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Abstract. Multivariate ARCH-typc specifications provide a theoretically promising frame
work for analyses of correlation among financial instruments because they can model 
time-varying conditional covariance matrices. However, general VechGARCH models are too 
heavily parameterized and, thus, impractical for more than 2- or 3-dimensional vector lime 
series. A simple i-BEKK(l.l) specification seems a good compromise between parsimony and 
generality. Unfortunately, Bollerslev’s constant conditional correlation (CCC) model cannot be 
nested within VECH or BEKK GARCH structures. Recently, Engle (2002) proposed a par
simoniously parameterized generalization of the CCC model; this dynamic conditional cor
relation (DCC) specification may outperform many older multivariate GARCH models. In 
this paper we consider Bayesian analysis of the conditional correlation coefficient within 
different bivariate GARCH models, which are compared using Bayes factors and posterior 
odds. For daily growth rales of PLN/USD and PLN/DEM (6.02.1996-28.12.2001) we show 
that the £-BEKK(l, 1) specification fits the bivariate series much better than DCC models, 
but the posterior means of conditional correlation coefficients obtained within different models 
are very highly correlated.
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1. INTRODUCTION

A p propria te  statistical m odeling o f correlation  am ong Financial in 
strum ents is crucial for any application  o f portfo lio  analysis and for 
empirical research on dependencies between financial m arkets. M ultivariate
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A R C H -type specifications provide a theoretically prom ising fram ework as 
they can m odel time-varying conditional covariance m atrices. However, 
general V echGARCH models presented by Engle and K roner (1995) and 
G ourieroux (1997, C hapter 6) are too heavily param eterized. T he number 
o f free param eters o f  m ultivariate A R C H -type m odels can increase very 
fast as the dimension к of the vector time series grows. In the general 
version o f the /с-variate V echGARCH(p, q) (or VECH(/>, q)) m odel, this 
num ber is a fou rth  order polynom ial o f k, m aking  even V ECH(1, 1) 
im practical for к > 2 .  Thus, within A R C H -type models, interest focuses on 
restricted G A R C H  specifications or on factor A RCH  models (e.g. Diebold 
and Nerlove 1989, K ing, et al. 1994), G ourieroux 1997, C hap ter 8). 
However, factor G A R C H  models can be not only difficult to estim ate (due 
to  the presence o f latent variables), but also inadequate (inflexible in 
m odeling com plicated dynam ics o f the conditional covariance m atrix). 
A simple t-B E K K (l, 1) model, based on specifications proposed by Baba 
et al. (1989) and corresponding to  certain non-linear restrictions in t- 
VECH(1, 1) -  cf. Osiewalski and Pipień (2002), seems a good compromise 
between parsim ony and generality. However, this BEK K (1, 1) m odel in
herits some inflexibility o f the VECH(1, 1) covariancc structure; namely, 
Bollerslev’s (1990) constant conditional correlation (CCC) m odel cannot be 
nested within VECH or BEKK G A R C H  structures. Recently, Engle (2002) 
proposed a parsim oniously param eterized generalization o f the CCC  model; 
his dynam ic conditional correlation (DCC) specification m ay outperform  
m any older m ultivariate G A R C H  models. Hence, it is o f great interest to 
empirically check the explanatory power of D C C  models.

In  order to illustrate a form al Bayesian com parison o f various bivariate 
A R C H -type models through their Bayes factors, Osiewalski and Pipień 
(2004a, b) used two exchange rates that were m ost im portan t for the Polish 
economy till the end of 2001, namely the zloty (PLN ) values o f the US 
dollar and G erm an m ark. The da ta  consisted o f the official daily exchange 
rates o f the N ational Bank of Poland (NBP fixing rates), starting from 
February  1, 1996. By restricting to only bivariate V A R (I) models with 
G A R C H (1, 1) disturbances, it was possible to estim ate unparsim oniously 
param eterized specifications, such as V echGARCH models. Those first 
com parisons focused on older m ultivariate G A R C H  structures, proposed 
prior to 2001. Thus, the class o f models did not contain m ore recent 
m odels proposed by Tse and Tsui (2002), van der Weide (2002) and, in 
particular, the D C C  models o f Engle (2002).

