Show simple item record

dc.contributor.authorBrzostowski, Szymon
dc.contributor.authorKrasiński, Tadeusz
dc.contributor.authorWalewska, Justyna
dc.contributor.editorKrasiński, Tadeusz
dc.contributor.editorSpodzieja, Stanisław
dc.date.accessioned2017-12-28T08:36:39Z
dc.date.available2017-12-28T08:36:39Z
dc.date.issued2017
dc.identifier.citationBrzostowski S., Krasiński T., Walewska J., A short proof that equisingular plane curve singularities are topologically equivalent, [in:] Krasiński T., Spodzieja S. (eds), Analytic and Algebraic Geometry 2, Łódź University Press, Łódź 2017, p. 37-49, doi: 10.18778/8088-922-4.09pl_PL
dc.identifier.isbn978-83-8088-922-4
dc.identifier.urihttp://hdl.handle.net/11089/23771
dc.description.abstractWe prove that if two plane curve singularities are equisingular, then they are topologically equivalent. The method we will use is P. Fortuny Ayuso’s who proved this result for irreducible plane curve singularities.pl_PL
dc.language.isoenpl_PL
dc.publisherŁódź University Presspl_PL
dc.relation.ispartofKrasiński T., Spodzieja S. (eds), Analytic and Algebraic Geometry 2, Łódź University Press, Łódź 2017;
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.titleA short proof that equisingular plane curve singularities are topologically equivalentpl_PL
dc.typeBook chapterpl_PL
dc.rights.holder© Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017pl_PL
dc.page.number37-49pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Łódź, ul. Banacha 22, 90-238 Łódź, Polandpl_PL
dc.identifier.eisbn978-83-8088-923-1
dc.referencesK. Brauner, Das Verhalten der Funktionen in der Umgebung ihrer Verzweigungsstellen, Abh. Math. Sem. Univ. Hamburg 6(1) (1928), 1–55.pl_PL
dc.referencesE. Brieskorn and H. Knörrer, Plane algebraic curves, Birkhäuser Verlag, Basel, 1986. Translated from the German by John Stillwell.pl_PL
dc.referencesW. Burau, Kennzeichnung der Schlauchknoten, Abh. Math. Sem. Univ. Hamburg 9(1) (1933), 125–133.pl_PL
dc.referencesW. Burau, Kennzeichnung der Schlauchverkettungen, Abh. Math. Sem. Univ. Hamburg, 10(1) (1934), 285–297.pl_PL
dc.referencesE. Casas-Alvero, Singularities of plane curves, volume 276 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2000.pl_PL
dc.referencesT. de Jong and G. Pfister, Local analytic geometry, Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 2000, Basic theory and applications.pl_PL
dc.referencesA. Fernandes, J. E. Sampaio, and J. P. Silva, Hölder equivalence of complex analytic curve singularities, ArXiv e-prints, April 2017.pl_PL
dc.referencesP. Fortuny Ayuso, A short proof that equisingular branches are isotopic, ArXiv e-prints, March 2017.pl_PL
dc.referencesE. Kähler, Über die Verzweigung einer algebraischen Funktion zweier Veränderlichen in der Umgebung einer singulären Stelle, Math. Z. 30(1) (1929), 188–204.pl_PL
dc.referencesT. Krasiński, Curves and knots I. Torus knots of first order, In XXXII Conference and Workshop “Analytic and Algebraic Geometry”, 23–45. University of Łódz Press, 2011, (in Polish).pl_PL
dc.referencesT. Krasiński, Curves and knots II. Torus knots of higher order, In XXXIII Conference and Workshop “Analytic and Algebraic Geometry”, 33–49. University of Łódz Press, 2012, (in Polish).pl_PL
dc.referencesT. Krasiński, Curves and knots III. Knots of analytic irreducible curves, In XXXIV Conference and Workshop “Analytic and Algebraic Geometry”, 15–25. University of Łódz Press, 2013, (in Polish).pl_PL
dc.referencesS. Łojasiewicz, Geometric desingularization of curves in manifolds, In Analytic and Algebraic Geometry, 11–32. Faculty of Mathematics and Computer Science. University of Łódz, 2013. Translated from the Polish by T. Krasiński.pl_PL
dc.referencesW.D. Neumann and A. Pichon, Lipschitz geometry of complex curves, J. Singul., 10 (2014), 225–234.pl_PL
dc.referencesC.T.C. Wall, Singular points of plane curves, volume 63 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2004.pl_PL
dc.contributor.authorEmailbrzosts@math.uni.lodz.plpl_PL
dc.contributor.authorEmailkrasinsk@uni.lodz.plpl_PL
dc.contributor.authorEmailwalewska@math.uni.lodz.plpl_PL
dc.identifier.doi10.18778/8088-922-4.09


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska