Show simple item record

dc.contributor.authorZabielska, Juliaen
dc.contributor.authorTyfa, Agnieszkaen
dc.contributor.authorKunicka-Styczyńska, Alinaen
dc.description.abstractThe inconvenient environmental conditions force microorganisms to colonize either abiotic surfaces or animal and plant tissues and, therefore, form more resistant structures – biofilms. The phenomenon of microbial adherence, opportunistic pathogens in particular, is of a great concern. Colonization of medical devices and biofilm formation on their surface, may lead to severe infections mainly in humans with impaired immune system. Although, current research consider various methods for prevention of microbial biofilms formation, still, once a biofilm is formed, its elimination is almost impossible. This study focuses on the overview of novel methods applied for eradication of mature opportunistic pathogens' biofilms. Among various techniques the following: cold plasma, electric field, ultrasounds, ozonated water treatment, phagotherapy, matrix targeting enzymes, bacteriocins, synthetic chemicals and natural origin compounds used for biofilm matrix disruption were briefly described.en
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen
dc.relation.ispartofseriesFolia Biologica et Oecologica;12en
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.en
dc.subjectbiofilm eradicationen
dc.subjectPseudomonas aeruginosaen
dc.subjectmicrobial colonizationen
dc.titleMethods for eradication of the biofilms formed by opportunistic pathogens using novel techniques – A reviewen
dc.contributor.authorAffiliationZabielska, Julia - Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences Lodz University of Technology, Wolczanska 171/173, 90-924 Lodzen
dc.contributor.authorAffiliationTyfa, Agnieszka - Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences Lodz University of Technology, Wolczanska 171/173, 90-924 Lodzen
dc.contributor.authorAffiliationKunicka-Styczyńska, Alina - Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences Lodz University of Technology, Wolczanska 171/173, 90-924 Lodzen
dc.referencesAhmed, A., Khan, A.K., Anwar, A., Ali, S.A. & Shah, M.R. (2016) Biofilm inhibitory effect of chlorhexidine conjugated gold nanoparticles against Klebsiella pneumoniae. Microbial Pathogenesis, 98: 50–56. doi: 10.1016/j.micpath.2016.06.016en
dc.referencesAlkawareek, M.Y., Algwari, Q.Th., Laverty, G., Gorman, S.P., Graham, W.G., O'Connel, D. & Gilmore, B.F. 2012. Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma. Plos One, 7: e44289.en
dc.referencesBialoszewski, D., Pietruczuk-Padzik, A., Klicinska, A., Bocian, E., Czajkowska, M., Bukowska, B. & Tyski, S. 2011. Activity of ozonated water and ozone against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Medical Science Monitor, 17: BR339-344. doi: 10.12659/MSM.882044en
dc.referencesBiel, M.A., Usacheva, M., Teichert M. & Balcom, J. 2011. Antimicrobial photodynamic therapy treatment of chronic recurrent sinusitis biofilms. International Forum of Allergy & Rhinology, 5: 329–334. doi: 10.1002/alr.20089 ThomsonISI:
dc.referencesChaignon, P., Sadovskaya, I., Raunaj, C., Ramasubbu, N., Kaplan, J.B. & Jabbouri, S. 2007. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Applied Microbiology and Biotechnology, 75: 125–132. doi: 10.1007/s00253-006-0790-y ThomsonISI:
