz in Materials of the Conferences of Complex Analytic and Algebraic Geometry.

We are interested in the case $n = 1$. It is well known that every K-subalgebra A of $K[x_1]$ is finitely generated over K. In this case we do not assume that A has a form $L \cap K[x_1]$. We recall it (with a proof) as Theorem 2.1. An elementary proof one can find, for example, in [6]. The assumption that K is a field is here very important. What happens in the case when K is a commutative ring and K is not a field? In this article we will give a full answer to this question.

Throughout this article all rings and algebras are commutative with identity, and we denote by $R[x]$ the ring of polynomials over a ring R in one variable x. We say that a ring R is an sfg-ring, if every R-subalgebra of $R[x]$ is finitely generated over R. We already know that if R is a field then R is an sfg-ring. We will show
that the rings \(\mathbb{Z} \) and \(\mathbb{Z}_4 \) are not sfg-rings. But, for instance, the rings \(\mathbb{Z}_6 \) and \(\mathbb{Z}_{105} \) are sfg-rings.

The main result of this article states that \(R \) is an sfg-ring if and only if \(R \) is a finite product of fields. For a proof of this fact we prove, in Section 3, many various lemmas. A crucial role plays the Artin-Tate Lemma (Lemma 1.3). If \(R \) is an sfg-ring then we successively prove that \(R \) is Noetherian, reduced, that every prime ideal of \(R \) is maximal, and by this way we obtain that \(R \) is a finite product of fields. Moreover, in the last section, we present a proof that every finite product of fields is an sfg-ring.

1. Preliminary lemmas and notations

We start with the following well known lemma (see for example [2] Proposition 6.5).

Lemma 1.1. If \(R \) is a Noetherian ring and \(M \) is a finitely generated \(R \)-module, then \(M \) is a Noetherian module.

Let \(A \) be an algebra over a ring \(R \). If \(S \) is a subset of \(A \), then we denote by \(R[S] \) the smallest \(R \)-subalgebra of \(A \) containing \(R \) and \(S \). Several times we will use the following obvious lemma.

Lemma 1.2. Let \(A = R[S] \). If the algebra \(A \) is finitely generated over \(R \), then there exists a finite subset \(S_0 \) of \(S \) such that \(A = R[S_0] \).

The next lemma comes from [14] (Lemma 2.4.3). This is a particular case of the Artin and Tate result published in [1]. Since this lemma plays an important role in our article, we present also its simple proof.

Lemma 1.3 (Artin, Tate, 1951). Let \(R \) be a Noetherian ring, \(B \) a finitely generated \(R \)-algebra, and \(A \) an \(R \)-subalgebra of \(B \). If \(B \) is integral over \(A \), then the algebra \(A \) is finitely generated over \(R \).

Proof. Let \(B = R[b_1, \ldots, b_s] \), where \(b_1, \ldots, b_s \) are some elements of \(B \). Since each \(b_i \) is integral over \(A \), we have equalities of the form

\[
b_i^{n_i} + a_{i1} b_i^{n_{i1} - 1} + \cdots + a_{in_i} = 0, \quad \text{for } i = 1, \ldots, s,
\]

where all coefficients \(a_{ij} \) belong to \(A \), and \(n_1, \ldots, n_s \) are positive integers. Let \(\{a_1, \ldots, a_m\} \) be the set of all the coefficients \(a_{ij} \), and put

\[
A' = R[a_1, \ldots, a_m].
\]

It is clear that \(A' \) is a Noetherian ring and \(B \) is an \(A' \)-module generated by all elements of the form \(b_1^{j_1} b_2^{j_2} \cdots b_s^{j_s} \), where \(0 \leq j_1 < n_1, \ldots, 0 \leq j_s < n_s \). Thus, \(B \) is a finitely generated \(A' \)-module and so, by Lemma 1.1, \(B \) is a Noetherian \(A' \)-module. This means that every submodule of \(B \) is finitely generated. In particular,
A is a finitely generated A'-module. Assume that $a_{m+1}, a_{m+2}, \ldots, a_n \in A$ are its generators. Then

$$A = A'a_{m+1} + \cdots + A'a_n = R[a_1, \ldots, a_n],$$

and we see that the algebra A is finitely generated over R. \hfill \square

Let us fix some notations. For a given subset I of a ring R, we denote by $I[x]$ the set of all polynomials from $R[x]$ with the coefficients belonging to I. If I is an ideal of R, then $I[x]$ is an ideal of $R[x]$, and then the rings $R[x]/I[x]$ and $(R/I)[x]$ are isomorphic.

