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TESTING DIFFERENCES BETWEEN POPULATIONS 
WITH EIGENVECTORS 

 
Abstract. Testing differences between multivariate populations is one of a crucial problems 

in statistical investigations. The most known – MANOVA tests being parametric ones need to 
fulfill the assumptions about the conformity with multivariate normal distribution. Very often 
these assumptions are practically unrealistic or the verification, especially for small number of 
observations is hard.  

This paper presents an approach, based on permutation tests (no needs of verification men-
tioned assumptions), where proposed test statistics base on the properties of eigenvectors. The 
investigations were carried out for simulated and real multivariate datasets, where the permutation 
tests were compared with variable-based and MANOVA test statistics. 
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I. INTRODUCTION 
 
The testing of differences between populations is one of a crucial point in 

multivariate statistical inference. It enables exploration of how independent pre-
dictors influence a patterning of response on the dependent variable or to moni-
tor the change of the investigated phenomenon. The most known method to test 
it is Multivariate Analysis of Variance (MANOVA) that gives the tool to test the 
equality of mean vectors for several groups. This method however – as  
a parametric one – requires fulfilling the assumptions, sometimes too stringent in 
examined cases. Ito (1980) says, that MANOVA is not sensitive to deviations 
from multivariate normality, however it doesn’t concern the small sizes of ob-
servations.1 Then non-parametric methods, based on permutation tests can be 
preferable. This paper presents a permutation test with the statistics based on the 
eigenvectors properties. Monte Carlo methods are used to estimate the power of 
the test, in cases where investigated populations differ not only with the mean 
vectors or variance. 

                                                           
* Ph.D. student, Department of Statistics, University of Economics, Katowice 
1 P. K. Ito, Robustness of ANOVA and MANOVA test procedures, Amsterdam: North Holland 

1980, p. 220.  
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II. PROBLEM DESCRIPTION 
 

Taking into considerations r multivariate populations (with p dimensions), 
that are observed as multivariate samples with n number of observations, the null 
hypothesis can be written as: 

 

 )(...)()( 210 xFxFxFH r  (1) 
 

where: Fi(x) is a distribution of ith population. 
The most known and important group of tests is Multivariate Analysisi of 

Variance (MANOVA) where test statistics fall in two categories: 
– distance based: a function of distances between the samples, 
– variable based: a function of summary statistics created for each variable. 
MANOVA enables verification of null hypotheses testing the equality of 

mean vectors for investigated populations. And as a parametric methods, needs 
to fulfill following assumptions:  

1. normal distribution of the variable within groups, 
2. homogeneity of variance across the range of variables, 
3. homogeneity of variance/covariance matrix. 
When these assumptions cannot be fulfilled, non-parametric tests are the al-

ternative that can be carried out. Very often however, their critical values were 

calculated only for small number of variables2. Additionally, non-parametric 
tests – Wald-Wolfowitz, Mann-Whitney, Wilcoxon, Kruskal-Wallis, Mantel’s – 
verify the equality of mean vectors, as well. 

In batch processes, there is a need to test the difference between populations 
in several cases – taking into considerations the differences between the ‘shape’ 
of multivariate ellipsoids of received samples (i. e. between raw materials from 
different sources or different locations, indication of the failures in technological 
installations). No known literature has given a suggestion of proper test, able to 
distinguish such differences. 

It was a main reason to look for such statistics, described in this article, that 
could be able to test the difference between the ‘shapes’ of given observations.  

 
 

III. PROPOSED STATISTICS BASED ON EIGENVECTORS 
 
Principal Component Analysis (PCA) allows reducing the dimensionality of 

original data set creating the smaller number of components. The first eigenvec-
tor and corresponding eigenvalue calculated during PCA determines a direction 
of the largest variance of data. The rest of eigenvectors determine the direction 

                                                           
2 Cz. Domański, K. Pruska, Nieklasyczne metody statystyczne, Polskie Wydawnictwo Eko-

nomiczne, Warszawa 2000, p. 184. 
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of the rest of variance according to their eigenvalues. So if the data sets derive 
from the same population or from populations with very similar distributions, 
their eigenvectors should indicate the same directions – the same as for the ei-
genvectors created for the sum of all data sets – see figure 1. 

 
 

 
Figure 1. Three first eigenvectors calculated 

for three data sets indicate the directions of the 
largest variance. Two of them are very similar. 

However the third one indicates the different direc-
tion from the others and from the first eigenvector 

calculated for the sum of data set (dashed line) 

                                Source: own calculations. 
 
It should allow verifying the null hypothesis taking into consideration the 

‘shape’ of multivariate ellipsoids of the populations. There were created test 
statistics based on the length of the vectors created as the difference between 
corresponding eigenvectors (taking into consideration only the eigenvectors with 
corresponding eigenvalues greater than 1): 
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where:  

m – number of eigenvalues greater than 1, 
Vij – jth eigenvector calculated for ith population, 
Vsj – jth eigenvector calculated for the sum of all data sets, 
λik – kth eigenvalue calculated for ith population. 
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After first calculation, test statistics presented above was supplemented to 
four statistics based on first eigenvectors only and calculated for Manhattan and 
Euclidean distances: 
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Proposed test statistics have not calculated critical values, so permutations 

test will be carried out. It gives another opportunity – to avoid any assumptions 
typical for parametric tests. 

