Show simple item record

dc.contributor.authorKürbis, Nils
dc.date.accessioned2019-10-13T10:26:03Z
dc.date.available2019-10-13T10:26:03Z
dc.date.issued2019
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/30599
dc.description.abstractThis paper presents a way of formalising definite descriptions with a binary quantifier ℩, where ℩x[F, G] is read as `The F is G'. Introduction and elimination rules for ℩ in a system of intuitionist negative free logic are formulated. Procedures for removing maximal formulas of the form ℩x[F, G] are given, and it is shown that deductions in the system can be brought into normal form.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic; 2
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0en_GB
dc.subjectdefinite descriptionsen_GB
dc.subjectnegative intuitionist free logicen_GB
dc.subjectnatural deductionen_GB
dc.subjectnormalizationen_GB
dc.titleA Binary Quantifier for Definite Descriptions in Intuitionist Negative Free Logic: Natural Deduction and Normalisationen_GB
dc.typeArticleen_GB
dc.page.number81-97
dc.contributor.authorAffiliationDepartment of Philosophy, University College London, London, UK
dc.identifier.eissn2449-836X
dc.referencesD. Bostock, Intermediate Logic, Oxford: Clarendon Press, 1997.en_GB
dc.referencesM. Dummett, Frege. Philosophy of Language, 2 ed., Cambridge: Harvard University Press, 1981.en_GB
dc.referencesA. Indrzejczak, Cut-Free Modal Theory of Definite Descriptions, [in:] Advances in Modal Logic, G. Bezhanishvili, G. D'Agostino, G. Metcalfe and T. Studer (eds.), vol. 12, pp. 359–378, London: College Publications, 2018.en_GB
dc.referencesA. Indrzejczak, Fregean Description Theory in Proof-Theoretical Setting, Logic and Logical Philosophy, vol. 28, no. 1 (2018), pp. 137–155. http://dx.doi.org/10.12775/LLP.2018.008en_GB
dc.referencesD. Prawitz, Natural Deduction: A Proof-Theoretical Study, Stockholm, Göteborg, Uppsala: Almqvist and Wiksell, 1965.en_GB
dc.referencesD. Scott, Identity and Existence in Intuitionistic Logic, [in:] Applications of Sheaves, Michael Fourman, Christopher Mulvery, Dana Scott (eds.), Berlin, Heidelberg, New York: Springer, 1979. https://doi.org/10.1007/BFb0061839en_GB
dc.referencesN. Tennant, A General Theory of Abstraction Operators, The Philosophical Quarterly, vol. 54, no. 214 (2004), pp. 105–133. https://doi.org/10.1111/j.0031-8094.2004.00344.xen_GB
dc.referencesN. Tennant, Natural Logic, Edinburgh: Edinburgh University Press, 1978.en_GB
dc.referencesA. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge University Press, 2 ed., 2000. https://doi.org/10.1017/CBO9781139168717en_GB
dc.contributor.authorEmailn.kurbis@ucl.ac.uk
dc.identifier.doi10.18778/0138-0680.48.2.01
dc.relation.volume48en_GB


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Except where otherwise noted, this item's license is described as This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.