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MOMENTS OF PROBABILITY DISTRIBUTIONS
SEMI-ATTRACTED
TO SEMI-STABLE MEASURES ON HILBERT SPACES'

Let. H be a real separable ilbert space, ¢ a non—degenerate semi-
stable distribution on A and o € (0, 2] an exponent for q.

It is proved that the probability distributions semi-attracted to the
measure ¢ have absolute moments of order /3 for 3 € (0, «) and have
no such moments for 3 > o and o # 2.

Let H be areal separable Hilbert space with the norm |-]. Consider
the siums il oty a3
Ko X FoovoXa
(1) + Ty

Uy,

where X; are independent H-valued random variables with a common
distribution p. @, > 0, w, € H and {k;} is an increasing sequence of
positive integers such that

(2) ”l_l_nl /.‘,,_+11.'“" = < +400.

The distributions of sums (1) may be written in the form

(3) 71!!,7' l,k" % bJ'n ]
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where the power p¥ is taken in the sense of convolution, é, denotes the
distribution concentrated at a point @ € [, and the measure T,p is
defined by the formunla

T.p(B) = p{x € H : ax € B},
for all Borel subsets B of H.

A probability measure on HH is said to be semi-stable if it is a weak
limit of sequence (3). W.M. Kruglov gave in [4] a characterization of
semi-stable measures. Namely, a measure on [ is semi-stable if and
only if it is a Ganssian measare or an inlinitely divisible purely Poisso-
nian measnre represented by a Lévy-Khintehine spectral measure M
such that

(4) T\M = A A,

for some o € (0,2) and A € (0,4+00) \ {1}.

The class of semi-stable measures is a subclass of infinitely divisible
measures and is a natural extension of the class of stable measures.
For this reason, in the sequel, the number o in (4) will be called an
exponent for a purely Poissonian semi-stable measure (the exponent for
a Gaussian measnres is equal to 2). Semi-stable measures have their
domains of semi-attraction. Namely, by a domain of semi-attraction
of a semi-stable measure ¢ we mean a class of distributions p such
that sequence (3) converges weakly to ¢ for some a, > 0, x,, € H and
{k,} satistying (2). We shall also say that p is semi-attracted to ¢ if p
belongs to this class.

The theorems on moments of measures attracted to stable laws
can be found in [1] and [5]. We shall prove an analogous theorem for
distributions semi-attracted to semi-stable measures on H. Our proof
is elementary in the case r > 1 and. in the case r = | (the stable
case), we can apply the same method. Consequently, if we rednce the
problem to measures attracted to stable laws on a straight line, then
we obtain a prool simpler than the classical one.

Theorem. Let ¢ he a non—degenerate semi-stable measure on H,
and a € (0.2] an exponent for q. If a distribution p on H is semi-
attracted to the measure ¢. then

/” || p(de) < +o0, for g€ (0,a)
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and
/” le|p(de) = +o00,  for fB>a, o2

Proof. We shall consider several cases.

CASE I. Let a € (0,2). Thus the measure ¢ is represented by a
Lévy-Khintchine measure M # 0. From the assumption we can find
sequences {a, }, {r.}, {k.} such that

= q.

'

(") lim T”;.p""' * 0,

[{5ands ¥l
Using Corollary in [2] and Lemma 7.1 in [6], we obtain the following:
for any ¢ > 0. the sequence of measures {k,T,-ip} restricted to the
set
{e€ll:|r|>c}
is weakly convergent to the measnure M restricted to the same set.

In particular, we have, for some ¢ > 0,

(6) Jim kopla € || > ta,} = M{xw e H:|x| >t} >0.

CASE TA. Let
%t o ®
i KB " =
I'hen

nl_l_l.ll Wty =a € (0,1)

and

(see [4]). Of conrse,
im @, = +00

==X
and, since @ < 1, we can assume that {a,} is an increasing sequence.
By (6), putting b, = ta,. we have

N T R T e
’_v,.lmvl,l'""‘"‘*" =P

3 . e Haolel > busa
(‘) nh—l-‘]l' ];{.r ell: |l| > I),.}
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Let us now consider a series of the form
Z Wpla € H:e|>0,}.
1‘-—

By (7) and d’Alembert’s Criterion, we obtain the convergence of the
series if «™"r=! < 1, i.e, if # € (0,a), and the divergence if 3 > a. It
now suffices to make use of the inequalities

(8) /Ir|>ln e pldr) = Z/ | p(di)

n=1 ll(l-"'Sbn-‘-I

< Z( by "b“p{l € H: x| >0,}

n=1

(9) /I s, L)

>Zb e € H:a |>hn}(1—

n=1

CAsE IB. Let

ple € H: 2| > by}
ple € H: x| > b,}

i ; FRT 2
nailk B, Sl
Then
: -1
Jim ayarly w0 = 1

and ¢ is a stable measure (see [1]). Consequently, the measure M has
the property

T\M = )\"M,
for each A > ().
Thus, for all t > 0, the set
{r € H:|x| >t}

is a continuity set of M and condition (6) is satisfied for each t > 0.
This implies that
ple € H: 2| > ta,)

lim = ™
=00 p{l e ll: I |> “n}
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for each t > 0, and, since @ = 1, we obtain

. plee Hzale| Sitn}
(10) uh—l»}l' p{x € H :|x| > u} .

—-—gr

for each ¢ > 0.
By putting ¢t = 2 and u = 2" in (10), we have

.. 2plz € H x| > 27}

l = =

N ’){;)' (- Il . I.‘I'l > 2"}

Thus. the series of the form

o

Z(Q")"p{.r € H : x| > 2"}

n=l1
is convergent for /4 € (0,a) and is divergent for 3 > a. It now suffices
to use inequalities (8) and (9) for b, = 2",

CASE II. Let a = 2. In this case we can assume that
/H |.l‘|2p((l.r) = 400.

Now, ¢ is a Gaussian measure on H represented by a non-negative,
self-adjoint operator S with a positive finite trace. Let {a,}, {z.},
{k.} be sequences such that the condition of form (5) is satisfied. In
the same way as in the proof of Theorem 3.2 in [3], condition (5) implies
now
(11) lim I.-,,u;z/ le[*p(de) = trS > 0
Tr=xaxd || <tay,

for each t > 0.

CASE ITA. Let »» > 1. Then a € (0,1) and «?r = 1 (see [4]). We

have
lim a, = 40

TN
and, since @ < 1, we can assume that {a,} is an increasing sequence.
For # € (0,2), we have the following inequality:

(12) / o p(de) < : (t’,f"Z/ x|*p(de).
|-1'|Z"l| I Z |J'|<’ln+l| l

n=1

By using (11) for = 1, we obtain
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b :
o f'-"|<”n+l le|?p(dx) e
lim =7 A =a " lim lx:,,kn_‘_,

n—oo ol fl.z'|<nu I;,-IZI)((I;IT) N— 00

=aPr' <ca~ -1 =1,
Thus the series in (12) is convergent and
/ l¢|*p(de) < +o0
1
for 3 € (0,2).
CASE IIB. Let » = 1. Condition (11) implies that

T ./i...|<l,.,, |'I'I.2I'('I"') &
R f|"'|<"., []2p(d.e)

for each t > 0 and, since a« = 1, we further have

(13) lim fl-rl<tu | |*p(d) i
=N fleteu [22p(d)

for each t > 0.

Putting 1 = 2 and u = 2" in (13), we obtain, for A e (0,2),

oF=2 »|2 3
“lll ‘3‘ f].x'|<2n+l.,'r| I)((I'I) = 2/,_2
=00 ! fisgesn [ 2p{de)

The above inequality means that the series

o

(2" )111—2 / I_-,-Izl)(([.l')
; I_.’.|<2n

n=

67

is convergent. It now suflices to make nse of inequality (12) by putting

a;=2".

Our theorem implies the following

Corollary. Every semi-stable measure on I has exactly one ex-

ponent.
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Maria KNlosowsha

MOMENTY ROZKLADOW POLPRZYCIAGANYCH

PRZEZ MIARY POLSTABILNE
W PRZESTRZENI HILBERTA

Niech 11 hedzie rzeczywista, osrodkowa przestrzenia Hilberta, q -

niezdegenerowanym polstabilnym rozkladem prawdopodobienstwa na
H, a o€ (0,2] - wykladnikiem rozkladu ¢. W pracy udowodniono,
ze rozklad prawdopodobienistwa na Il pélprzyciagany przez ¢ ma mo-
menty absolutne rzedu 4 dla 4 € (0. «) i nie ma takich momentéw dla
B> wya#?
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