 
 

IV. PERMUTATION TESTS 
 
The idea of permutation test was worked out by R. A. Fisher. This test 

doesn’t need any knowledge of the distribution of test statistics because instead 
of using any theoretical distribution, ASL (Achieved Significance Level) is esti-
mated by Monte Carlo sampling from permutation distribution. And the power 
of permutation test is similar to parametric test, see Good P. I. (1994). The per-
mutation tests sequence used in investigations is, as below: 

1. Calculate the value of chosen statistics for tested sample – T*. 
2. Proceed a permutation (N times, in most cases it is recommended to be 

N>1000)3 of data sets that destroys existing dependencies and parameters in data 
sets. 

3. Calculate test statistics value for these permutations and create empirical 
distribution – Ti, where i=1, 2,…,N. 

4. Locate calculated value of T* on this distribution and estimate p-value as 
ASL: 

                                                           
3 The practice of business statistics, Companion chapter 18 – Bootstrap methods and permu-

tation tests, Hesterberg T., Monaghan S., Moore D. S., Clipson A., Epstein R.: W. H. Freeman and 
Company, New York 2003, s. 45. 
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5. If received ASL value is more than assumed value of α level (for one-

sided rejected region), null hypothesis cannot be rejected. 
 
 

V. INVESTIGATIONS 
 
The experiment was carried out for simulated and real data sets. Simulated 

data sets with 200 observations were prepared for three test cases: 
1. Multivariate normal distribution with 5 dimensions and 5 groups; unit 

covariance/variance matrix, null mean vector, simulated change of mean vector 
for first group: μ=[x,x,x,x,x]; x=0, 0.1, 0.2, …0.6. 

2. Multivariate normal distribution with 5 dimensions and 5 groups; unit 
covariance/variance matrix, null mean vector, simulated change of variance for 
the first group, the variance increasing, kaving been multiplied by: x=1.1, 1.2, 
…1.6. 

3. Multivariate normal distribution with 5 dimensions and 5 groups; null 
mean vector, covariance/variance matrix as in table 1. Simulated change of pa-
rameter x=0.1, 0.2,…0.8. 
 

 

Table 1. Variance/covariance matrix for third case of simulated data set 

Matrix for first group Matrix for remaining groups

10001000

100100

010010

001001

00010001

xx

xxxx

xxxx

xxxx

xx









 

                       Source: own work. 

 
 
Real data sets were taken from dataset package of R-CRAN software. Data 

sets: iris, wines and vehicle were used without any modification and after its 
centering (null mean vector). 

 
The investigations were carried out for  
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 five statistics described  with equations: 2-6 using permutation tests 
 MANOVA test with statistics Wilks lambda: 
 

 
eh
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  (8) 

where:  
 Sh – the hypothesis sum of squares and cross products matrix, 

Se –the error sums of squares and cross products matrix. 
 
 two statistics using permutation tests: first according to Wilks lambda 

equation (8) and second - a sum of F statistics univariate ANOVA – for each 
variable, where: 
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where:  
 SSTRi – sum of squares for treatments for ith variable, 

SSEi – sum of square errors for ith variable. 
 
 

VI. RESULTS 
 
The results presented in table 2 were calculated with Monte Carlo method: 

from simulated data sets, the subsets with different size (20, 30, 50 and 100 ob-
servations) were randomly sampled (1000 times). A number of cases with the 
rejection of the null hypotheses (α=0.05), as a percentage of all sampled subsets 
indicates the performance of the tests. Table 3 presents ASL (permutations tests) 
or p-value (MANOVA) calculated for real data sets with α=0.10. 
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Table 3. ASL/p-value calculated for real data sets  
(bold for cases where null hypotheses is not rejected) 

Test statistics 

Data sets EV EV1_e EV1_a EV2_e EV1_a Λ Sum_F 

iris 0.006 0.006 0.006 0.000 0.000 0.000 0.000 

centered iris 0.060 0.082 0.083 0.001 0.502 1.000 1.000 

vehicle 0.000 0.002 0.002 0.001 0.001 0.000 0.000 

centered vehicle 0.006 0.006 0.006 0.007 0.007 1.000 1.000 

wines 0.000 0.000 0.000 0.026 0.026 0.000 0.000 

centered wines 0.002 0.000 0.000 0.533 0.532 1.000 1.000 

Source: own work. 

 
VII. CONCLUSIONS 

 
Test statistics based on the eigenvectors are able to recognize the difference 

between multivariate populations if diversity concerns not only a mean vector or 
a variance of examined populations. According to results of simulations, better 
performance was indicated for the statistics that use first eigenvectors only and 
measure their difference with the first eigenvector of a sum of all observations. 
Permutation tests allow estimating p-value (as an ASL value) with no additional 
calculations concerning critical values and don’t need any knowledge of the 
distribution of analyzed populations. 
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O TESTOWANIU RÓŻNIC POMIĘDZY POPULACJAMI ZA POMOCĄ  
WEKTORÓW WŁASNYCH  

 
Testowanie różnic pomiędzy populacjami wielowymiarowymi jest jednym z kluczowych 

problemów w badaniach statystycznych. Najbardziej znane – testy MANOVA, jako parametrycz-
ne wymagają spełnienia założenia o zgodności z rozkładem normalnym wielowymiarowym. Bar-
dzo często założenia te są praktycznie nierealne lub ich weryfikacja, szczególnie dla małej ilości 
obserwacji jest trudna. 

Artykuł ten przedstawia podejście, oparte o testy permutacyjne (co zwalnia z weryfikacji po-
wyższych założeń), gdzie proponowane statystyki testowe oparte są o własności wektorów wła-
snych. Badania zostały przeprowadzone dla symulowanych i rzeczywistych zestawów danych, 
gdzie testy permutacyjne zostały porównane z testami opartymi na analizie zmiennych  
i statystykach testowych w MANOVA. 