T he m ain result of Osiewalski and Pipień (2004a, b) is tha t the simple 
i-B E K K (l, 1) m odel wins model com parison. In its /с-variate version, it has 
0 ( k 2) free param eters, m uch less than  the /с-variate general version of 
VECH(1, 1), requiring 0(/c4) free param eters. In this paper we focus on



0 ( k 2) specifications, in particular on variants o f  Engle’s D C C  structures. 
O ur aim is to  com pare these models, which were no t considered in our 
previous Bayesian works, to the winner from those studies. W e show that, 
for our d a ta  set, the unrestricted £-BEKK(l, 1) m odel describes the time- 
varying conditional covariance m atrix still m uch, m uch better than  quite 
sophisticated (and very elegant) DCC structures, specially designed to model 
dynam ic conditional correlation.

In Section 2 we briefly present our Bayesian statistical m ethodology and 
the numerical tools we use. Section 3 is mainly devoted to the description 
o f the com peting model specifications and the results of their formal 
com parison using Bayes factors. In Section 4 the sequences o f estimates of 
the conditional correlation coefficients (representing dynamics o f the relation
ship between our two series) and standard deviations (m easuring volatility 
o f each series) are presented and compared.

2. STATISTICAL METHODOLOGY AND NUMERICAL TOOLS

We consider several com peting param etric Bayesian models for the same 
observation m atrix  y. The i-th Bayesian model (M f) is characterised by the 
jo in t density function:

(1) p ( y A i ) \ M l,ym ) =  p ( y \M l,0{[),y(o))pi0l()\ M ^  ( i = l ,  ..., m),

where y(0) denotes initial conditions and p (y \M t,0w,ym ), p(0w \ M ^  are the 
sampling density function and the prior density function under M f, respec
tively. 0(I), the param eter vector in M „ groups param eters com m on to all 
m m odels and model-specific param eters. F o r the purposes o f inference 
within M; and m odel com parison, we use the obvious decom position

р(у,0щ\ М (,ут ) = р (у \М „у10др(От \у,МьУ«>д, 

where p(0(i)\ y ,M  t,yi0)) is the posterior density function in and

Р(У\Mi,y(0)) = $p(y \Mh0(i),y(O))p(0M)d0Vl)
o.

is the m arginal d a ta  density in the i-th Bayesian m odel. C om peting 
m odels are com pared pair-wise th rough  the Bayes fac to r В и = 
— p ( y \ M i, y i0)) /p (y \M j ,y l0)), w hich, together w ith the p rio r odds ratio  
Р (М ;)/Р (М 7), determines the posterior odds o f M , against M  ■.



(2) Р(М,\У,Ут ) = Р ( Щ  B 
P(M j\ y ,y m ) P(Mj) ,J’

where P ( M h) and P ( M h\y,yw ) are, respectively, the prior and posterior 
probability o f M h (e.g. O ’H agan 1994). The crucial role o f the Bayes factor 
in m odel com parison m eans that com puting m arginal da ta  densities under 
com peting models is the m ain numerical task. D irect evaluation o f the 
integral defining the m arginal d a ta  density (as well as o f integrals related 
to  posterior inferences) -  through either numerical quadratures or M onte 
Carlo sampling from the prior density -  is not efficient (or even not feasible) 
when the dim ension o f the param eter space is as high as in the models 
considered in this paper. Thus we have to resort to  o ther numerical tools, 
based on good exploration of the param eter space through sampling from 
the posterior. Here we use M etropolis-Hastings (M -H ) M arkov chains (e.g. 
O ’H agan 1994), G am erm an (1997).

