Show simple item record

dc.contributor.authorMankiewicz-Boczek, J.
dc.contributor.authorGągała, I.
dc.contributor.authorJurczak, T.
dc.contributor.authorJaskulska, A.
dc.contributor.authorPawełczyk, J.
dc.contributor.authorDziadek, J.
dc.date.accessioned2015-08-31T11:00:13Z
dc.date.available2015-08-31T11:00:13Z
dc.date.issued2014-08-20
dc.identifier.issn2391-5412
dc.identifier.urihttp://hdl.handle.net/11089/11601
dc.description.abstractWater blooms dominated by cyanobacteria are capable of producing hepatotoxins known as microcystins. These toxins are dangerous to people and to the environment. Therefore, for a better understanding of the biological termination of this increasingly common phenomenon, bacteria with the potential to degrade cyanobacteria-derived hepatotoxins and the degradative activity of culturable bacteria were studied. Based on the presence of the mlrA gene, bacteria with a homology to the Sphingopyxis and Stenotrophomonas genera were identified as those presenting potential for microcystins degradation directly in the water samples from the Sulejów Reservoir (SU, Central Poland). However, this biodegrading potential has not been confirmed in in vitro experiments. The degrading activity of the culturable isolates from the water studied was determined in more than 30 bacterial mixes. An analysis of the biodegradation of the microcystin-LR (MC-LR) together with an analysis of the phylogenetic affiliation of bacteria demonstrated for the first time that bacteria homologous to the Aeromonas genus were able to degrade the mentioned hepatotoxin, although the mlrA gene was not amplified. The maximal removal efficiency of MC-LR was 48%. This study demonstrates a new aspect of interactions between the microcystin-containing cyanobacteria and bacteria from the Aeromonas genus.pl_PL
dc.description.sponsorshipThe authors would like to acknowledge the European Cooperation in Science and Technology, COST Action ES 1105 “CYANOCOST - Cyanobacterial blooms and toxins in water resources: Occurrence, impacts and management” for adding value to this study through networking and knowledge sharing with European experts and researchers in the field. The Sulejów Reservoir is a part of the Polish National Long- Term Ecosystem Research Network and the European LTER site.pl_PL
dc.language.isoenpl_PL
dc.publisherDE GRUYTERpl_PL
dc.relation.ispartofseriesOpen Life Sciences;2015
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleBacteria homologus to Aeromonas capable of microcystin degradationpl_PL
dc.typeArticlepl_PL
dc.page.number119–129pl_PL
dc.contributor.authorAffiliationMankiewicz-Boczek J., Department of Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodzpl_PL
dc.contributor.authorAffiliationGągała I., European Regional Centre for Ecohydrology of the Polish Academy of Sciencespl_PL
dc.contributor.authorAffiliationJurczak T., European Regional Centre for Ecohydrology of the Polish Academy of Sciencespl_PL
dc.contributor.authorAffiliationJaskulska A., European Regional Centre for Ecohydrology of the Polish Academy of Sciencespl_PL
dc.contributor.authorAffiliationPawełczyk J., Institute for Medical Biology of the Polish Academy of Sciencespl_PL
dc.contributor.authorAffiliationDziadek J., Institute for Medical Biology of the Polish Academy of Sciencespl_PL
dc.referencesCarvalho L., Miller C.A., Scott E.M., Codd G.A., Davies P.S., Tyler A.N., Cyanobacterial blooms: Statistical models describing risk factors for national-scale lake assessment and lake management, Sci. Total. Environ., 2011, 409, 5353–5358pl_PL
dc.referencesBednarek A., Stolarska M., Ubraniak M., Zalewski M., Application of permeable reactive barrier for reduction of nitrogen load in the agricultural areas - preliminary results, Ecohydrology and Hydrobiology, 2010, 10, 355–362pl_PL
