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ON ALMOST INVARIANT SUBSETS
OF THE REAL LINE

Some partitions of the real line, consisting of almost invariant sets,
are considered and one theorem of Sierpiiski concerning such parti-
tions is generalized.

Let E be an infinite basic set. We denote by Sym(FE) the family
of all bijective mappings acting from E onto E. Obviously, Sym(E)
is a group with respect to the operation of composition of mappings.
Let us fix a subgroup (7 of Sym(FE). The pair (E, () is usnally called
a space equipped with a transformation gronp. If the group (i acts
transitively in £, then the pair (£,G) is called a homogeneons space
(with respect to (7).

Let X be a subset of E. We say that X is almost G--invariant (or
X is almost invariant with respect to () if, for each transformation
g € G, we have the inequality

card(g(X)AX) < card(F),

where the symhol A denotes, as usual, the operation of symmetric
difference of two sets.

Evidently, the following three relations hold:

1) il a set X is almost G-invariant, then the set £\ X is almost
G-invariant, too:
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2) if sets X and Y are almost G~invariant, then the set X UY is
almost G—invariant, too;
3) if we have the inequality

cf(card(F)) > w

and {X, : n € w} is an arbitrary countable family of almost G-
invariant subsets of £, then U{X,, : n € w} also is an almost G-
invariant subset of /2.

In particular, relations 1) and 2) show us that the family of all
almost G=invariant sets forms an algebra of subsets of £. Relation
3) shows us that if ¢f(card(F)) > w. then the same family forms a
o—algebra of subsets of [,

We want to remark that almost invariant sets play an important role
in the theory of invariant (or, more generally, quasiinvariant) measures.
Some applications of such sets to the theory of invariant extensions of
the classical Lebesgne measure are considered in [1] and [2].

There are many interesting examples of almost invariant subsets of
the real line R (see, for instance, [2], [3] and [4]). One of the earliest
examples is due to Sierpinski (see [5]). Namely, Sierpinski constructed,
using the method of transfinite recursion, a partition {X, Y} of R such
that

a) card(X) = card(Y') = card(R);

bh) for each ¢ € R, the inequalities

card((¢y + X)AX) < card(R), card((g+ Y)AY') < card(R)

are fulfilled.

In particular, both the sets X and Y are almost R-invariant subsets
of R. Moreover, it is possible to show, by the same method, that the
partition { X, Y} mentioned above can have some additional properties.
For instance, the sets X and Y can be Bernstein subsets of the real
line R (for the definition of a Bernstein subset of R, see e.g. [3] or [4]).
Notice also that if Martin’s Axiom holds, then one of the sets X and
Y can be a Lebesgue measure zero subset of R (or a first category
subset of R). But it is reasonable to remark here that X and Y cannot
be Borel subsets of the real line.
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If the Continunm Hypothesis holds, then the Sierpinski partition
{X, Y} satisfies the following two conditions:

(a) card(X) = card(Y') = card(R);

(b) for each ¢ € R, we have

card((g + X)AX) <w, card((g+Y)AY) Lw.

Conversely, it is not diffienlt to prove that the existence of a parti-
tion {X, Y} of R satisfying conditions (a) and (b) implies the Contin-
uum Hypothesis.

Now, let (7 be an unconntable subgronp of the additive group of R.
Suppose that {X,Y} is a partition of the real line such that

(1) card(X) = card(Y') = card(R);

(2) for any element ¢ € (7, the inequalities
card((g + X)AX) <w, card((g+Y)AY)<w

are fulfilled.

Then the following question naturally arises: does the Continuum
Hypothesis hold in such a sitnation? Clearly, the answer to this ques-
tion is negative. Indeed, it is easy to see that if (' is a proper subgroup
of R with

card((7) = card(R),

then the partition

X ¥}y ={GRYG)

consists of two (/~invariant subsets of the real line and, hence, satisfies
conditions (1) and (2), but the cardinality of the continuum (denoted
by ¢) can be strictly greater than the first uncountable cardinal number
wi. Thus, if we want to deduce the Continunum Hypothesis from the
existence of a partition {X, Y} of R satisfying conditions (1) and (2),
we must have some additional information about { X, Y'}. In our further
considerations we shall discuss some properties of {X, Y} which enable
us to obtain the corresponding result. Notice that those properties will
be formulated in terms of (~orbits of points of R.