Using simple identities, we can write the marginal data  density in the form

where Р( 0 ^ \ М 1, у,ут ) denotes the posterior cum ulative distribution function. 
This form ula is the basis o f the m ethod by Newton and R aftery (1994), 
which approxim ates the m arginal d a ta  density by the harm onic m ean of 
the values р (у |М ;,0 (0 ,у{о)), calculated for the observed у  and for 0 (i) drawn 
from the posterior distribution. The N-R harm onic m ean estim ator is 
consistent, but w ithout finite asym ptotic variance. Despite this serious 
theoretical weakness, the N -R estim ator (very easy to  com pute) was quite 
stable for all our models; (rf. Osiewalski and Pipień 2004a for m ore discussion 
o f com putational aspects).

In order to  sample from the posterior distribution in a m odel with the 
param eter vector 0, we use a sequential version o f  the M -H  algorithm , 
where the proposal density q(0\0(m~ i)) for the next value o f 0 given the 
previous draw  0 (m~1> is proportional to  / s(0 |3 ,0 (m~ 1),C), a S tudent t density 
with 3 degrees o f freedom, m ean 0(m~ l) and a fixed covariance m atrix 
С (approxim ating the posterior covariance m atrix). This S tudent-i density 
(symmetric in 0 and is truncated by the inequality restrictions described
in Section 3, i.e.

(3) p(y \Mi ,yw ) =  U tK ylA ^O yj.^o)] ^ Р ( 0 (П\ М ^ у ,у1О))



This leads to  the M -H M arkov chain with the following acceptance 
probability:

(5) a ( 0 ; r - ł >) = mi n{(gy(0)aq(0))l (9y( 0 * - " ) a t ( 0 * - " ) ) ,  l} ,

where gy(.) denotes the kernel of the posterior density. Thus, given the 
previous state o f the chain, 0 (ffl_1), the current state 0 (m) is equal to the 
candidate value 0* (drawn from the truncated Student-i distribution discussed 
above) w ith p robability  a o r  0 <m> =  0 <'"-1> w ith probability  
1 — a(0*;0'm~ 1)). O ur results, presented in next sections, are based on 500 000 
states of the M arkov chain, generated after 10 000 burnt-in states.

In order to com pare competing bivariate ARCH-type specifications we use 
the growth rates o f PLN /U SD  and PLN /D EM . O ur original data  set consists 
o f 1485 daily observations on the exchange rates themselves, PLN /U SD  (x u ) 
and PLN /D EM  (x2t). It covers the period from 1.02.1996 till 28.12.2001. The 
first three observations from 1996 (February 1, 2 and 5) are used to  construct 
initial conditions. Thus T, the length of the modeled vector time series of daily 
growth rates o f x 1( and x 2l is equal to 1482.

W e denote our modeled bivariate observations as y, = (УиУи)\  where 
y u  is the daily growth (or return) rate of the PLN value o f US dollar and 
y 2t is the daily growth (or return) rate of the PLN  value o f G erm an m ark, 
both  expressed in percentage points and obtained from the daily exchange 
rates x lt(i =  1, 2) by the formula yif =  100 H x j x ^ - i ) .  Osiewalski and 
Pipień (2004a) used only a short part of this bivariate series, till the end 
o f 1997 ( 7  =  475). Now we base our results on all T  =  1482 observations, 
as Osiewalski and Pipień (2004b), but we do not use any exogenous variables 
in the conditional m ean specification. Thus we stay within the pure 
V A R -G A R C H  fram ework, like Osiewalski and Pipień (2004a).

We m odel the da ta  using the basic V A R (l) fram ework:

with the error described by com peting bivariate G A R C H  specifications. 
M ore specifically,

3. THE DATA AND COMPETING MODEUS

yt - ô  = R(yi- l - ô )  + Et

(7) h u
( :)

R , i R*M1 - ^ 1 2  

^ 2 1  ^ 2 2

Уи- i  
Ун - 1

t =  1, ..., T.