dc.referencesCarson, L., Gorman, S.P. & Gilmore, B.F. 2010. The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunology & Medical Microbiology, 59: 447–455. doi: 10.1111/j.1574-695X.2010.00696.xen
dc.referencesChen, M., Yu, Q. & Sun, H. 2013. Novel strategies for the prevention and treatment of biofilm related infections. International Journal of Molecular Sciences, 14: 18488–18501. doi: 10.3390/ijms140918488 ThomsonISI:
dc.referencesCortes, M.E., Bonilla, J.C. & Sinisterra, R.D. 2011. Biofilm formation, control and novel strategies for eradication. In: Mendez-Vilas A. (ed.), Science against Microbial Pathogens: Communicating Current Research and Technological Advances, pp. 896–905. Formatex.en
dc.referencesCzaczyk, K. & Myszka, K. 2007. Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish Journal of Environmental Studies, 16: 799–806.en
dc.referencesDiaz De Rienzo, M.A., Stevenson, P.S., Marchant, R. & Banat, I.M. 2016. Pseudomonas aeruginosa biofilm disruption using microbial surfactants. Journal of Applied Microbiology, 120: 868–876. doi: 10.1111/jam.13049en
dc.referencesDonlan, R.M. 2001. Biofilm formation: a clinically relevant microbiological process. Clinical Infectious Diseases, 33: 1387–1392. doi: 10.1086/322972en
dc.referencesEuropean Centre for Disease Prevention and Control 2012. Annual epidemiological report. Reporting on 2010 surveillance data and 2011 intelligence data, pp. 207–213. Available from:
dc.referencesFernandes, M.M., Ivanova, K., Francesko, A., River, A.D., Torrent-Burgues, J., Gedanken, A., Mendoza, E. & Tzanow, T. 2016. Escherichia coli and Pseudomonas aeruginosa eradication by nano-penicillin G. Nanomedicine, 12: 2061–2069.en
dc.referencesFurowicz, A., Boroń-Kaczmarska, A., Ferlas, M., Czernomysy-Furowicz, D. & Pobucewicz, A. 2010. Biofilm bakteryjny oraz inne elementy i mechanizmy pozwalające na przeżycie drobnoustrojom w warunkach ekstremalnych. Medycyna Weterynaryjna, 66: 444–448.en
dc.referencesGarrett, T.R., Bhakoo, M. & Zhang, Z. 2008. Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18: 1049–1056. doi: 10.1016/j.pnsc.2008.04.001 ThomsonISI:
dc.referencesHaiko, J. & Westerlund-Wikstrom, B. 2013. The role of the bacterial flagellum in adhesion and virulence. Biology, 2: 1242–1267. doi: 10.3390/biology2041242en
dc.referencesHamblin, M.R. & Hasan, T. 2004. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochemical and Photobiological Sciences, 5: 436–450.en
dc.referencesHammer, K.A., Carson, C.F., Riley T.V. & Nielsen, J.B. A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food and Chemical Toxicology, 44: 616–625. doi: 10.1016/j.fct.2005.09.001en
dc.referencesHanley-Onken, E. & Cohen, N. 2013. The efficacy of ozonated water in biofilm control in USP purified water circulation and storage. Pharmaceutical Engineering, 33: 1–10.en
dc.referencesHughes, K.A., Sutherland, I.W., Clark, J. & Jones, M.V. 1998. Bacteriophage and associated polysaccharide depolymerases – novel tool for study of bacterial biofilms. Journal of Applied Microbiology, 85: 583–590. doi: 10.1046/j.1365-2672.1998.853541.xen
dc.referencesKaplan, J.B., Ragunath, C., Velliyagounder, K., Fine, D.H. & Ramasubbu, N. 2004. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrobial Agents and Chemotherapy, 48: 2633–2636. doi: 10.1128/AAC.48.7.2633-2636.2004en