Let $f : S \rightarrow T$ be a homomorphism of rings. We denote by \overline{f} the mapping from $S[x]$ to $T[x]$ defined by the formula

$$\overline{f} \left(\sum_j s_j x^j \right) = \sum_j \varphi(s_j)x^j$$

for all $\sum_j s_j x^j \in S[x]$. This mapping is a homomorphism of rings and $\text{Ker} \overline{f} = (\text{Ker} f)[x]$. We will say that \overline{f} is the homomorphism associated with f. If f a surjection, then \overline{f} is also a surjection. It is clear that if S and T are R-algebras, and $f : S \rightarrow T$ is a homomorphism of R-algebras, then $\overline{f} : S[x] \rightarrow T[x]$ is also a homomorphism of R-algebras.

In next sections we will use the following two lemmas.

Lemma 1.4. Let I be an ideal of a ring R, and let $A = R[a_1x; \quad a \in I]$. If the ideal I is not finitely generated, then the algebra A is not finitely generated over R.

Proof. Assume that I is not finitely generated and suppose that A is finitely generated over R. Then, by Lemma 1.2, there exists a finite subset $\{a_1, \ldots, a_n\}$ of I such that $A = R[a_1, \ldots, a_n]$. Then of course $(a_1, \ldots, a_n) \not\subseteq I$ so, there exists $b \in I \setminus (a_1, \ldots, a_n)$. Since $bx \in A = R[a_1, \ldots, a_n]$, we have $bx = F(a_1x, \ldots, a_nx)$, where F is a polynomial belonging to $R[t_1, \ldots, t_n]$. Let

$$F = r_0 + r_1 t_1 + r_2 t_2 + \cdots + r_n t_n + G$$

where $r_0, r_1, \ldots, r_n \in R$ and $G \in R[t_1, \ldots, t_n]$ is a polynomial in which the degrees of all nonzero monomials are greater than 1. Then, in the ring $R[x]$ we have

$$bx = F(a_1x, \ldots, a_nx) = r_0 + r_1 a_1 x + \cdots + r_n a_n x + hx^2,$$

where h is some element of $R[x]$. This implies that $b = r_1 a_1 + \cdots + r_n a_n \in (a_1, \ldots, a_n)$, but it is a contradiction, because $b \not\in (a_1, \ldots, a_n)$. \hfill \square

Lemma 1.5. Let $A = R[bx, bx^2, \ldots , bx^n]$, where $n \geq 1$, $0 \neq b \in R$ and $b^2 = 0$. Then every element u of A is of the form $u = r_0 + r_1 bx + r_2 bx^2 + \cdots + r_n bx^n$ for some $r_0, r_1, \ldots , r_n \in R$.
Proof. Let \(u \in A \). Then \(u = F(bx, bx^2, \ldots, bx^n) \) for some \(n \), where \(F \) is a polynomial in \(n \) variables belonging to the polynomial ring \(R[t_1, \ldots, t_n] \). Let
\[
F(t_1, \ldots, t_n) = r_0 + r_1 t_1 + r_2 t_2 + \cdots + r_n t_n + G(t_1, \ldots, t_n),
\]
where \(r_0, \ldots, r_n \in R \) and \(G \in R[t_1, \ldots, t_n] \) is a polynomial such that the degrees of all nonzero monomials of \(F \) are greater than 1. Then \(G(bx, \ldots, bx^n) = b^2 H(x) \), gdzie \(H(x) \in R[x] \). But \(b^2 = 0 \), so \(u = r_0 + r_1 bx + r_2 bx^2 + \cdots + r_n bx^n \). \(\blacksquare \)

2. Subalgebras of \(K[x] \)

Let us start with the following consequence of Lemma 1.3.

