A POST-STYLE PROOF OF COMPLETENESS THEOREM FOR SYMMETRIC RELATEDNESS LOGIC S

Abstract

One of the logic defined by Richard Epstein in a context of an analysis of subject matter relationship is Symmetric Relatedness Logic S. In the monograph [2] we can find some open problems concerning relatedness logic, a Post-style completeness theorem for logic S is one of them. Our paper introduces a solution of this metalogical issue.

Keywords: Normal forms, Post-style proof of completeness, Relatedness logic, Relating logic

1. The Epstein’s logics

In the case of most of non-classical interpretations of conditionals two aspects are considered as substantial:

1. logical values of an antecedent and a consequent
2. a relationship between an antecedent and a consequent.

The analysis of conditionals introduced by Richard Epstein in [2] are based on ways of understanding of relationships postulated by 2. Different concepts allow for the presentation of different implications. In order to define truth conditions for these logical connectives some binary relations based on a set of formulas with some constraints are introduced. But Epstein introduces also a different approach. He considers some functions which

*The author would like to thank the National Science Centre of Poland for the support of this research through grant No.: UMO-2015/19/N/HS1/02401 and Tomasz Jarmużek for his remarks and suggestions.
assigns to each formula some set (set-assignments). Such functions are intended to enable a notion of a content (subject matter) on a formal ground to be represented. In this case it is important to consider relations between contents of propositions, for instance one might be contained in another. These two approaches are proved to be equivalent in the case of some logics introduced by Epstein. He considered two families of logics defined by classes of models with only one relation. Namely relatedness logics and dependence logics [2, pp. 61–84, 115–143].

Epstein defined two relatedness logic. Symmetric Relatedness Logic S is one of them. Among problems analysed in [2] there is a question about a Post-style proof of completeness theorem for logic S. In this paper a solution of this metalogical issue will be presented.

The Epstein’s approach via set-assigments appeared to be quite fruitful for expressing many intensional logics like modal logics, intuitionistic logic, many-valued logics or paraconsistent logics [2, pp. 145–287]. That is why Stanisław Krajewski proposed to treat the analysis of Epstein as a bigger project concerning logics of two aspects of propositions: their logical value and contents (see [4, pp. 17–18]). The general concepts and the most important results of such approach has been presented in [1], [2], [4] and also [5].

A much different line is examined in [3] by Jarmużek and Kaczkowski. In this case authors consider a logic defined by models with one binary relation without any extra constraints. However, in this approach only two intensional connectives: implication and conjunction were examined.

Now, more extensive research on this kind of logic, but with the language consists of all Boolean connectives and intensional counterpart of binary Boolean connectives, is being done, since any binary connective can be interpreted by logical valuation of components and binary relation. Presently, we can distinguish various relational conditions that may determine subclasses of the class of all binary relations of formulas, and consequently define numerous logics of the considered kind. Any of such logic is called relating logic.¹ In consequence, Epstein approach is a special case of relating logics program, since Epstein’s logics are special cases of relating logics. Note that the converse dependence does not hold. It is

¹The ideas concerning relating logic were developed during a logic seminar held in Toruń, led by Tomasz Jarmużek and they are in various forms being studied, examined and developed by Torunian PhD students, participating in that seminar.
also worth noticing that an analysis of relating logics seems to be promising for a philosophical interpretation of relating connectives like causal or temporal ones. Such issue should be a subject of the further investigations concerning applications of relating logics.

2. Language of relatedness logic

Formulas of relatedness logic are build by means of propositional letters \(p_1, p_2, \ldots \), three logical connectives \(\neg, \land, \to \) and parentheses \((), \). A set of propositional letters is denoted by \(\text{Pl} \). A set \(\text{For} \) of formulas is the smallest set \(\Sigma \subseteq \text{Pl} \) such that: if \(A \in \Sigma \), then \(\neg A \in \Sigma \) and if \(A, B \in \Sigma \), then \((A \land B), (A \to B) \in \Sigma \). We will omit the outermost parentheses. In the case of formulas build by an iteration of \(\land \) we shall agree to associate to the left and write, for instance, \(A \land B \land C \) instead of \((A \land B) \land C \). In some cases we use parentheses \([], \) in order to make some formulas and metalogical expressions more readable. Additionally to simplify some of formalism we introduce the following abbreviations for every \(A, B, A_1, \ldots, A_n \in \text{For} \) \((n \geq 2)\):

\[
A \leftrightarrow B := (A \to B) \land (B \to A)
\]

\[
A_1 \lor \ldots \lor A_n := \neg(\neg A_1 \land \ldots \land \neg A_n)
\]

\[
A \leftrightarrow B := A \to (B \to B)
\]

\[
A \equiv B := \neg(A \land \neg B)
\]

\[
A \equiv B := \neg(A \land \neg B) \land \neg(B \land \neg A).
\]

By the complexity of a given formula we understand an output of function \(c: \text{For} \to \mathbb{N} \) defined in a standard way, wherein \(c(A) = 0 \), if \(A \in \text{Pl} \). A notion of subformula of a given formula is determined by function \(\text{sub}: \text{For} \to \mathcal{P}(\text{For}) \) also defined in a standard way. In order to refer to propositional letters of a given formula we use the following set \(\text{pl}(A) = \text{sub}(A) \cap \text{Pl} \), for every \(A \in \text{For} \).

3. Notion of relatedness

According to Epstein’s analysis of relatedness there are at least two good candidates for formal attributes of a content relationship. The first one is reflexivity, motivated by the obvious fact that any content is identical with
itself. The second one is to be independent from logical connectives, which is motivated by the fact that connectives are syncategorematic. Another intuitive attribute might be symmetry. In this way, we come to the concept of symmetric relatedness relation:

Definition 3.1. Relation $R \subseteq \text{For} \times \text{For}$ is symmetric relatedness relation (for short: srr) iff R fulfils the following conditions for every $A, B, C \in \text{For}$:

- $R(A, A)$ \hspace{1cm} (re)
- $R(A, \neg B)$ iff $R(A, B)$ \hspace{1cm} (srr1)
- $R(A, B \land C)$ iff $R(A, B \rightarrow C)$ \hspace{1cm} (srr2)
- $R(A, B \land C)$ iff $[R(A, B) \lor R(A, C)]$ \hspace{1cm} (srr3)
- $R(A, B)$ iff $R(B, A)$. \hspace{1cm} (sym)

In the monograph [2, pp. 65–68] it is presented how by means of srr one can express contents relationships recognised as relationships between propositions due to a common subject matter. For a simple illustration of a such relationship let us consider the following propositions:

1. If John is interested in logic, then John knows Post’s proof of completeness for Classical Propositional Logic.
2. John considers a notion of normal forms for formulas of Classical Propositional Logic.

There are many subject matters which are shared by 1 and 2, one of them might be expressed as *metalogical properties of Classical Propositional Logic*.

The next fact determines a way of extending reflexive and symmetric relations defined on Pl to srr (see [2, pp. 67–68]).

Fact 3.2. Let $Q \subseteq \text{Pl} \times \text{Pl}$ be reflexive and symmetric relation. Let $R \subseteq \text{For} \times \text{For}$ be an extension of Q on For defined for every $A, B \in \text{For}$ in the following way:

$$R(A, B) \text{ iff } \exists x \in \text{pl}(A) \exists y \in \text{pl}(B) \ Q(x, y).$$

Then R is srr.

Proof: Assume all hypothesis. Let $A, B, C \in \text{For}$.

- Ad. (re). Let $a \in \text{pl}(A)$. By reflexivity of Q, $Q(a, a)$. Therefore, by (\ast), $R(A, A)$.

A Post-Style Proof of Completeness Theorem for Symmetric Relatedness

A class of models is denoted by \mathcal{M}

A model is the following ordered pair

Definition 4.1

4. Symmetric Relatedness Logic S

It is easy to see that an extension received by condition (*) is unique.

4. **Symmetric Relatedness Logic S**

Definition 4.1. A model of relatedness logic based on srr (or simply a model) is the following ordered pair $\langle v, R \rangle$ such that:

- $v \in \{1, 0\}^{\text{Pl}}$ is a valuation of propositional letters
- $R \subseteq \text{For} \times \text{For}$ is srr.

A class of models is denoted by \mathcal{M}. Relation R (resp. valuation v) of model $\mathcal{M} \in \mathcal{M}$ is denoted by $R_{\mathcal{M}}$ (resp. $v_{\mathcal{M}}$). Now we define a notion of a truth in a model:

Definition 4.2. Let $\mathcal{M} \in \mathcal{M}$ and $A \in \text{For}$. A is a truth in \mathcal{M} (for short: $\mathcal{M} \models A$) iff for every $B, C \in \text{For}$:

- $v_{\mathcal{M}}(A) = 1$, if $A \in \text{Pl}$
- $\mathcal{M} \not\models B$, if $A := \neg B$
- $\mathcal{M} \models B$ \iff $\mathcal{M} \models C$, if $A := B \land C$
- $[\mathcal{M} \not\models B$ or $\mathcal{M} \models C] \land R_{\mathcal{M}}(B, C)$, if $A := B \rightarrow C$.

For every $\Sigma \subseteq \text{For}$ and $\mathcal{M} \in \mathcal{M}$ in the case $\forall A \in \Sigma \mathcal{M} \models A$ we will write $\mathcal{M} \models \Sigma$.

It is easy to observe that by Definition 4.2 the following abbreviation
\(A \lor B, A \supset B, A \equiv B \) denote respectively extensionally interpreted disjunction, conditional and biconditional.

Let us notice that formula \(A \leftrightarrow B \) plays a special role in Epstein’s investigations. It enables to express \(srr \) on the ground of the language of relatedness logic (see \[2, pp. 77–78\]):

FACT 4.3. Let \(\mathcal{M} \in \mathcal{M} \) and \(A, B \in \text{For} \). Then: \(\mathcal{M} \models A \leftrightarrow B \) iff \(R_{\mathcal{M}}(A, B) \).

PROOF: Assume all hypothesis

\[\implies \] Let \(\mathcal{M} \models A \leftrightarrow B \), so \(\mathcal{M} \models A \rightarrow (B \rightarrow B) \). Hence, \(R_{\mathcal{M}}(A, B \rightarrow B) \). Thus, by (srr2), (srr3) we get \(R_{\mathcal{M}}(A, B) \).

\[\impliedby \] Let \(R_{\mathcal{M}}(A, B) \). Hence, by (srr2), (srr3), \(R_{\mathcal{M}}(A, B \rightarrow B) \). By (re) and because either \(\mathcal{M} \models B \) or \(\mathcal{M} \not\models B \), we get \(\mathcal{M} \models B \rightarrow B \). Hence, either \(\mathcal{M} \not\models A \) or \(\mathcal{M} \models B \rightarrow B \). Therefore, \(\mathcal{M} \models A \rightarrow (B \rightarrow B) \). Thus, \(\mathcal{M} \models A \leftrightarrow B \).

DEFINITION 4.4. Let \(\Sigma \cup \{A\} \subseteq \text{For} \). Then:

- \(A \) is a semantic consequence of \(\Sigma \) in \(S \) (nota.: \(\Sigma \models_S A \)) iff \(\forall \mathcal{M} \in \mathcal{M} (\mathcal{M} \models \Sigma \implies \mathcal{M} \models A) \).

- \(A \) is a tautology in \(S \) (nota.: \(\models_S A \)) iff \(\emptyset \models \mathcal{M} A \).

In the next section we remind Hilbert-style formulation of \(S \).

5. Axiomatization of logic \(S \)

Axiom schemata of logic \(S \) are the following formulas, for every \(A, B, C \in \text{For} \) (see \[2, p. 80\]):

\[
\begin{align*}
& A \leftrightarrow A & (ax_1) \\
& (B \leftrightarrow A) \rightarrow (A \leftrightarrow B) & (ax_2) \\
& (A \leftrightarrow \neg B) \leftrightarrow (A \leftrightarrow B) & (ax_3) \\
& (A \leftrightarrow (B \rightarrow C)) \leftrightarrow ((A \leftrightarrow B) \lor (A \leftrightarrow C)) & (ax_4) \\
& (A \leftrightarrow (B \land C)) \leftrightarrow (A \leftrightarrow (B \rightarrow C)) & (ax_5) \\
& (A \land B) \rightarrow A & (ax_6) \\
& A \rightarrow (B \rightarrow (A \land B)) & (ax_7) \\
& (A \land B) \rightarrow (B \land A) & (ax_8) \\
& A \leftrightarrow \neg \neg A & (ax_9) \\
& (A \rightarrow B) \leftrightarrow (\neg (A \land \neg B) \land (A \leftrightarrow B)) & (ax_{10})
\end{align*}
\]
A Post-Style Proof of Completeness Theorem for Symmetric Relatedness...

\[A \rightarrow (\neg(A \land B) \rightarrow \neg B) \] \hspace{1cm} (ax_{11})
\[\neg(A \land B) \rightarrow (\neg(C \land \neg B) \rightarrow \neg(A \land C)) \] \hspace{1cm} (ax_{12})
\[\neg((A \rightarrow B) \land (A \land \neg B)) \] \hspace{1cm} (ax_{13})

Schemata (ax_1)–(ax_5) are intended to give a syntactic characterization of srr. The rest of schemata characterize logical connectives in logic S. The only rule of inference is *modus ponens*:

\[
\begin{array}{c}
A, A \rightarrow B \\
\hline
B
\end{array}
\] \hspace{1cm} (MP)

We have the standard definition of the relation of syntactic consequence for S:

Definition 5.1. Let \(\Sigma \cup \{A\} \subseteq \text{For} \). Then:

- A is a syntactic consequence of \(\Sigma \) in S (nota.: \(\Sigma \vdash_S A \)) iff there is a finite sequence of formulas \(B_1, \ldots, B_n \) such that \(B_n = A \) and for every \(i \leq n \) at least one of the following conditions holds: (1) \(B_i := (ax_1), \ldots, (ax_{13}) \), (2) \(B_i \in \Sigma \) or (3) \(\exists j, k < i B_k := B_j \rightarrow B_i \).
- A is a thesis in S (nota.: \(\vdash_S A \)) iff \(\emptyset \vdash \vdash_S A \).

One of the metalogical problems of logic S raised by Epstein concerns a proof of completeness by means of Post’s method [2, s. 81]. He noticed, however, that a non-constructive proof of completeness might be received by a simple modification of a proof presented for Dependence Logic D [2, pp. 81, 126–129].

