Repozytorium UŁ - A Classical Approach to Dynamics of Parabolic Competitive Systems

Repozytorium Centrum Otwartej Nauki

 

A Classical Approach to Dynamics of Parabolic Competitive Systems

Pokaż uproszczony rekord


dc.contributor.author Pietruk, Małgorzata
dc.contributor.author Przeradzki, Bogdan
dc.date.accessioned 2016-05-20T09:29:41Z
dc.date.available 2016-05-20T09:29:41Z
dc.date.issued 2010
dc.identifier.issn 0208-6204
dc.identifier.uri http://hdl.handle.net/11089/18155
dc.description.abstract We study the reaction-diffusion system, its stationary solutions, the behavior of the system near them and discuss similarities and differences for different boundary conditions. pl_PL
dc.language.iso en pl_PL
dc.publisher Łódź University Press pl_PL
dc.relation.ispartofseries Acta Universitatis Lodziensis. Folia Mathematica;1
dc.rights Uznanie autorstwa-Bez utworów zależnych 3.0 Polska *
dc.rights.uri http://creativecommons.org/licenses/by-nd/3.0/pl/ *
dc.subject Reaction-diffusion system pl_PL
dc.subject competition. pl_PL
dc.title A Classical Approach to Dynamics of Parabolic Competitive Systems pl_PL
dc.type Article pl_PL
dc.rights.holder © 2010 for University of Łódź Press pl_PL
dc.page.number 23-38 pl_PL
dc.contributor.authorAffiliation Institute of Mathematics, Technical University of Łódź Wólczańska 215, 93-005 Łódź, Poland pl_PL
dc.contributor.authorAffiliation Institute of Mathematics, Technical University of Łódź Wólczańska 215, 93-005 Łódź, Poland pl_PL
dc.references R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, Wiley, Chichester UK, 2003. pl_PL
dc.references M. Chipot, Elements of Nonlinear Analysis, Birkhäuser Verlag, Basel-Boston- Berlin 2000. pl_PL
dc.references E. Conway, D. Hoff, J. Smöller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math. 35 (1978), pp. 1-16. pl_PL
dc.references Y. Du, Effects of degeneracy in the competition model, part I: Classical and gen- eralized stedy-state solutions, J. Differential Equations 181 (2002), pp. 92-132. pl_PL
dc.references Y. Du, Effects of degeneracy in the competition model, part II: Perturbation and dynamical behaviour, J. Differential Equations 181 (2002), pp. 133-164. pl_PL
dc.references D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-Heidelberg-Tokyo-New York 1981. pl_PL
dc.references V. Hutson, Y. Lou, K. Mischaikov, Spatial heterogeneity of resources versus Lotka- Volterra dynamics, J. Differential Equations 185 (2002), pp. 97-136. pl_PL
dc.references V. Hutson, Y. Lou, K. Mischaikov, Convergence in competition models with small diffusion coefficients, J. Differential Equations 211 (2005), pp. 135-161. pl_PL
dc.references Analytic Semigroups and Reaction-Diffusion Problems, VIIIth Internet Seminar 2004/05. pl_PL
dc.references M. Janicka, B. Przeradzki, On a three-dimensional competitive system, Folia Math- ematica 12, 1 (2005), pp. 15-24. pl_PL
dc.references K. Kishimoto, H. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains, J. Differential Equations 58 (1985), pp. 15-21. pl_PL
dc.references M. Kot, Elements of Mathematical Ecology, Cambridge Univ. Press, Cambridge 2001. pl_PL
dc.references J. López-Gómez, M. Molina-Meyer, Superlinear indefinite systems: beyond Lotka- Volterra models, J. Differential Equations 221 (2006), pp. 343-411. pl_PL
dc.references Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Differential Equations 223 (2006), pp. 400-426. pl_PL
dc.references L.Markus, Asymptotically autonomous differential systems, in Contribution to the Theory of Nonlinear Oscillations, vol. 3, Annals of Math.Studies 36, Princeton Univ. Press, Princeton 1956, pp. 17-29. pl_PL
dc.references H. Matano, M. Mimura, Pattern formation in competition-diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sci.Kyoto Univ. 19 (1983), pp. 1050- 1079. pl_PL
dc.references R.M. May, W.J. Leonard, Nonlinear aspects of competition between three species, SIAM J. Appl. Math. 29 (1975), pp. 243-253. pl_PL
dc.references H.L. Smith, Monotone Dynamical Systems, An Introduction to the Theory of Com- petitive and Cooperative Systems, AMS Math Surv. & Monographs 41, Providence R.I., 1995. pl_PL
dc.references H.L. Smith, Dynamics of Competition, in Lecture Notes at CIME, Martina Franca 1997. pl_PL
dc.references J. Smöller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, Berlin-Heidelberg-Tokyo-New York 1983. pl_PL
dc.contributor.authorEmail malgorzta.pietruk@p.lodz.pl pl_PL
dc.contributor.authorEmail bogdan.przeradzki@p.lodz.pl pl_PL
dc.relation.volume 17 pl_PL

Pliki tej pozycji

Plik Rozmiar Format Przeglądanie
05pietprzer.pdf 372.5KB PDF Oglądaj/Otwórz

Z tą pozycją powiązane są następujące pliki licencyjne:

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Bez utworów zależnych 3.0 Polska Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako
Uznanie autorstwa-Bez utworów zależnych 3.0 Polska

Szukaj w Repozytorium


Szukanie zaawansowane

Przeglądaj

Moje konto

Statystyki

Sprawdź