Example 2.2. Let \(K[x, y] \) be the polynomial ring in two variables over a field \(K \), and
\[
A = K \left[xy, xy^2, xy^3, \ldots \right].
\]
The algebra \(A \) is not finitely generated over \(K \).

Proof. For every positive integer \(n \), consider the ideal \(I_n \) of \(A \), generated by the monomials \(xy, xy^2, \ldots, xy^n \). Observe that \(xy^{n+1} \notin I_n \). Indeed, suppose \(xy^{n+1} = F_1 xy + F_2 xy^2 + \cdots + F_n xy^n \), where \(F_1, \ldots, F_n \in A \). Every element of \(A \) is of the form \(a + Gxy \) with \(a \in K \) and \(G \in K[x, y] \). In particular, \(F_j = a_j + G_j xy \), where \(a_j \in K, G_j \in K[x, y] \) for all \(j = 1, \ldots, n \). Thus, in \(K[x, y] \) we have
\[
y^{n+1} = a_1 y + a_2 y^2 + \cdots + a_n y^n + (G_1 y^2 + G_2 y^3 + \cdots + G_n y^n) x.
\]
Let \(\varphi : K[x, y] \to K[y] \) be the homomorphism of \(K \)-algebras defined by \(x \mapsto 0 \) and \(y \mapsto y \). Then in the ring \(K[y] \), we have the false equality \(y^{n+1} = \varphi (y^{n+1}) = a_1 y + a_2 y^2 + \cdots + a_n y^n \). Hence, the infinite sequence \(I_1 \subset I_2 \subset I_3 \subset \cdots \) is strictly increasing. The ring \(A \) is not Noetherian. In particular, the algebra \(A \) is not finitely generated over \(K \). \(\blacksquare \)
In Theorem 2.1 we assumed that K is a field. This assumption is here very important. For instance, if K is the ring of integers \mathbb{Z}, then a similar assertion is not true.

Example 2.3. Let $A = \mathbb{Z}[2x, 2x^2, 2x^3, \ldots]$. Then A is a subalgebra of $\mathbb{Z}[x]$ and A is not finitely generated over \mathbb{Z}.

Proof. For every positive integer n, consider the ideal I_n of A, generated by the monomials $2x, 2x^2, \ldots, 2x^n$. Observe that $2x^{n+1} \notin I_n$. Indeed, suppose $2x^{n+1} = 2xF_1 + 2x^2F_2 + \cdots + 2x^nF_n$, where $F_1, \ldots, F_n \notin A$. Every element of A is of the form $a + 2xG$ with $a \in \mathbb{Z}$ and $G \in \mathbb{Z}[x]$. In particular, $F_j = a_j + 2xG_j$, where $a_j \in \mathbb{Z}$, $G_j \in \mathbb{Z}[x]$ for all $j = 1, \ldots, n$. Thus, in $\mathbb{Z}[x]$ we have the equality

$$x^{n+1} = a_1x + a_2x^2 + \cdots + a_nx^n + 2(G_1x^2 + G_2x^3 + \cdots + G_nx^{n+1}).$$

For an integer u, denote by \overline{u} the element u modulo 2. Then, in the ring $\mathbb{Z}_2[x]$ we have the false equality $x^{n+1} = \overline{a_1}x + \overline{a_2}x^2 + \cdots + \overline{a_n}x^n$. Hence, the infinite sequence $I_1 \subset I_2 \subset I_3 \subset \cdots$ is strictly increasing. The ring A is not Noetherian. In particular, the algebra A is not finitely generated over \mathbb{Z}. □

3. Properties of sfg-rings

Let us recall that a ring R is said to be an *sfg-ring*, if every R-subalgebra of $R[x]$ is finitely generated over R. We already know (by Theorem 2.1) that if R is a field then R is an sfg-ring. Moreover we know (by Example 2.3) that \mathbb{Z} is not an sfg-ring. In this section we will prove that every sfg-ring is a finite product of fields. For a proof of this fact we need the following 9 successive lemmas. In all the lemmas we assume that R is an sfg-ring.

