# A C T A UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 9, 1997

### Stanislaw Wroński

## ON PROPER SUBUNIVERSES OF A BOOLEAN ALGEBRA

Let B be a boolean algebra with the universe B and let  $F_1$ ,  $F_2$  be distinct ultrafilters of B. Then the set of the form  $\{x \in B : F_1 \cap F_2 \cap \{x, \neg x\} \neq \emptyset\}$  is a maximal proper subuniverse of B which we shall call a basic subuniverse. We prove that every proper subuniverse of B is an intersection of a family of basic subuniverses. This implies that basic subuniverses are precisely maximal proper subuniverses of a boolean algebra. The same fact proved in another way can be found in [3].

For general algebraic background we refer the reader to [1] and for boolean algebras to [2]. In order to simplify notations we use the same symbols for boolean algebras and for their corresponding universes. If B is a boolean algebra,  $X \subseteq B$  and  $b \in B$ , then by  $\neg_B X$  and  $(b)_B$  we denote the sets

$$\{\neg x: x \in X\}$$

and

$$\{x \in B : x \le b\},\$$

respectively. Observe that, for every filter F of B, the set

is a subuniverse of B. The subuniverse of the form  $F \cup \neg_B F$  will be further denoted by B|F. Recall that a filter B of F is an ultrafilter – i.e. a maximal proper filter – if and only if, for every  $b \in B$ , we have

$$\{b, \neg b\} \cap F \neq \emptyset.$$

This fact easily implies that, for every proper filter F, the equality B = B|F holds precisely in the case when the filter F is an ultrafilter.

We will denote the set-theoretical operations of difference and symmetric difference by  $\setminus$  and  $\triangle$ , respectively.

We start with the following auxiliary proposition.

Two Ultrafilters Lemma. If B is a boolean algebra,  $F_1$ ,  $F_2$  are ultrafilters of B and  $a, b \in B$ , then

$$F_1 \cap F_2 \cap \{a, \neg a, b, \neg b, a \div b, \neg (a \div b)\} \neq \emptyset.$$

Here ÷ denotes the operation of symmetric difference, i.e.

$$a \div b = (a - b) \vee (b - a)$$

where - and  $\vee$  denote difference and sum, respectively.

Proof. Suppose that

$$F_1 \cap F_2 \cap \{a, \neg a, b, \neg b, a \div b, \neg (a \div b)\} = \emptyset.$$

If  $a \div b \in F_1$ , then

$${a-b,b-a} \cap F_1 \neq \emptyset.$$

If  $a - b \in F_1$ , then

$$a, \neg b \in F_1$$

and, therefore,

$$\neg a, b, \neg (a \div b) \in F_2$$

which is impossible because

$$\neg a \land b \land \neg (a \div b) = \emptyset.$$

We have shown that

$$a \div b \notin F_1$$

and this means that

$$\neg(a \div b) \in F_1$$
.

In the same manner we can infer that  $\neg(a \div b) \in F_2$  which gives us that

$$\neg(a \div b) \in F_1 \cap F_2,$$

thus, we get a contradiction.

By a basic subuniverse of a boolean algebra B we mean any subuniverse of the form

$$B|(F_1\cap F_2),$$

where  $F_1$ ,  $F_2$  are distinct ultrafilters of B. Recall that

$$B|(F_1 \cap F_2)| = (F_1 \cap F_2) \cup \neg_B(F_1 \cap F_2) =$$
$$\{x \in B : F_1 \cap F_2 \cap \{x, \neg x\} \neq \emptyset\} = B \setminus (F_1 \triangle F_2).$$

Let us note the following proposition.

Lemma 1. Every basic subuniverse of a boolean algebra is a maximal proper subuniverse.

*Proof.* Suppose that B is a boolean algebra and  $F_1$ ,  $F_2$  are distinct ultrafilters of B. Then  $F_1 \cap F_2$  is not an ultrafilter and consequently the subuniverse of the form

$$B|(F_1\cap F_2)$$

is proper. Now we pick an element  $b \in B \setminus (B|(F_1 \cap F_2))$  and we will show that the algebra generated by the set

$$(F_1 \cap F_2) \cup \{b\}$$

generates B. Indeed, by Two Ultrafilters Lemma it follows that, for every  $a \in B \setminus (B|(F_1 \cap F_2))$ ,

$$\{b \div a, \neg b \div a\} \cap F_1 \cap F_2 \neq \emptyset.$$

This means that every such a can be expressed in terms of generators because

$$b \div (b \div a) = \neg b \div (\neg b \div a) = a.$$

**Lemma 2.** If A is a proper subuniverse of a boolean algebra B, then for every  $b \in B \setminus A$  there exists an ultrafilter F of A such that