dc.referencesKhan, S.I., Blumrosen, G., Vecchio, D., Goldberg, A., McCormack, M.C., Yarmush, M.L., Hamblin, M.R. & Austen Jr, W.G. 2016. Eradication of multidrug-resistant Pseudomonas biofilm with pulsed electric fields. Biotechnology and Bioengineering, 113: 643–650. doi: 10.1002/bit.25818en
dc.referencesKnowles, J. & Roller, S. 2001. Efficacy of chitosan, carvacrol, and a hydrogen peroxide-based biocide against foodborne microorganisms in suspension and adhered to stainless steel. Journal of Food Protection, 64: 1542–1548. doi: 10.4315/0362-028X-64.10.1542en
dc.referencesKolwzan, B. 2011. Analiza zjawiska biofilmu – warunki jego powstawania i funkcjonowania. Ochrona Środowiska, 33: 3–14.en
dc.referencesKonopka, K. & Goslinski, T. 2007. Photodynamic therapy in dentistry. Journal of Dental Research, 68: 694–707. doi: 10.1177/154405910708600803 ThomsonISI:
dc.referencesKovalova, Z., Leroy, M., Kirkpatrick, M.J., Odic, E. & Machala, Z. 2016. Corona discharges with water electrospray for Escherichia coli biofilm eradication on a surface. Bioelectrochemistry, 112: 91–99. doi: 10.1016/j.bioelechem.2016.05.002en
dc.referencesKwiecinska-Pirog, J., Skowron, K., Bartczak, W. & Gospodarek-Komkowska, E. 2016. The ciprofloxacin impact on biofilm formation by Proteus mirabilis and P. vulgaris strains. Jundishapur Journal of Microbiology, 9: e32656.en
dc.referencesLebeaux, D., Chauchan, A., Letoffe, S., de Reuse, H., Beloin, C. & Ghigo, J.-M. 2014. pH-mediated potentiation of amnioglycosides kills bacterial persisters and eradicates in vivo biofilms. Journal of Infectious Diseases, 210: 1357–1366. doi: 10.1093/infdis/jiu286en
dc.referencesMaciejewska, M., Bauer, M. & Dawgul, M. 2016. Nowoczesne metody zwalczania biofilmu bakteryjnego. Postępy Mikrobiologii, 55: 3–11.en
dc.referencesMiller, M.B. & Bassler, B.L. 2001. Quorum sensing in bacteria. Annual Review of Microbiology, 55: 165–199. doi: 10.1146/annurev.micro.55.1.165en
dc.referencesMyszka, K. & Czaczyk, K. 2010. Quorum sensing mechanism as a factor regulating virulence of Gram-negative bacteria. Postępy Higieny i Medycyny Doświadczalnej, 64: 582–589.en
dc.referencesNouraldin, A.A.M., Baddour, M.M., Harfoush, R.A.H.H. & Essa, S.A.A.M. 2016. Bacteriophage-antibiotic synegism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Alexandria Journal of Medicine, 52: 99–105. doi: 10.1016/j.ajme.2015.05.002en
dc.referencesOkuda, K., Zendo, T., Sugimoto, S., Iwase, T., Tajima A., Yamada, S., Sonomoto, K. & Mizunoe, Y. 2013. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrobial Agents and Chemotherapy, 57: 5572–5579. doi: 10.1128/AAC.00888-13en
dc.referencesPerez-Conesa, D., McLandsborough, L. & Weiss, J. 2006. Inhibition and inactivation of Listeria monocytogenes and Escherichia coli O157:H7 colony biofilms by micellar-encapsulated eugenol and carvacrol. Journal of Food Protection, 69: 2947–2954.en
dc.referencesRelman, D.A. & Falkow S. 1990. A molecular prospective of microbial pathogenicity. In: Bennett, J.E., Dolin, R. & Blaser, M.J. (ed.), Principles and Practice Infectious Diseases, 3rd edn, pp. 25–32, Elsevier.en
dc.referencesRonan, E., Edjiu, N., Kroukamp, O., Wolfaardt, G. & Karshafian, R. 2016. USMB-induced synergistic enhancement of aminoglycoside antibiotics in biofilms. Ultrasonics, 69: 182–190. doi: 10.1016/j.ultras.2016.03.017 ThomsonISI:
dc.referencesRosenblatt, J., Reitzel, A.R. & Raad, I. 2015. Caprylic acid and glyceryl trinitrate combination for eradication of biofilm. Antimicrobial Agents and Chemotherapy, 59: 1786–1788. doi: 10.1128/AAC.04561-14 ThomsonISI:
dc.referencesSen, T., Karmakar, S. & Sarkar, R. 2015. Evaluation of natural products against biofilm-mediated bacterial resistance. In: Mukherjee P. (ed.), Evidence-Based Validation of Herbal Medicine, 1st edn, pp. 321–338, Elsevier.en
dc.referencesSharp, R., Hughes, G., Hart, A. & Walker, J.T. 2006. U.S. Bacteriophage for the treatment of bacterial biofilms. U.S. Patent 7758856 B2.en
dc.referencesStewert, P.S. & Costerton, J.W. 2001. Antibiotic resistance of bacteria in biofilms. The Lancet, 358: 135–138. doi: 10.1016/S0140-6736(01)05321-1en
dc.referencesStreet, C.N., Gibbs, A., Pedigo, L., Andersen, D. & Loebel, N.G. 2008. In vitro photodynamic eradication of Pseudomonas aeruginosa in planktonic and biofilm culture. Photochemistry and Photobiology, 85: 137–143. doi: 10.1111/j.1751-1097.2008.00407.xen
dc.referencesThallinger, B., Prasetyo, E.N, Nyanhongo, G.S. & Guebitz, G.M. 2013. Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnology Journal, 1:97–109. doi: 10.1002/biot.201200313 ThomsonISI:
dc.referencesTutar, U., Celik, C., Karaman, I., Atas, M. & Hepokur, C. 2016. Anti-biofilm and antimicrobial activity of Mentha pulegium L. essential oil against multidrug-resistant Acinetobacter baumanii. Tropical Journal of Pharmaceutical Research, 15: 1039–1046. doi: 10.4314/tjpr.v15i5.20en
dc.referencesQu, L., She, P., Wang, Y., Liu, F., Zhang, D., Chen, L., Luo Z., Xu, H., Qi, Y. & Wu, Y. 2016. Effects of norspemidine on Pseudomonas aeruginosa biofilm formation and eradication. Microbiology Open, 5: 401–412. doi: 10.1002/mbo3.338en
dc.referencesVidigal P.G., Musken M., Becker K.A., Haussler S., Wingender J., Steinmann E., Kehrmann J., Gulbins E., Buer J., Rath P.M., Steinmann J. 2014. Effects of green tea compound epihallocatechin-3-gallate against Stenotrophomonas maltophila infection and biofilm. Plos One, 9: e92876.en
dc.referencesYap, P.S.X., Yiap, B.C., Ping, H.C. & Lim, S.H.E. 2014. Essential oils, a new horizon in combating bacterial antibiotic resistance. The Open Microbiology Journal, 8: 6–14.en
dc.referencesYadav, M.K., Chae, S.-W., Im, G.J., Chyng, J.-W. & Song, J.-J. 2015. Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. Plos One, 10: e0119564.en
dc.referencesZabielska, J., Kunicka-Styczyńska, A., Rajkowska, K. & Tyfa, A. 2015. Opportunistic Gram-negative rods' capability of creating biofilm structure on polivynyl chloride and styrene-acronitrile copolymer surfaces. Acta Biochimica Polonica, 62: 733–737. doi: 10.18388/abp.2015_1121en
dc.referencesZiuzina, D., Boehm, D., Patil, S., Cullen, P.J. & Bourke P. 2015. Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. Plos One, 10: e0138209.en
dc.referencesZiuzina, D., Patil, S., Cullen, P.J, Boehm, D. & Bourke, P. 2014. Dielectric barrier discharge atmospheric cold plasma for inactivation of Pseudomonas aeruginosa biofilms. Plasma Medicine, 4: 137–152. doi: 10.1615/PlasmaMed.2014011996en
dc.contributor.authorEmailZabielska, Julia - julia.zabielska@dokt.p.lodz.plen

Files in this item


This item appears in the following Collection(s)

Show simple item record

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Except where otherwise noted, this item's license is described as This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.