Suppose that (¢ is an arbitrary subgroup of the additive group of
the real line. Let us recall that the G-orbit of a point z € R is the
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following set:
G(z)={9+= : g€G}.

Obviously, the family of all G-orbits forms a partition of R (which is
usunally called the partition of R canonically associated with the given
group ().

Let {X,Y} be a partition of R into two subsets of R.

We say that a G-orbit G(z) is X-admissible (respectively,
Y -admissible) if G(z) € X (respectively, G(z) C Y).

We say that a G-orbit /(=) is in general position with respect to
the partition {X, Y} if

G)NX #£0, G)NY # 0.

Using these notions we can consider the following example.

Example 1. Let (¢ be a countable subgroup of R and let { XY}
be a partition of R such that

D) card(X) >w. card(Y) > w:

2) for all elements ¢ € (¢, we have the inequalities

card((g + X)AX) <w, card((g+Y)AY) <w.

Then it can be shown that the subsequent three relations hold:

a) there exists an uncountable family of X-admissible GG~orbits;

Ih) there exists an nncountable family of Y-admissible G-orbits;

¢) the family of all those G-orbits which are in general position
with respect to the partition {X, Y} is at most countable.

Indeed, suppose that relation ¢) is not true. Then there exists an
uncountable subset {z; : ¢ € I} of R such that the corresponding
family of (G—orbits

{G(z) : 1€}
is disjoint and all GG—orbits from this family are in general position
with respect to {X.Y}. Consequently, for each index 2 € I, there are
elements

BneG(x)NX, yeGz)nY.
Let ns put
{g; c i€l}y={yi—x; : i€}
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Evidently, we have ¢; € (i for every ¢ € I. Since (4 is a countable group
and 7 is an unconntable set, there exists an element ¢ € (¢ such that

card({i € I : g; = g}) > w.
Hence, we obtain the inequality
card((g+ X)NY) > w,

which yields a contradiction with condition 2). This contradiction
shows us that relation ¢) is true. Now, taking into account condition
1), it is easy to show that relations a) and b) are fulfilled, too.

Conversely, suppose that a partition {X, Y} of the real line satisfies
relations a), b) and ¢). Then it is not difficult to check that conditions
1) and 2) hold for {X,Y}.

Thus, for an arbitrary conntable subgroup (i of R, we have a simple
geometrical (or, if one prefers, algebraic) characterization of all parti-
tions {.X, Y} of R satisfying conditions 1) and 2). We shall see below
that for unconutable subgroups ¢ of R we have an essentially different
situation.

Let (i be an uncountable subgroup of the real line R and let { X, Y}
be a partition of this line into two uncountable subsets. Further, let
((z) be the G-orbit of a point = € R. We say that (/(z) is X-=singular
if

0 <cardlGi(z)NX) € w.

In the analogous way, we say that G(z) is Y -singular if
0 <ecard(G(z)NY) < w.

It immediately follows from this definition that every X-singular (Y-
singular) (—orbit is in general position with respect to the given par-
tition {X,Y}.

Let (¢ be again an uncountable subgroup of R and {X,Y} be a
partition of R into two unconntable sets. We say that the partition
{X, Y} is admissible for the group (7 if the following three conditions
are fulfilled:

(1) the family of all X-singular G-orbits is at most countable;
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(2) the family of all Y-singular G-~orbits is at most conntable;

(3) il the G~orbit (/(z) of an arbitrary point z € R is not X -singular
and is not Y-singular, then (7(z) is X-admissible or Y-admissible.

It is casy to see that the following statement is true.

Proposition 1. Ila partition {X,Y} of the real line R is admissible
for a subgroup (i of R, then

card((9 + X)AX) Sw, card((g9+Y)AY) < w,

for all elements g € (. In particular, X and Y are almost G—invariant
subsets of R.

We want to make some remarks in connection with Proposition 1.
Let (¢ and {X.Y} satisfy the assumptions of this proposition and let #
be an unconntable cardinal number strictly less than the cardinality of
the continmm c. In general, we cannot deduce, for the gronp @, the
inequality

card(() < k.

Indeed, let us consider a subgroup ' of R such that

&) Sard{ D) =e:

h) card(R/T) > w.

Then it is not difficult to construct a partition {A, B} of the real
line R into two uncountable subsets of R such that

(1) the family of all A-singular I'-orbits is infinite and countable;

(2) the family of all B-singular [-orbits is infinite and countable;

(3) the family of all A-admissible I'-orbits is uncountable;

(4) the family of all B-admissible I'-orbits is unconuntable;

(5) it a I-orbit is not A-singular and is not B-singular, then it is
A-admissible or B-admissible.

We see, in particular, that

card(A) = card(B) = ¢

and the partition {4, B} is admissible for the group T

Thus, we can conclude that the existence of an admissible partition
{X,Y'} of R, for a given nncountable subgronp (¢ of R, does not imply,
in general, any upper estimation of the cardinality of (.
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On the other hand. we shall show in onr further considerations that
if G is an uncountable subgroup of R and {X,Y} is a partition of R
satisfying the relations

card(X) > w, card(Y) > w,

card((g + X)AX) <w, card((g+Y)AY) S w,

for all elements ¢ € (7, and, in addition, {X, Y} is not admissible for
the group ¢, then the equality

card((¥) = w,

is fulfilled.

In order to establish this result, we need the following

Proposition 2. Let ((/,+) be an arbitrary uncountable commu-
tative group and let {X,Y'} be a partition of (i into two uncountable
subsets such that

card((g + X\)AX) €w, card((qg+ Y)AY) < w,

for every element g € (. Then we have the equality card(() = wy.

Proof. The argument is essentially due to Sierpinski (ef. [5]). First
of all we deduce from the assumptions of Proposition 2 that

card(X) = card(Y') = card(().
Further, since card(.X') > w, we can lix a subset Z of X such that
card(Z) = wy.
Then it is not difficult to check that the inclusion
YCU{(X=-2)\X : ze Z}
holds. But. for each = € Z, we have the inequality

card((N —2)\ X) € w.
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Consequently, we get the inequality
card(Y) S w-w; = w.

Taking into account the fact that card(Y) = card((7) and that 7 is an
unconntable group, we obtain the desived equality card((Y) = w.

Now, we can formulate and prove the next statement.

Proposition 3. Let (i be an uncountable subgroup of the additive
group of the real line R and let {X,Y'} be a partition of this line such
that

1) card(X) > w, card(Y) > w;

2) for all elements g € (i, we have

card((g + X)AX) <w, card((qg+ Y)AY) < w;

3) the partition { X, Y} is not admissible for the group (.
Then the equality card((/) = wy is true.

Proof. Since the partition {X,Y} is not admissible for (7, at least
one of the following three assertions holds:
a) there exists a G-orbit (/(z) such that

card(G(z)NX) >w, card(G(z)NY) > w;

b) the family of all X-singular (G—orbits is unconntable;

¢) the family of all Y -singular (;-orbits is unconntable.

First et ns consider the case when assertion a) is true. Let (7(z2)
be an arbitrary G-orbit satisfying a). It is easy to see that the set
(/(z) can canonically be equipped with the structure of a commutative
group isomorphic to the original group (/. We denote this new group
by the symbol (G*,+) (notice that the zero of G* coincides with the
point z). Also it is not difficult to verily that the sets

X% Gz Nt Yo E2iaeny
form a partition ol the group G* such that

card(X™) > w, ecard(Y™) > w
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and, for each element g € (*, the inequalities
card((g + X*)AX™) S w, card((g+ Y )AY") < w
are fulfilled. Hence, we can directly apply Proposition 2 to the group
(G*,+) and to the partition {X*, Y*}. Applying the above-mentioned
proposition, we obtain
card(() = card((*) = w,.

Now, let ns consider the case when assertion h) is true. We take
an uncountable family {z; : 7 € I} of points of R such that the
corresponding lamily ol (~orbits

{G(z) : iel}
is disjoint and, for each index ¢ € I, we have the inequalities
0 <ecard(Gi(z)NX) < w.
Of course, without loss of generality, we may assume that
card(l) = w,.

We want to show that card((;) = w, too. Suppose otherwise, i.e.
card((7) > wy. For any i € I, let us denote

.\,,' = (v'( :,',‘) 0.4
and then let nus put
Z=U{X;—=z :iel}.
Obviously, we have the relations
ZCG, cardlZ) <wy.
Consequently, there exists an element h € (¢ such that

(h+Z)NZ = 0.
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Now, it is easy to check that, for every 7 € I, the inclusion
h4+ X; CG(z)NY
is fulfilled. From this fact we immediately obtain the inequality
card((h+ X)NY) > w,
which gives us a contradiction with the relation
card((h + X)AX) < w.

Taking into account the obtained contradiction, we conclude that the
desired equality card(() = w; must be true.
The case when assertion ¢) holds is analogous to the previous case.
Thus, the proof of Proposition 3 is complete.

The next statement is an easy consequence of Proposition 3.

Proposition 4. Let (4 be a subgroup of the real line with card((i) =
c and let {X,Y'} be a partition of this line into two uncountable subsets
such that

card((g + X)AX) <w, card((g+Y)AY) < w,

for all elements g € (/. Then at least one of the following two assertions
is true:

1) the Continuum Hypothesis (¢ = w; );

2) the partition {X,Y'} is admissible for the group .

Notice, in connection with Proposition 4, that if (¢ = R, then as-
sertion 2) is false and, therefore, the Continunum Hypothesis is fulfilled.

The next example describes a situation where {X, Y} is a partition
of R into two nnconntable almost (~invariant subsets and all G-orbits
are X -singular (cf. [6] and [7]).

Example 2. Suppose that the Continnnm Hypothesis holds. Let
R? be the Enclidean plane. Consider the straight line {0} x R lying in
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this plane. Clearly, {0} x R is an uncountable subgroup of the additive
group of R Since we have the equalities

card({0} x R) = ¢ = wy,

there exists an wy-sequence {I'y € < w;} of subsets of {0} x R such
that

a) card(l's) = w, for each ordinal £ < wy;

b) T¢ is a subgroup of {0} x R, for each ordinal £ < wy;

c) the family {I'; : £ < w;} is strictly increasing with respect to
inclusion;

d) the nuion of this family is equal to {0} x R.

Further, let {@g @ € < wy} be an injective w;—sequence consisting
of all points of the straight line R x {0}. Then we put

I'= {0} x R,

A=U{Te+u¢ : € <w},
B =R?\ A.

One can easily verily that
1) {A, B} is a partition of R? into two unconntable sets;
2) for any element ¢ € I'. we have

card((g + A)AA) < w, ecard((g+ B)AB) < w;

3) all I'-orbits are A-singular; more precisely, the intersection of
every straight line lying in R* and parallel to the line {0} x R with the
set A is infinite and countable.

Now, let us consider the real line R and the plane R? as abstract
groups. Then it is not diflicnlt to see that these two groups are isomor-
phic. Let us take an arbitrary isomorphism

[: RS R

between these gronps (notice that the existence of such an isomorphism

-+ cannot be proved without nnconntable forms of the Axiom of Choice,
L

’pr 4%

Pk

=

| -

|
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since [ is a real-valued function nonmeasurable with respect to the
standard two-dimensional Lebesgne measure). Finally, let us put

G=[f([), X=[f(A), Y=/[(B)

Evidently, (7 is an uncountable subgronp of R, {X, ¥} is a partition of
R iuto two uncountable sets, all G-orbits are X-singular and

card((¢9 + X)AX) <w, card((g+Y)AY) <w,

for cach element ¢ € (/.

Actnally, the argnment presented above shows ns that a more gen-
eral fact is true. Namely. suppose again that the Continuum Hypothesis
holds and let (¢ be an arbitrary uncountable subgroup of R satisfying
the inequality

(‘(ll'(l(R/()') > w.

Then there exist X and Y such that
(1) {X. Y} is a partition of R into two nncountable sets:
(2) for any ¢ € (i we have the inequalities

card((g + X)AX) <w. card((g+ Y)AY) < w;

(3) all G-orbits are X-singnlar.

Remark.  Since our considerations were based only on algebraic
properties of the real line R, we can establish the corresponding ana-
lognes of the preceding results for varions uncountable commutative
groups.
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W pracy rozwaza sie podzialy prostej skladajace sie ze zbioréw
prawie niezmienniczych, Uogdlnione zostalo pewne twierdzenie
Sierpiiskiego dotyczace takich podzialow.
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