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PROPERTIES OF TRANSFORMATION QUANTILE  
REGRESSION MODEL 

 
Abstract. We present in this paper a few important direction on research using quantile re-

gression. We start from some motivation for this method of regression. Secondly we present some 
main areas of application this method. Finally we wanted to point out transformation of the main 
model. This model, introduced by Powell (1991) and further analyzed by Chamberlain (1994) and 
Buchinsky (1995), specifies the conditional quantiles of the Box-Cox transformation of the vari-
able under appraisal as a linear function of the covariates. It provides, within a simple set-up, the 
needed flexibility, as both the transformation parameter and the coefficients of the linear function 
are allowed to vary freely at each point of the distribution. The Box-Cox quantile regression, 
which has the linear and log-linear models as particular cases, will provide, therefore, a direct 
answer to the question of the appropriate transformation to be used.  
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I. QUANTILE REGRESSION – MOTIVATION 
 
 From standard regression to quantile regression 
Regression is used to quantify the relationship between a response variable 

and some covariates. Standard regression has been one of the most important 
statistical methods for applied research for many decades. More complicated 
models, such as polynomial regression models, may also be used to model dif-
ferent relationship. 

 
From conditional skew distributions to quantile regression 
Fig. 1(a) displays weight against age for a sample of 4011 US girls 

(Cole,1988). The intuitively reasonable notion of a relationship between weight 
and age is further supported by Fig. 1(b) which presents several smoothed quan-
tile regression curves. These suggest that the associated conditional distributions 
are skew to the right. 

Two questions of interest are: first: what is a typical weight profile as a func-
tion of age second: what is a typical weight profile as a function of age for 
overweight and underweight people? 
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 A sensible answer to the first question is not provided by standard mean 
regression, as the mean at any specific year is pulled downwards. Hence, the 
median curve is a more appropriate curve to display. This median curve corre-
sponds to the middle quantile regression curve displayed in Fig. 1(b). If it is 
thought that girls whose weights lie on or above the 97% curve for the popula-
tion are overweight, then the appropriate curve to display is that based on quan-
tile regression with p = 0,97. Similarly, the p = 0,03 quantile regression curve 
displays the relationship of the weight of underweight girls with age. 

 
 

II. APPLICATIONS OF QUANTILE REGRESSION 
 
In this section we present some typical applications of quantile regression to 

medical reference charts, survival analysis, financial research, economics re-
search and the detection of heteroscedasticity  

 
2.1. Applications to reference charts in medicine 

 
In medicine, reference (or centile) charts provide a collection of useful quan-

tiles. These are widely used in preliminary medical diagnosis to identify unusual 
subjects in the sense that the value of some particular measurement lies in one or 
other tail of the appropriate reference distribution. The need for quantile curves 
rather than a simple reference range arises when the measurement (and hence the 
reference range) is strongly dependent on a covariate such as age, as Cole and 
Green (1992) and Royston and Altman (1994) have discussed. The chosen quan-
tiles are usually a symmetric subset of {0,03; 0,05;0,1;0, 25;0,5;0,75;0, 9;0, 
95;0, 97}. An example of a reference chart is shown in Fig. 1, Hahn (1995) with 
the Y-variable being weight and the X-variable being age. How can these quan-
tile regression curves be obtained? 

 

 
Figure 1. Weight against age for a sample of 4011 US girls 

                        Source: own work. 
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An obvious approach is to use a known conditional distribution F(y|x) to fit 
the underlying conditional distribution. The 100 % quantile curve corresponds 
to q(x) = F−1(|x). Now, if the distribution is normal, then estimating the 100 
% quantile curve is straightforward. If, however, the distribution is skew, as is 
more usual, then often a transformation to normality is applied. A typical trans-
formation is the Box–Cox transformation to which we shall return, see Cole 
(1988), Altman (1990) and Royston and Wright (2000). 

 
2.2. Applications to survival analysis 

 
Applications to survival analysis include studying the effect of a specific co-

variate on the survival time of an individual. A given covariate may have a dif-
ferent effect on low, medium and high risk individuals. These effects can be 
understood by considering several quantile functions of survival time; see Koen-
ker and Geling (2001) for details. Fig. 2 presents three quantile regression curves 
with p = 0,1; 0,5; 0,9 based on the 184 survival times of patients with covariate 
age between 12 and 64 years from the Stanford heart transplant survey (Crowley 
and Hu,1977); see Yang (1999) for further details about censored median regres-
sion. 

 
Figure 2. Survival times of patients with covariate age  

between 12 and 64 years 

                     Source: own work. 

 
Cox’s proportional hazard model is often used for survival analysis. Alterna-

tively, the accelerated failure time approach that models the logarithm of the 
survival time as a function of covariates can be employed.  

The basic model posits survival times Ti, i=1, . . . , n, that may be censored 
and that depend on covariates xi. In the absence of censoring, it is natural to con-
sider the pairs {Ti, xi}

n
i = 1 as a multivariate independently and identically distrib-
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uted sample. If the ith observation has been censored, then we observe Yi for Ti. 
The ‘log’-transformation of Ti provides the usual accelerated failure time model, 
which regresses the logarithm of Ti linearly on xi, i.e . 

 
log(Ti) = xT

i β + i, 
 
where i, i=1, . . . , n, are independently and identically distributed with an 

unknown distribution function. The mean of i is not assumed to be zero because 
we observe Yi instead of Ti in the case of censoring and so the intercept term is 
not included in the vector β. Because of this, mean regression analysis is not a 
good estimation technique for the accelerated failure time approach. However, 
the quantile regression technique that models the quantiles of the survival time 
or a monotone transform thereof, as a function of the covariates and the intercept 
is appropriate (see Yang (1999). 

 
2.3. Applications in financial research 

 
Financial regulations usually require banks to report their daily risk meas-

ures called value at risk (VaR). VaR models are the most commonly used meas-
ure of market risk in the financial industry (Lauridsen,2000). Let Y be the finan-
cial return, so that the y satisfying P(Y  y) = p for a given low value of p is the 
VaR. The variable Y may depend on covariates x such as exchange rates. 
Clearly, VaR estimation relates to extreme quantile estimation through estimat-
ing the tail of financial return. The distribution of financial return could also be 
illustrated by several quantiles. 

For example, the common approach to estimating the distribution of one-
period return in financial models is to forecast the volatility and then to make a 
Gaussian assumption (see Hull and White (1998)). Market returns, however, are 
frequently found to have more kurtosis than a normal distribution. A general 
discussion of using quantile regression for return-based analysis was given by 
Bassett and Chen (2001). 

 
2.4. Applications in economics research 

 
Quantile regression is useful in the study of consumptive markets as the in-

fluence of a covariate may be very different for individuals who belong to high, 
medium and low consumption groups. Similarly, changes in interest rates may 
have a different inference on the share prices of companies which belong to 
high, medium and low profits groups. 

In particular, quantile regression is now regarded as a standard analysis tool 
for wage and income studies in labour economics; see, for example, Buchinsky 
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(1995). It is also important to study how incomes are distributed among the 
members of a population, e.g. to determine tax strategies or for implementing 
social policies. 

Other applications include modeling household electricity demand over time 
in terms of weather characteristics. The low quantile curves correspond to back-
ground use, where as possibly the high quantile curves reflect high use during 
active periods of the day particularly due to air conditioning; see Hendricks and 
Koenker (1992). 

 
2.5. Applications to detecting heteroscedasticity 

 
Recognizing heteroscedasticity is an important task for the data analyst. 

Quantile plots can provide a useful descriptive tool. These plots not only help to 
detect heteroscedasticity but also provide an impression of the location,spr ead 
and shape of the conditional distribution of Y given X = x. 

Quantile regression can be used to assess departures from the assumptions of 
the model Y = xT β + . If the distribution of  does not depend on the value of 
the covariate X, all regression quantiles will be parallel. For example, the seven 
quantile curves for the US girls data in Fig. 1 are clearly not parallel, indicating 
heteroscedasticity 

 
 

III. ESTIMATION METHODS AND ALGORITHMS 
 
We will now present estimation methods and algorithms for quantile regres-

sion. 
 

3.1. The parametric quantile regression model 
 
To quantify the relationship between a response variable Y and covariates x, 

we often assume that E[Y|X=x] can be modeled by a simple linear combination 
xTβ. Similarly, the basic quantile regression model specifies the linear depend-
ence of the conditional quantiles of Y on x.  

Consider the following regression model (Trzpiot, 2009b) 
 
 iii exgy  )(   (1) 

 
where the dependent variable y = (y1, y2,...... yn) and independent x= (x1, 

x2,...... xn) where yR and xRp, g() is real valued and unknown. We are inter-
ested in estimating the regression function g() given xi. In the parametric 
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framework of the linear regression model when g(xi) = ()xi the quantile re-
gression was proposed as a solution of  

  


n

i
ii

pR

xy
n 1

)(
1

min 


 (2) 

 
where  (z) =  – I(z < 0)  z , I is the indicator function 1. 

 
The conditional quantile  of yi given xi, by monotonicity of quantile func-

tion, 
 

 )()()()( 1 xgxDxgxQ     (3) 

 
where D–1(x) is conditional  th quantile of error term i and 

})(:inf{)(   xyPxQ i . In equation (3) g(x) and D–1( x) are not 

identified separately. However g (x), the conditional  th quantile can be identi-
fied, then the equation(1) can be rewritten as  

 
 iii vxgy  )(  (4) 

 
where 

vi = i – D–1( x) and vi is a new error term which has a zero conditional 
quantile. 

 
Given (yi; xi), the quantile model can be estimated by regression quantiles, 

which are defined by the minimization problem, 
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where the weights wi are introduced to account for different variability of xi and 
the different number of observations at each xi. 

There is no explicit solution for the regression coefficients under this para-
metric quantile regression model since the check function is not differentiable at 
the origin. However, using recent advances in interior point methods for solving 
linear programming problems discussed by Portnoy and Koenker (1997),this 

                                                 
1 I[A] = 1 if A is true, I[A] = 0 otherwise. 
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minimization can be performed by using the algorithm that was provided by 
Koenker and D’Orey (1987).  

 
3.2. The Box–Cox transformation quantile model 

 
Let y denote response variable and x a vector of k covariates representing in-

dustry attributes. For   in (0,1), the  th quantile of the conditional distribution 
of y given x, is defined as 

 

})(inf{)(   xyFyxyQ  

 
where F(x) denotes the conditional distribution function. 

The statistical model used in this paper specifies the th conditional quantile 
of y given x as the inverse of the Box-Cox power transformation (Box and Cox, 
1964) of an affine function of the covariates, 

 

 ))(),((()(  xgxyQ   (6) 

where 
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Model (6) is quite flexible since not only the coefficients  but also the 

whole transformation may change from quantile to quantile. Of course, the case 
where  = 1 yields the linear model for the conditional quantiles. 

By analogy with the linear model, the population quantile regression pa-
rameters may be defined as 

 

 )())(),((/)(),( 1   jjj xgxxyQx  , j = 1,…. , k 

 
where x denotes the vector of the regressors' sample means and 

ttgg  /),(),(1   The estimation of these regression quantiles for values of y 

in (0,1) constitutes the main aim of this study as they describe the relevancy of 
covariates at different points of response variable distribution.  
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3.3. Inference procedures for Box-Cox quantile regression model 
 
The estimation of model (6) is based on an equivariance property of the 

quantile regression to monotonic transformations of the dependent variable and 
follows Chamberlain (1994).  

Specifically, making z() =g–1(y, ) where g–1(,) is the Box-Cox transfor-
mation, the specification (1) implies that the quantiles of z are linear, i.e. 

 

)()(  xxzQ   

 
Therefore, for given , () can be estimated by minimizing in  (Koenker 

and Bassett, 1978), 
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Hence, for any given , model (1) can be estimated exactly in the same way 

as a standard linear quantile regression. Of course, the usual mean regression 
does not have this property unless  = 1. 

Denote by ),(ˆ   a solution of model (8). Chamberlain (1994) suggested 

estimating () by minimizing in : 
 

 

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n

i
ii xgy

n 1

))),,(ˆ(((
1   (9) 

 
Finally, () in model (1) is estimated by () = (, ()). We proceeded 

by solving model (8) for a grid of values of l and then choosing the pair (,()) 
that yields the smallest value for model (9). 

Under regularity conditions, it can be shown that the joint distribution of 

))(ˆ,)(ˆ()(ˆ   for m values of  in (0,1), 

 

))()(ˆ,...,)()(ˆ( 11  mmn   
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will converge to a m  (k + 1)-variate normal distribution, with 0 mean and 
covariance matrix whose jth block is given by 
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a (k + 1)  (2k + 1) matrix where  
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A rigorous treatment of this derivation may be found in Powell (1991).  

Buchinsky (1995) develops the theory of the Box-Cox quantile regression for the 
case of discrete regressors where the estimation of )(ˆ   can be accomplished 

by minimum distance methods. 
Interval inferences for the quantile regression parameters require the consis-

tent estimation of the asymptotic covariance matrices (10). The critical feature of 

this method is the nonparametric estimation of )()( xf
iu   in (11) based on the 

histogram method of Siddiqui (1960). Alternatively to this type of estimator, one 
could have considered the bootstrap estimation of the asymptotic covariance 
matrix V() as did Chamberlain (1994), for the linear model with independent 
errors, and Buchinsky (1994), also for the linear model but with general errors. 
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The theoretical basis for bootstrapping quantile regression estimators are pro-
vided in Hahn (1995) and Fitzenberger (1998). Monte Carlo comparisons in 
Koenker (1994) suggest that in i.i.d. situations the sparsity estimator fares better 
than does the bootstrap. 

 
IV. QUANTILE REGRESSION FOR TIME SERIES 

 
Most research in quantile regression has assumed that the observations of 

the response variable Y are conditionally independent. Recently, several re-
searchers have discussed different methods for time series quantile regression 
modelling. For example,a method based on estimating the conditional distribu-
tion is given by Cai (2002),w hereas a method based on the check function is 
given by Gannoun et al. (2003). In the method of Cai (2002),the time series Yi is 
assumed to be related to the time series Xi through the model  

 

iiii XXY  )()(   

 
where μ(Xi) is the regression function and i is the model error. The depend-

ence of σ(Xi) on Xi means that the model is heteroscedastic. The method first 
estimates the conditional distribution of Yi given Xi and then estimates the condi-
tion quantile by the inverse of the conditional distribution function. In the 
method of Gannoun et al. (2003) for the estimation of the conditional quantile of 
a strictly stationary real-valued process Z given the present and past records, the 
quantile of Z is characterized as  

 

]})([{minarg)( xXZExq
R



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4.1. Quantile regression as a risk measure 

 
We should solve a problem of finding an minimum of coherent risk meas-

ures, which is equivalent to find a maximum of Choquet expected value using 
linear form of the utility function and a concave distortion function v . 

When we write quantile regression problem in general case we have a prob-
lem of estimations a vector of unknowns parameters b, for a sample of inde-
pendent observations form a random variables Y1,Y2,...,YT according to rule: 

 
 P(Yt < y) = F(y – xtb),  t=1,…T (12) 
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where {xt, t = 1,…T} is a row in know matrices of observations (size T  K) 
and distribution of  F is unknown (Trzpiot 2007). 

 
Given (yt; xt), for t = 1,…T, the quantile model can be estimated by regres-

sion quantiles, which are defined by the minimization problem:  
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Writing as {xt, t = 1,…T} sequence of  K vectors (rows) of observation ma-

trices, we assume, that {yt, t = 1,…T} is a random sample of regression process: 
ut = yt – xtb having distribution F. Then regression quantile , for 0 <  < 1 is 
done as a solution of a problem: 
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If K = 1 and xt = 1for all t, a problem (14) can reduce to problem (13). The 

smallest absolute error is then equales to median. The problem (14) always hale 
a solution, for a continuous distribution his solution is unique. 

The problem of finding minimum can be reformulated as equivalent linear 
programming problem: 

 

 }α)(1min{α   r1r1  (15) 

where  

    rrXby  

 T2K RR),,b( 
 rr  

 
where 1  is a unity vector of size T. 

 
 

V. FINAL REMARKS 
 
Quantile regression is emerging as a comprehensive approach to the statisti-

cal analysis of linear and non-linear response models, partly because classical 
linear theory is essentially a theory just for models of conditional expectations. 
We have illustrated that quantile regression has strong links to three very useful 
statistical concepts: regression, robustness and extreme value theory. We try to 
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demonstrate that quantile regression is widely used in many important applica-
tion areas, such as medicine and survival analysis, financial and economic statis-
tics and environmental modeling.  
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WŁASNOŚCI TRANSFORMACJI MODELU REGRESJI KWANTYLOWEJ 
 

Przedstawiamy artykuł, w którym omawiamy modele regresji kwantylowej. Omawiamy mo-
tywacje dla stosowania klasycznego modelu, jak również główne kierunki zastosowań regresji 
kwantylowej. Następnie przechodzimy do transformacji podstawowego modelu. Ten model jest 
wprowadzony przez Powell’a (1991) a kolejno analizowany przez Chamberlain’a (1994) i Buchin-
sky’ego (1995), wprowadzono specyficzne warunkowe kwantyle znane jako transformacja Box–
Cox’a. Omawiamy estymację modeli oraz testy istotności.  