$$(b]_B \cap F = (\neg b]_B \cap F = \emptyset.$$

*Proof.* Suppose that  $b \in B \setminus A$  is such that, for every ultrafilter F of A, we have

$$(b]_B \cap F \neq \emptyset$$

or

$$(\neg b)_B \cap F \neq \emptyset.$$

For every ultrafilter F of A, we pick an element  $q_F \in F$  such that  $q_F \leq b$  or  $q_F \leq \neg b$  and we define a subset Q of A as the set of all  $q_F$  obtained in the above manner. We aim at showing that Q can be extended to a proper ideal of A and thus we have to prove that every finite subset of Q has a non-unit supremum. Suppose that, for some finite  $X \subseteq Q$ ,  $\sup(X) = \mathbf{1}$ . Put

$$X_1 = (b]_B \cap X$$

and

$$X_2 = (\neg b]_B \cap X.$$

Since  $X \subseteq (b]_B \cup (\neg b]_B$ , then

$$X = X_1 \cup X_2$$

and thus

$$\mathbf{1} = \sup(X) = \sup(X_1) \vee \sup(X_2),$$

where  $\sup(X_1) \leq b$  and  $\sup(X_2) \leq \neg b$ . Now, we get that

$$b - \sup(X_1) =$$

$$(b - \sup(X_1)) \wedge (\sup(X_1) \vee \sup(X_2)) =$$

$$((b - \sup(X_1)) \wedge \sup(X_1)) \vee ((b - \sup(X_1)) \wedge \sup(X_2))$$

$$\leq (b - \sup(X_1)) \land \neg b = \mathbf{o}.$$

This would mean that  $\sup(X_1) = b$  which is not possible since  $X_1 \subseteq A$  and  $b \in B - A$ .

We have shown that every finite subset of Q has a non-unit supremum which implies that the set  $\neg_A Q$  can be extended to an ultrafilter of A. This, however is a clear contradiction because – by the definition of Q – every ultrafilter of A must contain the complement of an element of  $\neg_A Q$ .

**Theorem 1.** Every proper subuniverse of a boolean algebra is an intersection of a family of basic subuniverses.

*Proof.* Suppose that A is a proper subuniverse of a boolean algebra B and  $b \in B \setminus A$ . We need only to show that b does not belong to some basic subuniverse of B containing A. By Lemma 2, we get that there exists an ultrafilter F of A such that

$$(b]_B \cap F = (\neg b]_B \cap F = \emptyset.$$

Let  $F_1$ ,  $F_2$  be ultrafilters of B such that

$$b \notin F_1$$
,  $\neg b \notin F_2$ 

and

$$F \subseteq F_1 \cap F_2$$
.

Then we have

$$b \notin B|(F_1 \cap F_2)$$

and

$$B|(F_1 \cap F_2) \supseteq A|F = A,$$

as required.

**Theorem 2.** Maximal elements of the set of all proper subuniverses of a boolean algebra are precisely all its basic subuniverses.

*Proof.* By Lemma 1, it follows that all basic subuniverses are maximal proper subuniverses. To prove the converse inclusion observe that every proper subuniverse must be contained in a basic subuniverse – by Theorem 1. Thus a maximal proper subuniverse must be equal to the basic subuniverse containing it.

### REFERENCES

- [1]. G.Grätzer, Universal Algebra, 2-nd edition, Springer-Verlag, New York, 1979.
- [2]. R.Sikorski, Boolean Algebras, Springer-Verlag, Berlin, 1964.
- [3]. J.Donald Monk with the cooperation of Robert Bonnet, Handbook of Boolean Algebras, vol. 2, North-Holland, 1989.

Stanislaw Wroński

## O PODALGEBRACH ALGEBRY BOOLE'A

Niech **B** będzie algebrą Boole'a z uniwersum B i niech  $F_1$ ,  $F_2$  będą różnymi ultrafiltrami **B**. Wówczas zbiór postaci  $\{x \in B : F_1 \cap F_2 \cap \{x, \neg x\} \neq \emptyset\}$  jest maksymalną podalgebrą **B** która nazywać będziemy podalgebrą bazową. Udowodnimy, że każda właściwa

podalgebrą **B** jest iloczynem rodziny podalgebr bazowych. Pozwala to stwierdzić, że podalgebry bazowe są wszystkimi podalgebrami maksymalnymi algebry Boole'a. Ten sam fakt jakkolwiek dowiedziony w inny sposób można znaleźć w [3].

Institute of Mathematics Lódź Technical University Al.Politechniki 11, 90-924 Lódź, Poland