Let us notice that for every axiom schemata \(A \), \(\vdash_S A \) and for every \(A, B \in \text{For} \), \(A \rightarrow B \vdash_S B \). Hence we have, the following fact:

Fact 5.2 (Theorem of weak soundenss for S). Let \(A \in \text{For} \). Then: \(\vdash_S A \iff \vdash_S \vdash_S A \).

Let \(\vdash_{\text{CPL}} \) be the relation of syntactic consequence for \(\{\neg, \land\} \)-fragment of Classical Propositional Logic. According to an observation of Epstein (see [2, pp. 74–75]) we should be able to prove the following fact:

Fact 5.3. Let \(A \in \text{For} \). Then: \(\vdash_{\text{CPL}} A \implies \vdash_S A \).

Let us notice that the following formulas are these in logic S:

\[A \supset (A \land A) \] \hspace{1cm} (1)
\[(A \land B) \supset A \] \hspace{1cm} (2)
\[(A \supset B) \supset (\neg(B \land C) \supset \neg(C \land A)) \] \hspace{1cm} (3)
Moreover the following rule of *modus ponens* for \supset is derivable:

\[\frac{A, A \supset B}{B}. \]
(4)

Formulas (1)–(3) with rule (4) (for formulas A, B, C build only by means of \neg, \land) enable to determine relation \models_{CPL} (see [6, pp. 12–46, 54–76]).

6. Normal forms of formulas

The set of literals is defined in a standard way $\text{Li} := \text{Pl} \cup \text{nPl}$, where $\text{nPl} := \{ \neg A \in \text{For} \mid A \in \text{Pl} \}$. Additionally we define a set of related propositional letters $\text{rPl} = \{ A \vdash B \in \text{For} \mid A, B \in \text{Pl} \}$ and a set of non-related propositional letters $\text{nrPl} = \{ \neg(A \vdash B) \in \text{For} \mid A, B \in \text{Pl} \}$.

Definition 6.1. $A \in \text{For}$ is elementary disjunction (for short: ed) in the following cases:

1. $A \in \text{Li} \cup \text{rPl} \cup \text{nrPl}$
2. $A := B \lor C$, where B is ed, and $C \in \text{Li} \cup \text{rPl} \cup \text{nrPl}$.

Remark 6.2. Let us notice that by Definition 6.1 A is ed iff $A := B_1 \lor \ldots \lor B_n$ ($n \in \mathbb{N}$), where for any $i \leq n$, $B_i \in \text{Li} \cup \text{rPl} \cup \text{nrPl}$. The equivalence might be also used in order to define ed.

A conjunctive normal form is defined in a standard way:

Definition 6.3. $A \in \text{For}$ is in conjunctive normal form (for short: cnf) in the following cases:

1. A is ed
2. $A := B \land C$, where B is in cnf and C is ed.

Remark 6.4. Similarly to Remark 6.2, let us notice that by Definition 6.3 A is in cnf iff $A := B_1 \land \ldots \land B_n$ ($n \in \mathbb{N}$), where for any $i \leq n$, B_i is ed. The equivalence might be also used in order to define cnf.

Let us define a function that enables to refer to an «opposite formula» of any:

Definition 6.5. Let $\prime : \text{Li} \cup \text{rPl} \cup \text{nrPl} \longrightarrow \text{Li} \cup \text{rPl} \cup \text{nrPl}$ be a function such that, for every $A \in \text{Li} \cup \text{rPl} \cup \text{nrPl}$ we put:

\[A' = \begin{cases} \neg A, & \text{if } A \in \text{Pl} \cup \text{rPl} \\ B, & \text{if } A \in \text{nPl} \cup \text{nrPl} \land A := \neg B. \end{cases} \]

Let us notice that:
A Post-Style Proof of Completeness Theorem for Symmetric Relatedness

• \(A'\) is ed
• \(\vdash_S \neg A \equiv A'\)
• \(\vdash_S (\neg A \Leftrightarrow C) \equiv (A' \Leftrightarrow C), \) for every \(C \in \text{For}\)
• \(A'' = A\).

We also define a function that enables to refer to an «antecedent» or «consequent» of the given formula:

Definition 6.6. Let \(a: \text{Li} \cup \text{rPl} \cup \text{nPl} \rightarrow \text{Li} \cup \text{rPl} \cup \text{nPl}, c: \text{Li} \cup \text{rPl} \cup \text{nPl} \rightarrow \text{Li} \cup \text{rPl} \cup \text{nPl}\) be functions such that, for every \(A \in \text{Li} \cup \text{rPl} \cup \text{nPl}\) we put:

\[
A^a = \begin{cases}
 A, & \text{if } A \in \text{Pl} \\
 A', & \text{if } A \in \text{nPl} \\
 B, & \text{if } A \in \text{rPl} \cup \text{nPl} \Leftrightarrow [A := B \Leftrightarrow C \text{ or } A := \neg (B \Leftrightarrow C)].
\end{cases}
\]

\[
A^c = \begin{cases}
 A, & \text{if } A \in \text{Pl} \\
 A', & \text{if } A \in \text{nPl} \\
 B, & \text{if } A \in \text{rPl} \cup \text{nPl} \Leftrightarrow [A := C \Leftrightarrow B \text{ or } A := \neg (C \Leftrightarrow B)].
\end{cases}
\]

Let us notice that:

• \(A^a, A^c\) are ed
• \(\vdash_S (A \Leftrightarrow C) \equiv ((A^a \Leftrightarrow C) \lor (A^b \Leftrightarrow C)), \) for every \(C \in \text{For}\).

Fact 6.7. Let \(A \in \text{For}.\) Then, there is \(B \in \text{For} \text{ in } \text{cnf} \text{ such that: } \vdash_S A \equiv B \) and for every \(C \in \text{For}, \vdash_S (A \Leftrightarrow C) \equiv (B \Leftrightarrow C).\)

Proof: We use induction on complexity of formulas.

Basis. Let \(A \in \text{For} \) and \(c(A) = 0.\) Then by Definition 6.1 \(A\) is ed, hence by Definition 6.3 is in \(\text{cnf}.\) By Fact 5.3, for every \(C \in \text{For}\) we have, \(\vdash_S C \equiv C.\)

Inductive hypothesis. Let \(n \in \mathbb{N}.\) Suppose for every \(C \in \text{For},\) if \(c(C) \leq n,\) then the fact holds for \(C.\)

Inductive step. Let \(A \in \text{For} \) and \(c(A) = n + 1.\) Then:

• Let \(A := \neg D.\) By the inductive hypothesis for some \(B \in \text{For} \) which is in \(\text{cnf}\) we have that: \(\vdash_S D \equiv B (1) \) and for every \(C \in \text{For}, \vdash_S (D \Leftrightarrow C) \equiv (B \Leftrightarrow C) (2).\)

\(B\) is in \(\text{cnf}.\) Hence, by Remark 6.2 and 6.4: \(B := (B_{11} \lor \ldots \lor B_{n1}) \land \ldots \land (B_{1m} \lor \ldots \lor B_{nm}), \) where for every \(i \leq n \) and \(j \leq m,\)

\(B_{ij} \in \text{Li} \cup \text{rPl} \cup \text{nPl}.\) Let \(\overline{B} := (B'_{11} \lor B'_{12} \lor \ldots \lor B'_{1m}) \land (B'_{21} \lor B'_{22} \lor \ldots \lor B'_{2m}) \land \ldots \land (B'_{n1} \lor B'_{n2} \lor \ldots \lor B'_{nm}).\) Hence, \(\overline{B}\) is in \(\text{cnf}.\)
Let us notice that, by Fact 5.3: $\vdash_S \neg B \equiv [(B'_{11} \land \ldots \land B'_{n_1}) \lor \ldots \lor (B'_{1m} \land \ldots \land B'_{n_m})]$ (3) and $\vdash_S [(B'_{11} \land \ldots \land B'_{n_1}) \lor \ldots \lor (B'_{1m} \land \ldots \land B'_{n_m})] \equiv \overline{B}$ (4). Hence, by Fact 5.3 (transitivity of \equiv), (1), (3), (4) and (MP) we get: $\vdash_S \neg D \equiv \overline{B}$.

Let us notice that, for every $C \in \text{For}$: $\vdash_S [(D \vdash C) \supset ((\neg D \Rightarrow C) \equiv (\neg B \Rightarrow C)] \equiv (\neg B \Rightarrow C)$ (5) and $\vdash_S (\neg B \Rightarrow C) \equiv (\overline{B} \Rightarrow C)$ (6). Hence, by Fact 5.3 (transitivity of \equiv), (2), (5), (6) and (MP) we get: $\vdash_S (\neg D \Rightarrow C) \equiv (\overline{B} \Rightarrow C)$.

• Let $A := D \land E$. By the inductive hypothesis for some $B_0, B_1 \in \text{For}$ which are in cnf we have that: $\vdash_S D \equiv B_0$ (1), for every $C \in \text{For}$, $\vdash_S (D \vdash C) \equiv (B_0 \vdash C)$ (2), $\vdash_S E \equiv B_1$ (3) and for every $C \in \text{For}$, $\vdash_S (E \vdash C) \equiv (B_1 \vdash C)$ (4).

B_0, B_1 are in cnf. Hence, by Remark 6.2 and 6.4: $B_0 := (C_{11} \lor \ldots \lor C_{n_1}) \land \ldots \land (C_{1_m} \lor \ldots \lor C_{n_m})$, where for every $i \leq n$ and $j \leq m$, $C_{ij} \in \text{Li} \cup \text{rPl} \cup \text{nrPl}$ and $B_1 := (D_{11} \lor \ldots \lor D_{k_1}) \land \ldots \land (D_{1i} \lor \ldots \lor D_{k_i})$, where for every $i \leq k$ and $j \leq l$, $D_{ij} \in \text{Li} \cup \text{rPl} \cup \text{nrPl}$. Let $B_2 := (C_{11} \lor \ldots \lor C_{n_1}) \land \ldots \land (C_{1_m} \lor \ldots \lor C_{n_m}) \land (D_{11} \lor \ldots \lor D_{k_1}) \land \ldots \land (D_{1i} \lor \ldots \lor D_{k_i})$. Hence, B_2 is in cnf.

Let us notice that, by Fact 5.3: $\vdash_S (D \lor E) \equiv (B_0 \lor B_1)$ (7). Hence, by Fact 5.3 (transitivity of \equiv), (1), (3), (5), (6) and (MP) we get: $\vdash_S (D \land E) \equiv B_2$.

Let us notice that, for every $C \in \text{For}$: $\vdash_S [(D \vdash C) \equiv (B_0 \vdash C)] \equiv [(E \vdash C) \equiv (B_1 \vdash C)] \equiv ((D \land E) \vdash C) \equiv ((B_0 \land B_1) \vdash C)]$ (7) and $\vdash_S ((B_0 \land B_1) \vdash C) \equiv (B_2 \vdash C)$ (8). Therefore, by Fact 5.3 (transitivity of \equiv), (2), (4), (7), (8) and (MP) we get: $\vdash_S ((D \lor E) \vdash C) \equiv (B_2 \vdash C)$.

• Let $A := D \Rightarrow E$. By the inductive hypothesis for some $B_0, B_1 \in \text{For}$ which are in cnf we have that: $\vdash_S D \equiv B_0$ (1), for every $C \in \text{For}$, $\vdash_S (D \vdash C) \equiv (B_0 \vdash C)$ (2), $\vdash_S E \equiv B_1$ (3) and for every $C \in \text{For}$, $\vdash_S (E \vdash C) \equiv (B_1 \vdash C)$ (4).

B_0, B_1 are in cnf. Hence, by Remark 6.2 and 6.4: $B_0 := (C_{11} \lor \ldots \lor C_{n_1}) \land \ldots \land (C_{1_m} \lor \ldots \lor C_{n_m})$, where for every $i \leq n$ and $j \leq m$, $C_{ij} \in \text{Li} \cup \text{rPl} \cup \text{nrPl}$. Also by Remark 6.2 and 6.4: $B_1 := (D_{11} \lor \ldots \lor D_{k_1}) \land \ldots \land (D_{1i} \lor \ldots \lor D_{k_i})$, where for every $i \leq k$ and $j \leq l$, $D_{ij} \in \text{Li} \cup \text{Pl} \cup \text{nrPl}$. Let $\overline{B_0} := (C'_{11} \lor \ldots \lor C'_{n_1}) \land \ldots \land (C'_{1m} \lor \ldots \lor C'_{n_m})$. Hence, $\overline{B_0}$ is in cnf. Let $B_2 := (C'_{11} \lor \ldots \lor C'_{1m} \lor D_{11} \lor \ldots \lor D_{k_1}) \land \ldots \land (C'_{1i} \lor \ldots \lor C'_{1m} \lor D_{1i} \lor \ldots \lor D_{k_i})$.
A Post-Style Proof of Completeness Theorem for Symmetric Relatedness.

We get:

by (1), (3), (14), (15) and

Let us notice that, by Fact 5.3:

$C \equiv (C_1 \equiv D_1) \lor (C_1 \equiv D_1) \lor \ldots \lor (C_k \equiv D_k).$

Hence, by Fact 5.3 (transitivity of \equiv),

(\equiv).

For every $i \leq n$ and $j \leq m$, $C_{ij} \in \mathcal{L} \cup r\mathcal{P} \cup n\mathcal{P}$ and for every $i \leq k$

and $j \leq l$, $B_{ij} \in \mathcal{L} \cup r\mathcal{P} \cup n\mathcal{P}$. Let $B_3 = (C_1 \equiv D_1) \lor (C_1 \equiv D_1) \lor (C_1 \equiv D_1) \lor \ldots \lor (C_k \equiv D_k).$

Hence, B_3 is ed.

Let us notice that: $\neg (B_0 \lor B_1) \equiv B_3$ (8). Hence, by Fact 5.3, (7),

(8) and (MP) we get: $\neg [[(B_0 \lor B_1) \lor (B_0 \lor B_1)] \equiv (B_2 \lor B_3)$ (9).

Let $B_4 := (C_1 \equiv D_1) \lor (C_1 \equiv D_1) \lor (C_1 \equiv D_1) \lor \ldots \lor (C_k \equiv D_k) \lor \ldots \lor (C_k \equiv D_k) \lor \ldots \lor (C_k \equiv D_k).$

Therefore, B_4

is in cnf.

Let us notice that, by Fact 5.3: $\neg (B_2 \lor B_3) \equiv B_4$ (10). Hence, by

Fact 5.3 (transitivity of \equiv), (9), (10) and (MP) we get: $\neg [(B_0 \lor B_1) \lor (B_0 \lor B_1)] \equiv B_4$ (11). We also have that, for every $C \in \mathcal{F}$,

$\neg ((B_0 \lor B_1) \equiv C) \equiv (B_4 \lor C)$ (12).

Let us notice that: $\neg [[(E \lor B_0) \equiv (B_1 \lor B_0)] \lor [(B_0 \lor E) \equiv (B_0 \lor B_1)]$ (13). Hence, by Fact 5.3 (transitivity of \lor), (2), (4),

(13), and (MP) we get: $\neg [(D \lor E) \equiv (B_0 \lor B_1)$ (14).

Let us notice that: $\neg [[(D \lor E) \equiv (B_0 \lor B_1)] \lor [(D \lor B_0) \lor ((E \equiv B_1) \lor ((D \lor E) \equiv ((B_0 \lor B_1) \lor (B_0 \lor B_1)))]$ (15). Hence, by

(1), (3), (14), (15) and (MP): $\neg (D \lor E) \equiv ((B_0 \lor B_1) \lor (B_0 \lor B_1))$ (16).

Hence, by Fact 5.3 (transitivity of \lor), (11), (16) and (MP)

we get: $\neg (D \lor E) \equiv B_4$.

Let us notice that, by Fact 5.3: $\neg [[(D \lor C) \equiv (B_0 \lor C)] \lor (E \equiv C) \lor (B_1 \lor C)] \lor ((D \lor C) \lor (E \lor C)) \lor (B_0 \lor C) \lor (B_1 \lor C)))]$ (16).

For every $C \in \mathcal{F}$ we have: $\neg ((D \lor C) \lor (E \lor C))$ (17) and $\neg ((B_0 \lor C) \lor (B_1 \lor C)) \equiv ((B_0 \lor B_1) \lor C) (18)$. Hence, by Fact 5.3 (transitivity of \lor), (2), (4), (16), (17),

(18) and (MP) we get: $\neg ((D \lor E) \lor C) \equiv ((B_0 \lor B_1) \lor C) (19)$.

Hence, by Fact 5.3 (transitivity of \lor), (12), (19) and (MP) we get: $\neg ((D \lor E) \lor C) \equiv (B_4 \lor C)$.

Lemma 6.8. Let $A := B_1 \lor \ldots \lor B_n$ be ed $(n \in \mathbb{N})$. Then: $\neg A$ iff at least
one of the following conditions hold:

1. \(B_k := p_i \) and \(B_l := \neg p_i \), for some \(k, l \leq n \) and \(i \in \mathbb{N} \)
2. \(B_k := p_i \leftrightarrow p_i \), for some \(k \leq n \) and \(i \in \mathbb{N} \)
3. \(B_k := p_i \leftrightarrow p_j \) and \(B_l := \neg(p_i \leftrightarrow p_j) \), for some \(k, l \leq n \) and \(i, j \in \mathbb{N} \).

Proof: Assume all hypothesis.

"\(\Rightarrow \)" Suppose that none of the conditions (1)–(3) holds (\(\star \)). We define a model \(\mathfrak{M} = \langle v, R \rangle \) in the following way:

1. Let \(i \in \mathbb{N} \) we put:
 \[
 v(p_i) = \begin{cases}
 1, & \text{if } \neg p_i \in \text{sub}(A), \\
 0, & \text{if } p_i \in \text{sub}(A).
 \end{cases}
 \]

2. Let \(i, j \in \mathbb{N} \) and \(i \neq j \). Let \(Q \subseteq \mathbb{P} \times \mathbb{P} \) be the smallest relation which fulfills the following conditions:
 - \(p_i \leftrightarrow p_j \in \text{sub}(A) \implies \sim Q(p_i, p_j) \)
 - \(\neg(p_i \leftrightarrow p_j) \in \text{sub}(A) \implies Q(p_i, p_j) \)
 - \(Q(p_i, p_i) \)
 - \(Q(p_i, p_j) \text{ iff } Q(p_j, p_i) \).

 \(Q \) is obviously reflexive and symmetric. We extend \(Q \) on \(\mathbb{P} \) by the following way for every \(A, B \in \mathbb{P} \):
 \[
 R(A, B) \text{ iff } \exists x \in \text{pl}(A) \exists y \in \text{pl}(B) Q(x, y).
 \]

By Fact 3.2 \(R \) is \textsl{srr}. Let \(i, j \in \mathbb{N} \) and \(i \neq j \). Let us consider the following cases:

- Suppose \(B_k := p_i \), for some \(k \leq n \). By the definition of \(v_{\mathfrak{M}} \) we get \(\mathfrak{M} \not\models_S p_n \).
- Suppose \(B_k := \neg p_n \), for some \(k \leq n \). By the definition of \(v_{\mathfrak{M}} \) we get \(\mathfrak{M} \not\models_S \neg p_n \).
- By (\(\star \)) it is excluded that: \(B_k = p_i \) and \(B_l := \neg p_i \), for some \(k, l \leq n \).
- Suppose \(B_k := p_i \leftrightarrow p_j \), for some \(k \leq n \). By the definition of \(R_{\mathfrak{M}} \) we get \(\mathfrak{M} \not\models_S p_i \leftrightarrow p_j \).
- Suppose \(B_k := \neg(p_i \leftrightarrow p_j) \), for some \(k \leq n \). By the definition of \(R_{\mathfrak{M}} \) we get \(\mathfrak{M} \not\models_S \neg(p_i \leftrightarrow p_j) \).
- By (\(\star \)) it is excluded that: \(B_k := p_i \leftrightarrow p_j \), for some \(k \leq n \) and it is excluded that: \(B_k := p_i \leftrightarrow p_j \) and \(B_l := \neg(p_i \leftrightarrow p_j) \), for some \(k, l \leq n \).

Therefore, \(\mathfrak{M} \not\models_S A \), so by Definition 4.4 \(\not\models_S A \).
Suppose that at least one of the conditions (1)–(3) holds. Let $M \in M$. If condition (1) or (3) holds then, by Definition 4.2, $M \models A$. If condition (2) holds and $B_k := p_i \leftrightarrow p_i$, for some $k \leq n$ and $i \in \mathbb{N}$. By (re) $R_{\mathfrak{M}}(p_i, p_i)$. Therefore, by Fact 4.3, $M \models p_i \leftrightarrow p_i$. Hence, by Definition 4.2, $M \models A$. Therefore, $M \models S_A$. Thus, by Definition 4.4, $\models S_A$.

Lemma 6.9. Let $A := B_1 \wedge \ldots \wedge B_n$ be in cnf ($n \in \mathbb{N}$). Then: $\models S_A$ iff $\models S_{B_k}$, for every $k \leq n$.

Proof: Assume all hypothesis. By Definition 4.2: $\models S_{B_1 \wedge \ldots \wedge B_n}$ iff $\models S_{B_k}$, for every $k \leq n$.

7. Completeness theorem for logic S

Theorem 7.1 (Completeness theorem for logic S). Let $A \in \text{For}$. Then: $\models S_A \implies \models S_A$.

Proof: Let $A \in \text{For}$. Suppose $\models S_A$ (1). By Fact 6.7 for some $B \in \text{For}$ in cnf we have $\models S_A \equiv B$ (2). By Fact 5.2 we get $\models S_A \equiv B$ (3). Hence, by (1) and (3), $\models S_B$. Moreover, B is in cnf. Let $n \in \mathbb{N}$ and $B := B_1 \wedge \ldots \wedge B_n$, where for every $i \leq n$, B_i is ed. Let $i \leq n$, by Lemma 6.9, $\models S_{B_i}$. We also have that $B_i := C_{1_i} \lor \ldots \lor C_{m_i}$, for some $m \in \mathbb{N}$, and for every $k \leq m$, $C_{k_i} \in L_i \cup rPl \cup nrPl$. By Lemma 6.8 at least one of the following conditions holds:

(a) $C_{k_i} := p_j$ and $C_{l_i} := \neg p_j$, for some $k, l \leq m$ and $j \in \mathbb{N}$
(b) $C_{k_i} := p_j \leftrightarrow p_j$, for some $k \leq m$ and $j \in \mathbb{N}$
(c) $C_{k_i} := p_j \leftrightarrow p_h$ and $C_{l_i} := \neg (p_j \leftrightarrow p_h)$, for some $k, l \leq m$ and $i, h \in \mathbb{N}$.

Suppose condition (a) holds and $B_i := p_j \lor \neg p_j \lor C$, where C is not important part of B_i. Let us notice that $\models S p_j \lor \neg p_j$ (4). Moreover, for every $D, E \in \text{For}$ we have that $\models S D \rightarrow (D \lor E)$ (5). Hence, by (4) and (5), $\models S B_i$.

Suppose condition (b) holds and $B_i := p_j \leftrightarrow p_j \lor C$, where C is not important part of B_i. Let us notice that $\models S p_j \leftrightarrow p_j$. We reason as in the case of condition (a).

Suppose condition (c) holds and $B_i := (p_j \leftrightarrow p_h) \lor \neg (p_j \leftrightarrow p_h) \lor C$, where C is not important part of B_i. Let us notice that $\models S (p_j \leftrightarrow p_h) \lor \neg (p_j \leftrightarrow p_h)$. We reason as in the case of condition (a).
Hence, $\vdash S B_i$, for every $i \leq n$ (6). Let us also note that $\vdash S D \rightarrow (E \rightarrow (D \land E))$ (7). By (6) and (7) we get $\vdash S B_1 \land \ldots \land B_n$. Hence, $\vdash S B$. And therefore, by (2), $\vdash S A$.

References

Department of Logic
Nicolaus Copernicus University
ul. Fosa Staromiejska 1a, 87-100, Toruń, Poland
e-mail: matklon@doktorant.umk.pl