Lemma 3.1. R is Noetherian.

Proof. Suppose R is not Noetherian. Then there exists an ideal I of R which is not finitely generated. Consider the R-algebra $A := R[ax; a \in I]$. It follows from Lemma 1.4 that this algebra is not finitely generated over R. But this contradicts our assumption that R is an sfg-ring. □

Now we know, by this lemma, that if R is an sfg-ring, then every R-subalgebra of $R[x]$ is a Noetherian ring.

Lemma 3.2. If I is an ideal of R, then R/I is also an sfg-ring.

Proof. Put $\overline{R} := R/I$. Let $\varphi : R \to \overline{R}$, $r \mapsto r+I$ be the natural ring homomorphism, and let $\overline{\varphi} : R[x] \to \overline{R}[x]$ be the homomorphism associated with φ. Let B be an \overline{R}-subalgebra of $\overline{R}[x]$. We need to show that B is finitely generated over \overline{R}. For this aim consider the R-algebra $A := \overline{\varphi}^{-1}(B)$. It is an R-subalgebra of $R[x]$. Since R is an sfg-ring, the algebra A is finitely generated over R. Let $W \subset A$ be a finite set of generators of A. Then it is easy to check that $\overline{\varphi}(W)$ is a finite set of generators of B over \overline{R}. □
Lemma 3.3. Every non-invertible element of R is a zero divisor.

Proof. Suppose there exists a non-invertible element $b \in R$ such that b is not a zero divisor of R. Then $b \neq 0$ and b is not a zero divisor of $R[x]$. Consider the R-subalgebra $A = R[bx, bx^2, bx^3, \ldots]$. For every positive integer n, let I_n be the ideal of A, generated by the monomials bx, bx^2, \ldots, bx^n. Observe that $bx^{n+1} \notin I_n$. Indeed, suppose $bx^{n+1} = bx F_1 + bx^2 F_2 + \cdots + bx^n F_n$, where $F_1, \ldots, F_n \in A$. Every element of A is of the form $a + bx G$ with $a \in R$ and $G \in R[x]$. In particular, $F_j = a_j + bx G_j$, where $a_j \in \mathbb{R}$, $G_j \in R[x]$ for all $j = 1, \ldots, n$. Since the element b is not a zero divisor of $R[x]$, we have in $R[x]$ the following equality

$$x^{n+1} = a_1 x + a_2 x^2 + \cdots + a_n x^n + b \left(G_1 x^2 + G_2 x^3 + \cdots + G_n x^n \right).$$

Consider the factor ring $R/(b)$. Let $\varphi : R \rightarrow R/(b)$, $r \mapsto r + (b)$, be the natural homomorphism and $\overline{\varphi} : R[x] \rightarrow R/(b)[x]$ be the homomorphism associated with φ. Using $\overline{\varphi}$, from the above equality we obtain that $x^{n+1} = \varphi(a_1)x + \varphi(a_2)x^2 + \cdots + \varphi(a_n)x^n$. This is a false equality in the polynomial ring $\mathbb{R}/(b)[x]$. Therefore, $bx^{n+1} \notin I_n$. Hence, the infinite sequence $I_1 \subset I_2 \subset I_3 \subset \cdots$ is strictly increasing. This means that the ring A is not Noetherian. In particular, by Lemma 3.1, the algebra A is not finitely generated over R. But this contradicts our assumption that R is an sfg-ring. \hfill \square

It follows from the above lemma that every ring without zero divisors, which is not a field, is not an sfg-ring. Thus, we see again, for instance, that \mathbb{Z} is not an sfg-ring.

Lemma 3.4. R is a reduced ring, that is, R is without nonzero nilpotent elements.