dc.referencesKelly J.M., Kovar J.L., Modelling phosphorus capture by plants growing in a multispecies riparian buffer, Appl. Environ. Soil Sci., 2012, 2012, 1–7pl_PL
dc.referencesKiedrzyńska E., Kiedrzyński M., Zalewski M., Flood sediment deposition and phosphorus retention in a lowland river floodplain: impact on water quality of a reservoir Sulejów, Poland, Ecohydrology and Hydrobiology, 2008, 8, 281–289pl_PL
dc.referencesSchmidt C.A., Clark. M.W., Evaluation of a denitrification wall to reduce surface water nitrogen loads, J. Environ. Quality., 2012, 41, 724–731pl_PL
dc.referencesHo L., Hoefel D., Saint C.P., Newcombe G., Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter, Water Res., 2007, 41, 4685–4695pl_PL
dc.referencesBourne D.G., Blakeley R.L., Riddles P., Jones G.J., Biodegradation of the cyanobacterial toxin microcystin-LR in natural water and biologically active slow sand filters, Water Res., 2006, 40, 1294–302pl_PL
dc.referencesJi R.P., Lu X.W., Li X.N., Pu Y.P., Biological degradation of algae and microcystins by microbial enrichment on artificial media, Ecol. Eng., 2009, 35, 1584–1588pl_PL
dc.referencesGągała I., Mankiewicz-Boczek J., Natural degradation of microcystins (cyanobacterial hepatotoxins) in fresh water – the future of modern treatment systems and water quality improvement. Pol. J. Environ. Stud., 2012, 21, 1125–1139pl_PL
dc.referencesMou X., Lu X., Jacob J., Sun S., Heath R., Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in Lake Erie, PLoS One., 2013, 8, e61890pl_PL
dc.referencesJing W., Sui G., Liu S., Characteristics of a microcystin-LR biodegrading bacterial isolate: Ochrobactrum sp. FDT5. Bull. Environ. Contam. Toxicol., 2014, 92(1), 119-122pl_PL
dc.referencesMa G., Pei H., Hu W., Xu X., Ma C., Li X., The removal of cyanobacteria and their metabolites through anoxic biodegradation in drinking water sludge, Bioresour. Technol. 2014, 165C, 191-198pl_PL
dc.referencesRapala J., Berg K.A., Lyra C., Niemi R.M., Manz W., Suomalainen S., et al., Paucibacter toxinivorans gen. nov. sp. nov. a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin, Int. J. Syst. Evol. Microbiol., 2005, 55, 1563–1568pl_PL
dc.referencesLawton L.A., Welgamage A., Manage P.M., Edwards C., Novel bacterial strains for the removal of microcystins from drinking water, Water Sci. Technol., 2011, 63, 1137–1142pl_PL
dc.referencesManage P.M., Edwards C., Singh B.K., Lawton L.A., Isolation and identification of novel microcystin-degrading bacteria, Appl. Environ. Microbiol., 2009, 75, 6924–6928pl_PL
dc.referencesBourne D.G., Riddles P., Jones G.J., Smith W., Blakeley R.L. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin Microcystin-LR, Cultures, 2001, 16, 523–534pl_PL
dc.referencesIzydorczyk K., Jurczak T., Wojtal-Frankiewicz A., Skowron A., Mankiewicz-Boczek J., Tarczyńska M., Influence of abiotic and biotic factors on microcystin content in Microcystis aeruginosa cells in a eutrophic temperate reservoir, J. Plankton Res., 2008, 30, 393–400pl_PL
dc.referencesJurczak T., Tarczyńska M., Izydorczyk K., Mankiewicz J., Zalewski M., Meriluoto J., Elimination of microcystins by water treatment processes — examples from Sulejów Reservoir, Poland, Water Res., 2005, 39, 2394–2406pl_PL
dc.referencesJurczak T., Zastosowanie monitoringu toksyn sinicowych w celu optymalizacji technologii uzdatniania wody oraz strategii rekultywacji zbiorników zaporowych, PhD dissertation, University of Lodz, Poland, 2006, (in Polish)pl_PL
dc.referencesMankiewicz-Boczek J., Izydorczyk K., Romanowska-Duda Z., Jurczak T., Stefaniak K., Kokociński M., Detection and monitoring toxigenicity of cyanobacteria by application of molecular methods, Environ. Toxicol., 2006, 21, 380–387pl_PL