The elements o f 6 and R are com m on param eters, which we treat as 
a priori independent o f all other (mainly model-specific) param eters and 
assume for them the m ultivariate standardized norm al prior iV(0 , I 6), 
truncated by the restriction that all eigenvalues o f R lie inside the unit 
circle. We assume that the conditional distribution o f e, (given its past, 

is Studcnt-£ with zero location vector, inverse precision m atrix H,  
and unknow n degrees o f freedom v >  2 , i.e.

As regards initial conditions for //,, we take H 0  =  /i0 / 2 and treat h0 as 
an additional param eter. We assume prior independence for v, h0 (which 
are com m on) and the remaining param eters; v follows the exponential 
distribution with m ean 10, Exp(  10), truncated by the condition v >  2; h0 
has the exponential prior with m ean 1, Exp(l).

The conditional covariance m atrix o f e, given y/t_ x is (v — 2) l vHt. 
C om peting bivariate G A R C H  models are defined by imposing different 
structures on H t. T hat is, model-specific param eters are the ones describing 
II, in a given model. T he sampling density function in each model is always 
the product o f T  conditional bivariate Student-i densities (for y(r)) with 
v degrees o f freedom , m ean ó +  R ( y t- t — <$) and covariance m atrix

The first specification considered here is the very parsim onious constant 
conditional correlation (CCC) model of Bollerslev (1990); it imposes the 
following structure on H,:

where p 1 2  is the tim e-invariant conditional correlation coefficient. This 
simple structure of H, am ounts to modeling each conditional variance by 
a different G A R C H (1, 1) process and m aking the conditional covariance 
a simple function o f the variances. In its /с-variate version, the CCC model 
describes et using only 2 +  3/c 4 - k ( k - \ ) / 2  free param eters; so we have 
9 param eters when к =  2. F o r the model-specific param eters we take the 
following priors:

(8)

(v — 2  )_ 1vH(.

(9) / i t  1,1 — £iio +  f l l l f i l . t - 1  "t" ^ l l ^ l l , t - l >  

^22,(  =  a 20 +  a 22e2 , t - l  +  ^ 2 2 ^ 2 2 ,  t - l>  

^12,1 =  P l 2 \ / ^ l l . i ^ 2 2 , l !



( 1 0 ) a l 0 ~ E x p (  1 ), a2o ~  Exp( l) ,  (at 1 . 0 2 2 .^ 1 1 .6 2 2 ) ~  t/([0 , l]4),

P i 2 ~ U ( [ - l , l ] ) ,

where U(A)  denotes the uniform  distribution over A.  Osiewalski and Pipień 
(2004a, b) show that, for our data, the CCC model is inadequate -  it is much 
worse than  heavily parameterized VechGA RCII specifications and than m ore 
parsim onious BEKK structures, which all assume time-varying conditional 
correlations. It seems tha t modeling dynam ic correlation with alm ost as few 
param eters as in the CCC  model would be the m ost welcome solution.

The simple CCC  specification (under conditional norm ality, i.e. with 
v =  +  oo) has been generalized by Engle (2002) in such a way as to  m ake 
conditional correlations fully dynamic, keeping the conditional covariancc 
form ula basically unchanged. Engle’s dynam ic conditional correlation (DCC) 
m odels describe the diagonal elements o f H,  in the same way as in CCC, 
but assum e that

(1 1 )  ^12,1 =  P l2 ,t \A ll . t^ 2 2 ,t>

where p 12it is the time-varying conditional correlation coefficient, m odeled as

Pl2,t — 1 2 , f /> / 11,1 <722,0

with qiJt's being entries of a symmetric positive definite m atrix  Q, of the 
same order as the dim ension o f e(. A simple specification for Qt, considered 
in Engle (2002), assumes that

(12) Q, = ( i - * - №  + aŁl- lęt- l +fiQt- l

where a and ß  are nonnegative scalar param eters (a + ß  < 1 ), ęt is the 
vector o f standardized errors and S is their unconditional correlation matrix. 
In the case o f our bivariate conditionally S tudent-г specification, we keep 
Engle’s basic structure and define S  as a square m atrix  with ones on the 
diagonal and s 12  =  s 2 1  =  p 12, an unknown param eter from the interval ( - 1 , 
1); this assures positive definiteness of S and Q,. Also, in o u r case

0 3) 6 , =  E i J (v -  2 )/(v/tiil() (i =  1 , 2 ).

Thus, our second specification (called DCC0) generalizes the conditionally 
norm al basic structure proposed by Engle (2002) to  the S tudent-i conditional 
error distribution. The initial condition for Q, is Q0 = q012, where q0 is 
a free param eter. In its /c-variate version, D C C 0 describes e, using



5 +  3/c +  k(k — l)/2  free param eters -  only three (q0, ot and ß) m ore than 
the CCC  model (irrespective of k). O f course, CCC corresponds to  a =  ß  =  0, 
so it is nested in DCCO. We follow the exact Bayesian approach, which 
is fully feasible in the bivariate case. Thus we do not use the approxim ate 
tw o-step estim ation procedure suggested by Engle (2002). T he three new 
param eters are assumed independent a priori o f the rem aining ones. The 
prior for q0 is Exp(  1), while the one for (a, ß) is uniform over the unit 
simplex.

T he third m odel (called DCC1) is also o f the D C C  form , but the 
specification o f Q, is different. The previous period error terms arc not 
standardized and there are less restrictions:

(14) Q, =  V -l-ae,-iß , ' - 1 + ßQ t~ i ,

V consists o f Vn ~  E xp( l ) ,v 2 2  ~  Exp( l )  and v1 2  =  v2 1  =  P i 2 V vn v 2 2  

p l2 ~  L/([—1,1]), so V is positive definite with prior probability 1, and 
(a, ß) ~  l/([0 , l]2).

T he fourth  m odel (DCC2) generalizes the structure o f Q, by replacing 
the two scalar param eters (a and ß) by two symmetric, nonnegativc definite 
m atrices (A and B):

(15) Q, =  7 + A °  e t-x V -i +  Bo Qt_ b

where C°  D  is the H adam ard product of two m atrices o f the same size 
(i.e., the element-by-element m ultiplication). This equation resembles (24) 
in Engle (2002), but (as in DCC1) the previous period error term s are not 
standardized and there are no restrictions on A +  B. O ur Bayesian DCC2 
specification uses the same V as in DCC1 and assumes tha t A consists of: 

a i 2 =  a 2 i =  ®,Va n a 2 2 » « 1 1 .«2 2 ~  u g o ,  1]) and ocr ~  £/([—1 , 1]); similarly for
ßij in B: ß 12 = ß 2l = ß j ß n ß z z ,  A i  A a  ~  П) and ßr ~  U([-1 , 1]). So Q, 
is positive definite with prior probability 1. In its /с-variate version DCC2 
has 3  +  3{2k +  k(k — l ) / 2 } free param eters that enter the conditional dist
ribution o f e, (18 for к = 2).

As we have already noted, the i-CCC specification was strongly rejected 
by our da ta  when com pared to VECH and BEKK bivariate r-GARCH 
structures. Now we show the results of our Bayesian com parison between 
the t -CCC  and each f-DCC model. The decimal logarithm  o f the Bayes 
factor in favor o f the DCC0 m odel is 46.60, in favor o f the DCC1 
specification is 45.15, while for the DCC2 structure we obtain 46.65. All 
three D C C  models are about 45 orders o f m agnitude better (i.e., m ore 
probable a posteriori under equal prior model probabilities) than  the CCC



model ! High and alm ost equal values of the Bayes factors for DCCO and 
DCC2 indicate that these two models describe the da ta  equally well. The 
pricc wc pay for not using standardized residuals in Q, am ounts to  estimating 
m ore param eters in DCC2 than in DCCO. The param eterization in DCC1 
seems not rich enough, but the difference between the Bayes factors (of 
this model against CCC and o f DCCO against CCC) is not large when we 
take into consideration sensitivity with respect to the prior distribution and 
num erical stability issues.

T he results obtained for the D C C  models seem encouraging. However, 
our previous results (cf. Osiewalski and Pipień 2004b) show that that the 
decimal log o f the Bayes factor for a simple t-B E K K (l, 1) model (against 
CCC) is even m uch higher, equal to  64.13. This BEK K  specification is 
defined by the following structure o f H t:

(16)

Я . - Г -  ' " ! 1 + Г * “  ‘ , , Т < « , - л - 1 ' ) Г ! ’“  M + p “  c , 2 T » . - , p “ c '
[_a l2  a 22_\ L " 21 2 2 J  L " 21 " 22J  \_C2 l  C 2 2 J  L C21 c 2

i.e. H t =  A  4- +  С 'Я ,_ 1 С.

The param eters o f this structure have the following prior distributions:

a n ~ E x p (  1), a22 ~  Exp( \ ) ,  a i 2 ~ N ( 0 ,1 ), bn ~ N ( 0 .5 ,1 ), 

bn  (0 ,1 ), Ь2 1 ~ЛГ(0,1), b22~ N (  0 .5 ,1 ), c u ~ JV (0 .5 ,l) , 

c 1 2 ~ N (  0 ,1 ), c 2 l ~ N (  0 ,1 ), c22~ N (  0 .5 ,1 ),

which are truncated by the restrictions o f positive semi-definiteness of the 
symmetric (2 x 2) m atrix  A  and stability o f  the general (2 x 2) m atrix С (all 
eigenvalues o f С lie inside the unit circle). Also, the conditions: Ь ц >  0 
and с и > 0  are imposed in order to  guarantee identifiability, since В and 
- B  as well as С  and - C  lead to the same H t, and thus are observationally 
equivalent. In the /с-variate version, our г-ВЕКК(1, 1) model describes the 
conditional distribution of e, (given its past) using 2 + k ( k +  l ) / 2  +  2 k 2 free 
param eters (13 for к =  2).

The success o f  the i-BEKJC(l, 1) model (its clear superiority over the 
D C C  models and other specifications in explaining the time-varying con
ditional covariance structure) suggests further search for m ore parsim onious 
special cases o f i-B E K JC (l,l) that would hopefully keep its explanatory 
power. Some models, like i-B E K K (l,0 ) that assumes С  =  0, have already 
been tried (cf. Osiewalski and Pipień 2004b). The decimal log of the Bayes 
factor of i-B E K K (l,0) relative to t-CCC is -23.71 (!). Thus, the BEKJC(1, 0)



m odel (with an A R C H (l) structure only) is even m uch worse the than the 
CCC specification, so it will not be discussed further. Here we propose 
a simple “scalar i-B E K K (l, 1)” structure, which am ounts to  assuming R =  h l 2 
and С =  c l 2, where h and с arc independent scalar param eters with N (0.5, 1) 
prior distributions, truncated by the restrictions: b >  0 and 0 < c < l .  So we 
consider

(17) II, =  A + +  с 2 Я ,_ ъ

which is m uch simpler than DCC1 (it uses the DCC1 structure o f Qt at 
the level o f  H t). T he dccimal log o f the Bayes factor o f this scalar 
t-B E K K (l,l)  relative to  t-CCC is 48.75, indicating that this restricted, 
extremely simple BEKK form ulation can com pete in dynam ic correlation 
m odeling with m ore sophisticated D CC structures, designed for this purpose. 
In fact, our scalar BEK K  is abou t two or three orders o f m agnitude m ore 
probable a posteriori than DCCO or DCC2 (assuming equal prior model 
probabilities). O f course, the unrestricted BEKK specification undoubtedly 
wins our m odel com parison for the analyzed da ta  set, being abou t 15 
orders o f m agnitude better than the second best specification.

All our results, those presented previously in Osiewalski and Pipień 
(2004b) and the new ones given here, indicate th a t the growth rates of 
PLN /U SD  and PLN /D EM  strongly reject the constant conditional correlation 
hypothesis. These exchange rates form a bivariate time series with strong 
correlation dynam ics, where BEKK models can (and should) be used. The 
fact that BEKK models do not nest the CCC case is not a problem  for 
the Bayesian approach, which can deal with testing non-nested specifications 
using Bayes factors and posterior model probabilities. The results of this 
section are sum m arised in Table 1, where we rank the models by the 
increasing value o f the decimal logarithm of the Bayes factor o f BEK K (1,1) 
against the alternative models.

Table 1. Logs of Bayes factors in favor of i-BEKK(l, 1) and average posterior means of p i2t

Model Number of 
parameters Rank lo8 10(ß i,)

Average 
E (РШ \У)

M „ BEKK(1,1) 19 1 0 0.162

M 2, scalar BEK.K(1,1) 13 2 15.38 0.122

M3, DCC2 24 3-4 17.48 0.132

M4, DCCO 18 3-4 17.53 0.132

M s, DCCI 20 5 18.99 0.132

M6, CCC 15 6 64.13 0.237



4. POSTERIOR INFERENCE ON CONDITIONAL CORRELATION COEFFICIENTS
AND VOLATILITIES

In this section we com pare m ain results for individual volatilities and 
the dynamic correlation structure, obtained within each model. It is im portant 
to know whether m odels that have different explanatory power describe 
this structure in a similar way.

T he plots o f the sampling conditional correlation coefficients p 12i, (for 
each ( = 1 ,  T; T  =  1482) are presented in Figure 1, where we draw  two 
lines: the upper one representing the posterior m ean plus two posterior 
standard  deviations and the lower one -  the posterior m ean m inus two 
posterior standard deviations. We focus on typical patterns, so only two 
m odels arc represented in Figure 1. It is clear that constancy o f conditional 
correlations, which are quite tightly concentrated around their abruptly 
changing posterior means, is not supported by the data . This explains why 
the C CC  m odel receives negligible posterior probability when com pared to 
D C C  or BEK K  specifications. The last colum n o f Table 1 presents time 
averages for the sequences of posterior m eans of the conditional correlation 
coefficient in each model, while Table 2 gives the empirical correlation 
coefficients between these sequences (the num bers above the diagonal).

Table 2. Correlation coefficients between the posterior means of the conditional correlations 
(upper part) and covariances (lower part)

Specification BEKK Scalar BEKK DCC2 DCCO DCC1

BEKK X 0.9113 0.9180 0.9094 0.9125

Scalar BEKK 0.9152 X 0.9837 0.9810 0.9826

DCC2 0.9299 0.9987 X 0.9767 0.9959

DCCO 0.9172 0.9982 0.9982 X 0.9643

DCC1 0.9192 0.9996 0.9993 0.9983 X

These results show th a t the models o f com parable explanatory power lead 
to  alm ost the same inference on the dynamics of conditional correlation. 
F o r the scalar BEK K  and all three D CC models, averages o f E (p 1 2 ,t |y) 
(£ =  1 , ..., T)  are about 0 .1 2 -0 .1 3  and the empirical correlation coefficients 
between pairs o f E (p 1 2 tl|y) sequences are bigger than  0.96. However, the 
sequence of E (p 12,,|>’) coming from  the unrestricted BEK K  is slightly less 
correlated with the others (about 0.91) and has a som ewhat higher average 
(0.16). Also, the plot obtained for the unrestricted BEKK looks somewhat 
different (cf. Figure 1).



Unrestricted BEKK(1, 1)

DCCO

Fig. 1. Conditional correlations (posterior mean + 2  standard deviations)

Very similar results (as for the conditional correlation p 12,t) have been 
obtained for the sequences of the posterior means of the conditional covariance 
h l2y, empirical correlations are given in Table 2 (the num bers below the 
diagonal).

Individual time-varying volatility o f each time series is m easured by the 
conditional standard deviation s / ( v  — 2) ~ 1 (i =  1 ,2 ). The sequences oi 
1482 point estimates, obtained by inserting the posterior m eans o f the 
m odel param eters, are plotted in Figure 2 for two models. These estimates 
exhibit the same dynam ic pattern for all models o f the same explanatory 
power (scalar B EK K , DCC2, DCCO, DCC1) -  the empirical correlation 
coefficients (Table 3) are basically equal to  1. The results obtained in CCC 
and all D CC arc also highly correlated. The empirical correlation coefficients 
are som ewhat lower (especially for P L N /D E M ) when we com pare the 
unrestricted BEKK  specification to  the remaining models. Thus the best 
m odel leads to  slightly different inference on volatility. As regards time 
averages of the sequences o f estimated in-sample volatilities, they are almost 
the same in all models (including CCC).

O ur conclusion is that inferences from the best fitting m odel can be 
approxim ated by the scalar BEKK or D C C  specifications. Since the scalar 
BEK K  m odel is the simplest, but it does not nest the C CC  case, one 
should estim ate and com pare these two non-nested models. This seems 
a feasible strategy even for /с-variate time series with k > 2 .



Conditional standard deviations for PLN/USD 
unrestricted BEKK(1,1)

Conditional standard deviations for PLN/DEM 
unrestricted BEKK( 1,1)

DCCO DCCO

Fig. 2. Point estimates of the conditional standard deviations in two main models
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Table 3. Correlation coefficients between the estimates of the conditional standard deviations 
for PLN/USD (upper part) and for PLN/DEM (lower part)

Specification BEKK Scalar BEKK DCC2 DCCO DCC1 CCC

ВЕК К X 0.9217 0.9234 0.9219 0.9233 0.9420

Scalar BEKK 0.8826 X 0.99988 0.99997 0.99988 0.9930

DCC2 0.8854 0.99988 X 0.99990 0.99999 0.9941

DCCO 0.8826 0.99992 0.99989 X 0.99988 0.9933

DCC1 0.8860 0.99986 0.99999 0.99986 X 0.9940

CCC 0.8828 0.99966 0.99973 0.99974 0.99967 X
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Jacek Osiewalski, Mateusz Pipień

BAYESOWSKA ANALIZA DYNAMICZNEJ KORELACJI WARUNKOWEJ 
Z WYKORZYSTANIEM DWUWYMIAROWYCH MODELI GARCH

(Streszczenie)

Wielowymiarowe specyfikacje tŷ pu ARCH stanowią teoretycznie obiecujące ramy dla analiz 
skorelowania instrumentów finansowych, ponieważ umożliwiają modelowanie zmiennych w czasie 
macierzy warunkowych kowariancji. Jednak ogólne modele VechGARCH mają zbyt wiele 
parametrów, są więc niepraktyczne w przypadku więcej niż 2- lub 3-wymiarowych wektorowych 
szeregów czasowych. Prosta specyfikacja /-BEKK(1,1) wydaje się dobrym kompromisem pomiędzy 
oszczędnością parametryzacji i ogólnością modelu. Niestety model stałych korelacji warunkowych 
(CCC) Boilersleva nie jest szczególnym przypadkiem struktur VECH czy BEKK. Ostatnio 
Englc (2002) zaproponował oszczędnie sparametryzowane uogólnienie modelu CCC; ta specyfikacja 
o dynamicznej korelacji warunkowej (DCC) może zdominować wiele starszych wielowymiarowych 
modeli GARCH. W artykule rozważamy bayesowską analizę warunkowego współczynnika 
korelacji w ramach różnych dwuwymiarowych modeli GARCH, które są porównywane przy 
użyciu czynników Bayesa i ilorazów szans a posteriori. Dla dziennych stóp zmian kursów 
PLN/USD i PLN/DEM (6.02.1996 -  28.12.2001) wykazuje się, że specyfikacja t-BE K K (l.l) 
opisuje dwuwymiarowy szereg czasowy znacznie lepiej niż modele DCC. Jednak wartości 
oczekiwane a posteriori warunkowych współczynników korelacji, uzyskane w ramach różnych 
modeli, są bardzo silnie skorelowane.


