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TESTING DIFFERENCES BETWEEN POPULATIONS
WITH EIGENVECTORS

Abstract. Testing differences between multivariate populations is one of a crucial problems
in statistical investigations. The most known — MANOVA tests being parametric ones need to
fulfill the assumptions about the conformity with multivariate normal distribution. Very often
these assumptions are practically unrealistic or the verification, especially for small number of
observations is hard.

This paper presents an approach, based on permutation tests (no needs of verification men-
tioned assumptions), where proposed test statistics base on the properties of eigenvectors. The
investigations were carried out for simulated and real multivariate datasets, where the permutation
tests were compared with variable-based and MANOVA test statistics.
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L. INTRODUCTION

The testing of differences between populations is one of a crucial point in
multivariate statistical inference. It enables exploration of how independent pre-
dictors influence a patterning of response on the dependent variable or to moni-
tor the change of the investigated phenomenon. The most known method to test
it is Multivariate Analysis of Variance (MANOVA) that gives the tool to test the
equality of mean vectors for several groups. This method however — as
a parametric one — requires fulfilling the assumptions, sometimes too stringent in
examined cases. Ito (1980) says, that MANOVA is not sensitive to deviations
from multivariate normality, however it doesn’t concern the small sizes of ob-
servations.! Then non-parametric methods, based on permutation tests can be
preferable. This paper presents a permutation test with the statistics based on the
eigenvectors properties. Monte Carlo methods are used to estimate the power of
the test, in cases where investigated populations differ not only with the mean
vectors or variance.

* Ph.D. student, Department of Statistics, University of Economics, Katowice

L'p K. Ito, Robustness of ANOVA and MANOVA test procedures, Amsterdam: North Holland
1980, p. 220.
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II. PROBLEM DESCRIPTION

Taking into considerations » multivariate populations (with p dimensions),
that are observed as multivariate samples with # number of observations, the null
hypothesis can be written as:

Hy=F(x) = F,(x) =...= F.(x) (1)

where: Fj(x) is a distribution of i" population.

The most known and important group of tests is Multivariate Analysisi of
Variance (MANOV A) where test statistics fall in two categories:

— distance based: a function of distances between the samples,

— variable based: a function of summary statistics created for each variable.

MANOVA enables verification of null hypotheses testing the equality of
mean vectors for investigated populations. And as a parametric methods, needs
to fulfill following assumptions:

1. normal distribution of the variable within groups,

2. homogeneity of variance across the range of variables,

3. homogeneity of variance/covariance matrix.

When these assumptions cannot be fulfilled, non-parametric tests are the al-
ternative that can be carried out. Very often however, their critical values were

calculated only for small number of variables2. Additionally, non-parametric
tests — Wald-Wolfowitz, Mann-Whitney, Wilcoxon, Kruskal-Wallis, Mantel’s —
verify the equality of mean vectors, as well.

In batch processes, there is a need to test the difference between populations
in several cases — taking into considerations the differences between the ‘shape’
of multivariate ellipsoids of received samples (i. e. between raw materials from
different sources or different locations, indication of the failures in technological
installations). No known literature has given a suggestion of proper test, able to
distinguish such differences.

It was a main reason to look for such statistics, described in this article, that
could be able to test the difference between the ‘shapes’ of given observations.

II1. PROPOSED STATISTICS BASED ON EIGENVECTORS

Principal Component Analysis (PCA) allows reducing the dimensionality of
original data set creating the smaller number of components. The first eigenvec-
tor and corresponding eigenvalue calculated during PCA determines a direction
of the largest variance of data. The rest of eigenvectors determine the direction

2 Cz. Domanski, K. Pruska, Nieklasyczne metody statystyczne, Polskie Wydawnictwo Eko-
nomiczne, Warszawa 2000, p. 184.
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of the rest of variance according to their eigenvalues. So if the data sets derive
from the same population or from populations with very similar distributions,
their eigenvectors should indicate the same directions — the same as for the ei-
genvectors created for the sum of all data sets — see figure 1.

Figure 1. Three first eigenvectors calculated
for three data sets indicate the directions of the
largest variance. Two of them are very similar.

However the third one indicates the different direc-
tion from the others and from the first eigenvector
calculated for the sum of data set (dashed line)

Source: own calculations.

It should allow verifying the null hypothesis taking into consideration the
‘shape’ of multivariate ellipsoids of the populations. There were created test
statistics based on the length of the vectors created as the difference between
corresponding eigenvectors (taking into consideration only the eigenvectors with
corresponding eigenvalues greater than 1):

v =3[3 -,

i=1 \_j=1

Zﬂ,-k] )
k=1

where:

m —number of eigenvalues greater than 1,

V; —j" eigenvector calculated for i population,
Vi— ;™ eigenvector calculated for the sum of all data sets,
A — K" eigenvalue calculated for i population.
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After first calculation, test statistics presented above was supplemented to
four statistics based on first eigenvectors only and calculated for Manhattan and
Euclidean distances:

(€))

“4)

6))

(6)

Proposed test statistics have not calculated critical values, so permutations
test will be carried out. It gives another opportunity — to avoid any assumptions
typical for parametric tests.

IV.PERMUTATION TESTS

The idea of permutation test was worked out by R. A. Fisher. This test
doesn’t need any knowledge of the distribution of test statistics because instead
of using any theoretical distribution, ASL (Achieved Significance Level) is esti-
mated by Monte Carlo sampling from permutation distribution. And the power
of permutation test is similar to parametric test, see Good P. 1. (1994). The per-
mutation tests sequence used in investigations is, as below:

1. Calculate the value of chosen statistics for tested sample — 7"

2. Proceed a permutation (N times, in most cases it is recommended to be

N>1000)3 of data sets that destroys existing dependencies and parameters in data
sets.

3. Calculate test statistics value for these permutations and create empirical
distribution — 7}, where i=1, 2,...,N.

4. Locate calculated value of 7" on this distribution and estimate p-value as
ASL:

3 The practice of business statistics, Companion chapter 18 — Bootstrap methods and permu-
tation tests, Hesterberg T., Monaghan S., Moore D. S., Clipson A., Epstein R.: W. H. Freeman and
Company, New York 2003, s. 45.
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5. If received ASL value is more than assumed value of a level (for one-
sided rejected region), null hypothesis cannot be rejected.

V. INVESTIGATIONS

The experiment was carried out for simulated and real data sets. Simulated
data sets with 200 observations were prepared for three test cases:

1. Multivariate normal distribution with 5 dimensions and 5 groups; unit
covariance/variance matrix, null mean vector, simulated change of mean vector
for first group: p=/x,x,x,x,x]; x=0, 0.1, 0.2, ...0.6.

2. Multivariate normal distribution with 5 dimensions and 5 groups; unit
covariance/variance matrix, null mean vector, simulated change of variance for
the first group, the variance increasing, kaving been multiplied by: x=1.1, 1.2,
...1.6.

3. Multivariate normal distribution with 5 dimensions and 5 groups; null
mean vector, covariance/variance matrix as in table 1. Simulated change of pa-
rameter x=0.1, 0.2,...0.8.

Table 1. Variance/covariance matrix for third case of simulated data set

Matrix for first group Matrix for remaining groups
1 |-x| O 0 0 1 x |0 0 0
-x| 1 |=x| 0| 0| x 1 x| 0]0
O |-x| 1 |=x| 0] 0] x 1 x| 0
0|0 |=x|1/|=x] 0| 0| x 1 X
0]10]0 |-x|1 010 0| x 1

Source: own work.

Real data sets were taken from dataset package of R-CRAN software. Data
sets: iris, wines and vehicle were used without any modification and after its
centering (null mean vector).

The investigations were carried out for
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» five statistics described with equations: 2-6 using permutation tests
» MANOVA test with statistics Wilks lambda:

p— Se
s, +S,

®)

where:
S;, — the hypothesis sum of squares and cross products matrix,
S, —the error sums of squares and cross products matrix.

» two statistics using permutation tests: first according to Wilks lambda
equation (8) and second - a sum of F statistics univariate ANOVA — for each
variable, where:

_Z”:SSTRi(n—r) ©)
S SSE,(r—1)
where:

SSTR; — sum of squares for treatments for i variable,
SSE; — sum of square errors for " variable.

VI. RESULTS

The results presented in table 2 were calculated with Monte Carlo method:
from simulated data sets, the subsets with different size (20, 30, 50 and 100 ob-
servations) were randomly sampled (1000 times). A number of cases with the
rejection of the null hypotheses (0=0.05), as a percentage of all sampled subsets
indicates the performance of the tests. Table 3 presents ASL (permutations tests)
or p-value (MANOVA) calculated for real data sets with 0=0.10.
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Table 3. ASL/p-value calculated for real data sets
(bold for cases where null hypotheses is not rejected)

Test statistics
Data sets EV EVl e | EVl a | EV2 ¢ | EVIl a A Sum F
iris 0.006 0.006 0.006 0.000 0.000 0.000 0.000
centered iris 0.060 0.082 0.083 0.001 0.502 1.000 1.000
vehicle 0.000 0.002 0.002 0.001 0.001 0.000 0.000
centered vehicle 0.006 0.006 0.006 0.007 0.007 1.000 1.000
wines 0.000 0.000 0.000 0.026 0.026 0.000 0.000
centered wines 0.002 0.000 0.000 0.533 0.532 1.000 1.000

Source: own work.
VII. CONCLUSIONS

Test statistics based on the eigenvectors are able to recognize the difference
between multivariate populations if diversity concerns not only a mean vector or
a variance of examined populations. According to results of simulations, better
performance was indicated for the statistics that use first eigenvectors only and
measure their difference with the first eigenvector of a sum of all observations.
Permutation tests allow estimating p-value (as an ASL value) with no additional
calculations concerning critical values and don’t need any knowledge of the
distribution of analyzed populations.
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O TESTOWANIU ROZNIC POMIEDZY POPULACJAMI ZA POMOCA
WEKTOROW WLASNYCH

Testowanie roznic pomigdzy populacjami wielowymiarowymi jest jednym z kluczowych
problemow w badaniach statystycznych. Najbardziej znane — testy MANOVA, jako parametrycz-
ne wymagaja spelnienia zatozenia o zgodnosci z rozktadem normalnym wielowymiarowym. Bar-
dzo czgsto zalozenia te sg praktycznie nierealne lub ich weryfikacja, szczegdlnie dla matej ilosci
obserwacji jest trudna.

Artykut ten przedstawia podejscie, oparte o testy permutacyjne (co zwalnia z weryfikacji po-
wyzszych zatozen), gdzie proponowane statystyki testowe oparte sa o wlasnosci wektoréw wia-
snych. Badania zostaly przeprowadzone dla symulowanych i rzeczywistych zestawow danych,
gdzie testy permutacyjne zostaly poréwnane z testami opartymi na analizie zmiennych
i statystykach testowych w MANOVA.