dc.referencesMankiewicz-Boczek J., Urbaniak M., Romanowska-Duda Z., Izydorczyk K., Toxic Cyanobacteria strains in lowland dam reservoir (Sulejów Res. Central Poland): Amplification of mcy genes for detection and identification, Pol. J. Ecol., 2006, 54, 171–180pl_PL
dc.referencesTarczyńska M., Romanowska-Duda Z., Jurczak T., Zalewski M., Toxic cyanobacterial blooms in a drinking water reservoir - causes consequences and management strategy, Water Sci. Technol.: Water Supply., 2001, 1, 237–246pl_PL
dc.referencesZalewski M., Ecohydrology - The scientific background to use ecosystem properties as management tools toward sustainability of water resources, Guest Editorial Ecol. Eng., 2000, 16, 41647pl_PL
dc.referencesGiovannoni S.J., DeLong E.F., Schmidt T.M., Pace N.R., Tangential flow filtration and preliminary phylogenetic analysis of marine picoplankton, Appl. Environ. Microbiol., 1990, 56, 2572-2575pl_PL
dc.referencesRantala A., Rajaniemi-Wacklin P., Lyra C., Lepistö L., Rintala J., Mankiewicz-Boczek J., et al., Detection of microcystinproducing cyanobacteria in Finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors, Appl. Environ. Microbiol., 2006, 72, 6101–6110pl_PL
dc.referencesSaito T., Okano K., Park H., Itayama T., Inamori Y., Neilan B.A., et al., Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese lakes, FEMS Microbiol. Lett., 2003, 229(2), 271-276pl_PL
dc.referencesZhang Z., Schwartz S., Wagner L., Miller W., A greedy algorithm for aligning DNA sequences, J. Comput. Biol., 2000, 7, 203-221pl_PL
dc.referencesOrphan V.J., Hinrichs K., Iii W.U., Paull C.K., Taylor L.T., Sylva S.P., et al., Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments, J. Appl. Microbiol., 2001, 67, 1922–1934pl_PL
dc.referencesHuson D.H., Scornavacca. C., Dendroscope 3: An Interactive Tool for Rooted Phylogenetic Trees and Networks, Syst. Biol., 2012, 61, 1061-1067pl_PL
dc.referencesGągała I., Izydorczyk K., Jurczak T., Pawełczyk J., Dziadek J., Wojtal-Frankiewicz A., et al., Role of environmental factors and toxic genotypes in the regulation of microcystins-producing cyanobacterial blooms, Microbial Ecol., 2014, 67(2), 465-479pl_PL
dc.referencesOrr P.T., Jones. G.J., Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures, Limnol. Oceanogr., 1998, 43, 1604pl_PL
dc.referencesOkano K., Shimizu K., Kawauchi Y., Maseda H., Utsumi M., Zhang Z., et al., Characteristics of a microcystin-degrading bacterium under alkaline environmental conditions, J. Toxicol., 2009, 2009, 41648pl_PL
dc.referencesChen J., Hu L., Bin Zhou W., Yan S.H., Yang J.D., Xue Y.F., et al., Degradation of microcystin-LR and RR by a Stenotrophomonas sp. strain EMS isolated from Lake Taihu, China, Int. J. Mol. Sci., 2010, 11, 896–911pl_PL
dc.referencesPark H.D., Sasaki Y., Maruyama T., Yanagisawa E., Hiraishi A., Kato K., Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake, Environ. Toxicol., 2001, 16, 337–343pl_PL
dc.referencesIshii H., Nishijima M., Abe T., Characterization of degradation process of cyanobacterial hepatotoxins by a gram-negative aerobic bacterium, Water Res., 2004, 38, 2667–2676pl_PL
dc.referencesWang J., Wu P., Chen J., Yan H., Biodegradation of microcystin- RR by a new isolated Sphingopyxis sp. USTB-05, Chin. J. Chem. Eng., 2010, 18, 1-5pl_PL
dc.referencesZhang, M., Pan G., Yan H., Microbial biodegradation of microcystin-RR by bacterium Sphingopyxis sp. USTB-05, 2010, J. Environ. Sci., 22, 168–175pl_PL
dc.referencesYan H., Wang J., Chen J., Wei W., Wang H., Wang H., Characterization of the first step involved in enzymatic pathway for microcystin-RR biodegraded by Sphingopyxis sp. USTB-05, Chemosphere, 2012, 87, 12-18pl_PL