Proof. Suppose that there exists $c \in R$ such that $c \neq 0$ and $c^m = 0$ for some $m \geq 2$. Assume that m is minimal and put $b := c^{m-1}$. Then $0 \neq b \in R$ and $b^2 = 0$. Consider the R-algebra $A = R[bx, bx^2, bx^3, \ldots]$. It is an R-subalgebra of $R[x]$. Since R is an sfg-ring, this algebra is finitely generated over R. Hence, by Lemma 1.2, $A = R[bx, bx^2, \ldots, bx^n]$ for some fixed n. But $bx^{n+1} \in A$ so, by Lemma 1.5,

$$bx^{n+1} = r_0 + r_1 bx + r_2 bx^2 + \cdots + r_n bx^n,$$

where $r_0, r_1, \ldots, r_n \in R$. It is an equality in the polynomial ring $R[x]$. This implies that $b = 0$ and we have a contradiction. Therefore, the algebra A is not finitely generated over R, and this contradicts our assumption that R is an sfg-ring. \hfill \square

Lemma 3.5. $(b) = (b^2)$ for all $b \in R$.

Proof. It is clear when R is a field. Assume that R is not a field. Let $b \in R$ and suppose $(b^2) \neq (b)$. Then $b \notin (b^2)$. Consider the ideal $I := (b^2)$ and the factor ring $\overline{R} := R/I$. Let $\overline{b} = b + I$. Then $0 \neq \overline{b} \in \overline{R}$ and $\overline{b}^2 = 0$, so the ring \overline{R} has a nonzero nilpotent. Hence, by Lemma 3.4, \overline{R} is not an sfg-ring. However, by Lemma 3.2, this is an sfg-ring. Thus, we have a contradiction. \hfill \square
Lemma 3.6. The Jacobson radical $J(R)$ is equal to zero.

Proof. Put $J := J(R)$. It follows from Lemma 3.1 that J is a finitely generated R-module. If $b \in J$ then, by Lemma 3.5, $b = ub^2$ for some $u \in R$, and so, $b \in J^2$. Thus, we have the equality $J^2 = J$. Now, by Nakayama’s Lemma, $J = 0$. □

Lemma 3.7. If R is local, then R is a field.

Proof. Assume that R is local and M is the unique maximal ideal of R. Then M is the Jacobson radical of R. It follows from Lemma 3.6 that $M = 0$. Thus R is a field. □

Lemma 3.8. Every prime ideal of R is maximal.

Proof. Let P be a prime ideal of R and suppose P is not maximal. Then there exists a maximal ideal M such that $P \subset M$ and $M \neq P$. Let $b \in M \setminus P$. It follows from Lemma 3.5 that $b = ub^2$ for some $u \in R$. Then
$$b(1 - ub) = 0 \in P.$$ But $b \notin P$, so $1 - ub \in P \subset M$. Hence, $b \in M$ and $1 - ub \in M$. This implies that $1 \in M$, that is, $M = R$. However $M \neq R$, so we have a contradiction. □

Lemma 3.9. R is Artinian.

Proof. We already know by Lemma 3.1 that R is Noetherian. Moreover we know, by Lemma 3.8 that the Krull dimension of R is equal to 0. Using a basic fact of commutative algebra (see for example [2] or [3] 99) we deduce that R is Artinian. □

Now we are ready to prove the mentioned proposition which is the main result of this section.

Proposition 3.10. Every sfg-ring is a finite product of fields.

Proof. Let R be an sfg-ring. We already know (by Lemma 3.9) that R is Artinian. It is known (see for example [2] or [3]) that every Artinian ring is a finite product of some local Artinian rings. Hence,
$$R = R_1 \times R_2 \times \cdots \times R_s,$$ where R_1, \ldots, R_s are local Artinian rings. Since all projections $\pi_j : R \to R_j$ (for $j = 1, \ldots, s$) are surjections of rings, it follows from Lemma 3.2 that all the rings R_1, \ldots, R_s are sfg-rings. Moreover, they are local so, by Lemma 3.7, they are fields. □

According to the above proposition we know that if R is an sfg-ring, then R is a finite product of fields. In the next sections we will prove that the opposite implication is also true.
4. Initial coefficients

Let us assume that R is a ring which is not a field, and A is an R-subalgebra of the R-algebra $R[x]$. Let us denote by \mathcal{W}_A the set of all nonzero initial coefficients of polynomials of positive degree belonging to A. Note three lemmas concerning this set.

Lemma 4.1. Let $a \in \mathcal{W}_A$. Then the polynomial ax is integral over A.

Proof. There exists a polynomial $f(x) = ax^n + r_{n-1}x^{n-1} + \cdots + r_1x + r_0 \in A$, with $n \geq 1$ and $r_0, \ldots, r_{n-1} \in R$. Let $g(x) = a^{n-1}f(x)$. Then

$$g(x) = (ax)^n + r_{n-1}(ax)^{n-1} + ar_{n-2}(ax)^{n-2} + \cdots + r_1a^{n-2}(ax) + r_0a^{n-1}$$

is also a polynomial belonging to A. Consider the polynomial

$$H(t) = t^n + r_{n-1}t^{n-1} + ar_{n-2}t^{n-2} + \cdots + r_1a^{n-2}t + r_0a^{n-1} - g(x).$$

It is a monic polynomial in the variable t and all its coefficients are in A. Since $H(ax) = g(x) - g(x) = 0$, the element ax is integral over A. \qed

Lemma 4.2. If R is Noetherian and \mathcal{W}_A contains an invertible element, then the algebra A is finitely generated over R.

Proof. Let $a \in \mathcal{W}_A$ be invertible in R. Then, by Lemma 4.1, the variable x is integral over A and this means that the ring $R[x]$ is integral over A. Hence, by Lemma 1.3, the algebra A is finitely generated over R. \qed

Lemma 4.3. Let $a, r \in R$. If $a \in \mathcal{W}_A$ and $ra \neq 0$, then $ra \in \mathcal{W}_A$.

Proof. Assume that $f = ax^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in A$ with $n \geq 1$. Then rf is a polynomial belonging to A and the initial coefficient equals $ra \neq 0$. Hence, $ra \in \mathcal{W}_A$. \qed

Consider for example the ring \mathbb{Z}_6. Using the above lemmas we will show that \mathbb{Z}_6 is an sfq-ring. Let $R = \mathbb{Z}_6$, and let $A \subset R[x]$ be an R-subalgebra. We need to show that A is finitely generated over R. It is clear if $\mathcal{W}_A = \emptyset$, because in this case $A = R$. If \mathcal{W}_A contains an invertible element of R (in our case 1 or 5) then, by Lemma 4.2, it is also clear.

Let us assume that $\mathcal{W}_A \subset \{2,3,4\}$. Since $2 \cdot 2 = 4$ and $2 \cdot 4 = 2$ in \mathbb{Z}_6, we have $4 \in \mathcal{W}_A \iff 2 \in \mathcal{W}_A$. If $3 \in \mathcal{W}_A$ and $4 \in \mathcal{W}_A$ then, by Lemma 4.1, the polynomials $4x$ and $3x$ are integral over A, and then $R[x]$ is integral over A, because $x = 4x - 3x$, and in this case, by Lemma 1.3, the algebra A is finitely generated over R.

Assume that $\mathcal{W}_A = \{2,4\}$, and let $f(x) = 4x^n + r_{n-1}x^{n-1} + \cdots + r_1x + r_0 \in A$ where $n \geq 1$ and $r_0, \ldots, r_{n-1} \in \mathbb{Z}_6$. Since $r_0 = r_0 \cdot 1 \in A$, we may assume that $r_0 = 0$. The polynomial $3f(x)$ also belongs to A. Hence, $3r_{n-1}x^{n-1} + \cdots + 3r_1x \in A$.
Suppose that for some \(j \in \{1, \ldots, n - 1\} \) we have \(3r_j \neq 0 \). Let us take the maximal \(j \). Then \(3r_j \in W_A = \{2,4\} \), so \(r_j = 0, 2 \) or 4 and in every case we have a contradiction, because \(3r_j \neq 0 \). Therefore, all the elements \(3r_1, \ldots, 3r_{n-1} \) are zeros. This means that \(r_i = 4b_i \) with \(b_i \in \mathbb{Z}_6 \), for all \(i = 1, \ldots, n - 1 \). Observe that 4 is an idempotent in \(\mathbb{Z}_6 \). We have \(4 = 4m \) for every positive integer \(m \). Hence,

\[
 f(x) = 4x^n + 4b_{n-1}x^{n-1} + 4b_{n-2}x^{n-2} + \cdots + 4b_1x \\
 = (4x)^n + b_{n-1}(4x)^{n-1} + \cdots + b_1(4x)^1
\]

and hence, \(A \) is a \(\mathbb{Z}_6 \)-subalgebra of the \(\mathbb{Z}_6 \)-algebra \(\mathbb{Z}_6[4x] \). In this case \(4 \in W_A \) so, by Lemma 4.1, the monomial \(4x \) is integral over \(A \) and so, the ring \(\mathbb{Z}_6[4x] \) is integral over \(A \). Therefore, by Lemma 1.3, the algebra \(A \) is finitely generated over \(R = \mathbb{Z}_6 \).

Now let us assume that \(W_A = \{3\} \). In this case we use a similar way, as in the previous case. We show that \(A \) is a subalgebra of \(\mathbb{Z}_6 \)-algebra \(\mathbb{Z}_6[3x] \) and, using again Lemma 1.3, we see that \(A \) is finitely generated over \(\mathbb{Z}_6 \). Therefore we proved that \(\mathbb{Z}_6 \) is an sfg-ring.

5. Finite products of fields

In this section we prove that every finite product of fields is an sfg-ring. Throughout this section

\[
R = K_1 \times K_2 \times \cdots \times K_n,
\]

where \(K_1, \ldots, K_n \) are fields. It is clear that the ring \(R \) is Noetherian, and even Artinian. Let \(A \) be an \(R \)-subalgebra of \(R[\times] \). We will show that \(A \) is finitely generated over \(R \). We know, by Theorem 2.1, that it is true for \(n = 1 \). Now we assume that \(n \geq 2 \).

Let us fix the following notations:

\[
N = \{1, 2, \ldots, n\}; \\
e_1 = (1, 0, \ldots, 0), \ e_2 = (0, 1, \ldots, 0), \ \ldots, \ e_n = (0, 0, \ldots, 1); \\
I = \{i \in N; e_i \in W_A\}; \\
J = N \setminus I; \\
\varepsilon = \sum_{i \in I} e_i.
\]

Observe that if \(I = \emptyset \), then \(A = R \) and nothing to prove. We know, by Lemma 4.1, that if \(i \in I \), then \(e_ix \) is an integral element over \(A \). If \(I = N \), then the variable \(x \) is integral over \(A \), because \(x = (1, 1, \ldots, 1)x = \sum_{i=1}^n e_ix \), and in this case, by Lemma 1.3, the algebra \(A \) is finitely generated over \(R \). Hence, we will assume that \(I \neq \emptyset \) and \(I \neq N \). Without loss of generality we may assume that

\[
I = \{1, 2, \ldots, s\}, \quad J = \{s+1, \ldots, n\}, \quad \text{where} \quad 1 \leq s < n,
\]

and \(\varepsilon = e_1 + \cdots + e_s \). Note two simple lemmas. The first one is obvious.
Lemma 5.1. Let \(u \) be an element of \(R \) such that \(ue_j = 0 \) for all \(j \in J \). Then \(u = \varepsilon u \).

Lemma 5.2. Let \(u \in R \). If \(u \in W_A \), then \(u = \varepsilon u \).

Proof. Let \(u = (u_1, \ldots, u_n) \) and assume that \(u \in W_A \). Suppose there exists \(j \in J \) such that \(ue_j \neq 0 \). Then \(u_j \) is a nonzero element of the field \(K_j \), and \(vu = e_j \), where \(v = (0, \ldots, 0, u_{j}^{-1}, 0, \ldots, 0) \). Hence, \(e_j = v \cdot ue_j \) and so, by Lemma 4.3, the element \(e_j \) belongs to \(W_A \). But it is a contradiction, because \(j \in J = N \setminus I \). Therefore, \(ue_j = 0 \) for all \(j \in J \) and so, by Lemma 5.1, we have \(u = \varepsilon u \). \(\square \)

Now consider the \(R \)-subalgebra \(B \) of \(R[x] \), defined by
\[
B = R[e_1x, e_2x, \ldots, e_sx].
\]
We will prove that \(A \subseteq B \), that is, that \(B \) is a subalgebra of \(A \).

Let \(f \) be an arbitrary element of \(A \). If \(\deg f = 0 \), then obviously \(f \in B \). Assume that \(\deg f \geq 1 \) and \(u \in R \) is the initial coefficient of \(f \). Since \(R \subseteq A \), we may assume that the constant term of \(f \) is equal to zero. Then we have
\[
f = ux^n + d_1x^{n_1} + d_2x^{n_2} + \cdots + d_px^{n_p},
\]
where \(d_1, \ldots, d_p \) are nonzero elements of \(R \), and \(n > n_1 > n_2 > \cdots > n_p \geq 1 \). It follows from Lemma 5.2 that \(u = \varepsilon u \).

Let \(j \in J \). Then \(ue_j = u(\varepsilon e_j) = u0 = 0 \) and then
\[
e_jf = e_jd_1x^{n_1} + e_jd_2x^{n_2} + \cdots + e_jd_px^{n_p} \in A.
\]
Suppose \(e_jd_q \neq 0 \) for some \(q \in \{1, \ldots, p\} \). Let us take the minimal \(q \). Then \(0 \neq e_jd_q \in W_A \). Put \(d_q = (c_1, \ldots, c_n) \) with \(c_i \in K_i \) for all \(i = 1, \ldots, n \). Since \(e_jd_q \neq 0 \), we have \(e_j \neq 0 \) and so, \(vd_q = e_j \), where \(v = (0, \ldots, 0, e_j^{-1}, 0, \ldots, 0) \). This implies that \(e_j = v(e_jd_q) \in W_A \). But \(e_j \notin W_A \), because \(j \in J = N \setminus I \). Hence, we have a contradiction.

Therefore, all the elements \(e_jd_1, \ldots, e_jd_p \) are zeros, and such situation is for all \(j \in J \). This means, by Lemma 5.1, that \(d_1 = \varepsilon d_1 \), \(\ldots, d_p = \varepsilon d_p \). Observe that the element \(\varepsilon \) is an idempotent of \(R \), so \(\varepsilon = \varepsilon^m \) for \(m \geq 1 \). Hence,
\[
f = u\varepsilon^n + d_1\varepsilon x^{n_1} + d_2\varepsilon x^{n_2} + \cdots + d_p\varepsilon x^{n_p} = u\varepsilon^n + d_1\varepsilon x^{n_1} + d_2\varepsilon x^{n_2} + \cdots + d_p\varepsilon x^{n_p} = \varepsilon\varepsilon^n + d_1\varepsilon x^{n_1} + d_2\varepsilon x^{n_2} + \cdots + d_p\varepsilon x^{n_p} = u(\varepsilon x)^n + d_1(\varepsilon x)^{n_1} + d_2(\varepsilon x)^{n_2} + \cdots + d_p(\varepsilon x)^{n_p},
\]
and hence, the polynomial \(f \) belongs to the ring \(R[\varepsilon x] \). But
\[
R[\varepsilon x] \subseteq R[e_1x, e_2x, \ldots, e_sx] = B,
\]
so \(f \in B \). Thus, we proved that \(A \) is an \(R \)-subalgebra of \(B \). Let us recall that all the monomials \(e_1x, \ldots, e_sx \) are integral over \(A \). Hence, the ring \(B \) is integral over \(A \). It follows from Lemma 1.3 that \(A \) is finitely generated over \(R \). Therefore, we proved the following proposition.
Proposition 5.3. Every finite product of fields is an sfg-ring.

Immediately from this proposition and Proposition 3.10 we obtain the following main result of this article.

Theorem 5.4. A ring R is an sfg-ring if and only if R is a finite product of fields.

Now, by this theorem and the Chinese Remainder Theorem, we have

Corollary 5.5. The ring \mathbb{Z}_m is an sfg-ring if and only if m is square-free.

References

Nicolaus Copernicus University, Faculty of Mathematics and Computer Sciences, ul. Chopina 12/18, 87-100 Toruń, Poland

E-mail address: anow@mat.uni.torun.pl