dc.referencesHo L., Tang T., Monis P.T., Hoefel D., Biodegradation of multiple cyanobacterial metabolites in drinking water supplies, Chemosphere, 2012, 87, 1149-1154pl_PL
dc.referencesMateos D., Anguita J., Naharro G., Paniagua C., Influence of growth temperature on the production of extracellular virulence factors and pathogenicity of environmental and human strains of Aeromonas hydrophila, J. Appl. Bacteriol., 1993, 74, 111–118pl_PL
dc.referencesMano S., Growth/survival of natural flora and Aeromonas hydrophila on refrigerated uncooked pork and turkey packaged in modified atmospheres, Food Microbiol., 2000, 17, 657–669pl_PL
dc.referencesTomás J.M., The main Aeromonas pathogenic factors, ISRN Microbiol., 2012, 2012, 1–22pl_PL
dc.referencesGaoshan P., Zhangli H., Anping L., Shuangfei L., Effect of crude microcystin on the viable but non-culturable state of Aeromonas sobria in aquatic environment, J. Lake Sci., 2008, 20, 105-109 (in chinese)pl_PL
dc.referencesBerg K.A., Lyra C., Niemi R.M., Heens B., Hoppu K., Erkomaa K., et al., Virulence genes of Aeromonas isolates bacterial endotoxins and cyanobacterial toxins from recreational water samples associated with human health symptoms, J. Water Health., 2011, 9, 670-679pl_PL
dc.referencesBerg K.A., Lyra C., Sivonen K., Paulin L., Suomalainen S., Tuomi P., et al., High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms, ISME J., 2009, 3, 314–325pl_PL
dc.referencesØstensvik O., Skulberg O.M., Underdal B., Hormazabal V., Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria - a comparative study of bacterial bioassays, J. Appl. Microbiol., 1998, 84, 1117–1124pl_PL
dc.referencesBomo A-M., Tryland I., Haande S., Hagman C.H.C., Utkilen H., The impact of cyanobacteria on growth and death of opportunistic pathogenic bacteria, Water Sci. Technol., 2011, 64, 384–390pl_PL
dc.referencesLiu Y-M., Chen M-J., Wang M-H., Jia R-B., Li L. Inhibition of Microcystis aeruginosa by the extracellular substances from an Aeromonas sp., J. Microbiol. Biotechnol., 2013, 23, 1304-1307pl_PL
dc.referencesLee Y-J., Jung J-M., Jang M-H., Ha K., Joo G-J. Degradation of microcystins by adsorbed bacteria on a granular active carbon (GAC) filter during the water treatment process, J. Environ Biology/Academy of Environmental Biology, India, 2006, 27, 317–322pl_PL
dc.referencesDziga D., Wasylewski M., Wladyka B., Nybom S., Meriluoto J. Microbial degradation of microcystins, Chem. Res. Toxicol., 2013, 26, 841-852pl_PL
dc.referencesLemes G.A.F., Kersanach R., Pinto L.D.S., Dellagostin O.A., Yunes J.S., Matthiensen A., Biodegradation of microcystins by aquatic Burkholderia sp. from a South Brazilian coastal lagoon, Ecotoxicol. Environ Saf., 2008, 69, 358–365pl_PL
dc.referencesHu L., Bin Yang J.D., Zhou W., Yin Y.F., Chen J., Shi Z.Q., Isolation of a Methylobacillus sp. that degrades microcystin toxins associated with cyanobacteria, New Biotechnol., 2009, 26, 205–211pl_PL
dc.referencesTakenaka S., Watanabe. M.F., Microcystin-LR degradation by Pseudomonas aeruginosa alkaline protease, Chemosphere, 1997, 34, 749–757pl_PL
dc.referencesEleuterio L., Batista. J.R., Biodegradation studies and sequencing of microcystin-LR degrading bacteria isolated from a drinking water biofilter and a fresh water lake, Toxicon, 2010, 55, 1434–1442pl_PL
dc.referencesYang F., Zhou Y., Yin L., Zhu G., Liang G., Pu Y., Microcystindegrading activity of an indigenous bacterial strain Stenotrophomonas acidaminiphila MC-LTH2 isolated from Lake Taihu. PLoS ONE, 2014, 9(1): e86216pl_PL
dc.contributor.authorEmailj.mankiewicz@erce.unesco.lodz.plpl_PL
dc.identifier.doi10.1515/biol-2015-0012
dc.relation.volume10pl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska