
А С T A U N I  V Е И S I T A  Т I S  L О Г) Z I Е N S I S 

FOLIA MATHEMATICA 9, 1997

AI eks а п d с г  hh a raz ish vili

O N  A L M O S T  I N V A R I A N T  S U B S E T S  
O F  T H E  R E A L  L I N E

S o m e pa rtitio ns o f  t he real line, consist ing o f  almost, invariant sets ,  
are considered and o ne theorem o f  Sierpiński concerning such parti-
tions is generalized.

Let E be an infinite basic set. We denote by S i j n i (E )  the family  
of all bijertive mappings acting from E  onto E.  Obviously, S y m ( E )  
is a group with respect to the operation of composition of mappings.  
Let us fix a subgroup G  of S y m ( E ) .  The pair ( E . G ) is usually called 
a space equipped with a transformation group. 11 the group G  acts 
transitively in E,  then the pair ( E , G )  is called a homogeneous space 
(with respect to G).

Let Л be a subset of E.  We say that A is almost (/-invariant (or 
A is almost invariant with respect to G) if, for each transformation 
<J €  G,  we have the inequality

c a r d ( u ( X ) A X )  < card(E ),

where the symbol A  denotes, as usual, the operation of symmetric  
difference of two sets.

Evidently, the following three relations hold:
1) if a set. A is almost ('»'-invariant, then the set E  \  X  is almost  

G-invariant, too:
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2) if  se ts  X  and Y  are a lm o st ('/-in v a ria n t, th e n  th e  set X  U Y  is 
a lm o st ( /- in v a r ia n t,  too;

3) if we have the inequality

c f( c a rd {E ) )  > u>

and { A'n : // G u?} is an arbitrary countable family of almost Гг-  
in va riant, subsets of Æ, then U { X n : n  G u>} also is an almost G -  
invariant subset of E.

In particular, relations 1) and 2) show us that the family of all 
almost (7-invariant sets forms an algebra of subsets of E. Relation 
3) shows us that if cf (m r< l(E) )  > to, then the same family forms a. 
i t - algebra, ol subsets of E.

We want to remark that almost, invariant sets play an important role  
in the theory of invariant (or, more generally, quasiinvariant) measures. 
Some applications of such sets to the theory of invariant extensions of  
the classical Lebesgue measure are considered in [1] and [2].

There are many interesting examples of almost invariant subsets of  
the real line R  (see, for instance, [2], [3] and [4]). One of the earliest 
examples is due to Sierpiński (see [5]). Namely, Sierpiński constructed,  
using the method of transfinite recursion, a partition {.Y, V } of R  such 
that

a) c a r d ( X )  =  c a r d ( Y )  -  c a r d ( R );
b) for each _</ G R , the inequalities

card((y  +  Л')ДЛ ) <  c«rr/(R), <ard((tj +  Y’)A V )  <  rard (R )  

are fulfilled.
In particular, both the sets A and V are almost R-mvariaut subsets  

of R. Moreover, it is possible to show, by the same method, that the  
partition {À \ V } mentioned above can have some additional properties. 
For instance, the sets A and V can be Bernstein subsets of the real 
line R  (for the definition of a Bernstein subset of R , see e.g. [3] or [4]). 
Notice also that if Martin’s Axiom holds, then one of the sets X  and
V can be a Lebesgue measure zero subset of R  (or a first category  
subset of R ) . But it is reasonable to remark here that X  and Y  cannot 
be Borel subsets of the real line.



If tin-* Continuum Hypothesis holds, then the Sierpiński partition  
{.V, V'} satisfies the following two conditions:

(a) c a r d ( X )  =  c a r d( Y )  — c<ird(R);
(!>) for each </ £  R , we have

C4 rd((fi  +  Л )A.V) <  w, card((g  +  V )Д У )  <  u>.

Conversely, it is not difficult to prove that the existence of a parti-
tion {Л . V } of R  satisfying conditions (a) and (b) implies the Contin-
uum Hypothesis.

Now. let (7 be an uncountable subgroup of the additive group of R.  
Suppose that {Л. V } is a partition of the real line such that

( 1 ) c a r d ( X )  = c(ird()  ) =  rw //(R );
(2) for any ('lenient // £ (7, the inequalities

card((ji  -f X  )ДЛ  ) <  uf, card(((j  -f V )A K ) <  uj 

are fulfilled.
Then the following question naturally arises: does the Continuum  

Hypothesis hold in such a situation? Clearly, the answer to this ques-
tion is negative. Indeed, it is easy to see that if G  is a proper subgroup 
of R  with

card((i)  =  curd[ R ) ,

then the partition
Р Г , П  =  { 6 \ R \ r / }

consists ol two ( i  invariant subsets of the real line and, hence, satisfies 
conditions ( 1) and (2 ). but, the cardinality of the continuum (denoted  
by c) can lie strictly greater than the first uncountable cardinal number  
<̂ i. Thus, if we want to deduce the Continuum Hypothesis from the  
existence of a partition {Л. V } of R  satisfying conditions (J) and (2), 
we must, have some additional informât ion about {.V, V }. In our further 
considerations we shall discuss some properties of {Л. V } which enable  
us to obtain the corresponding result. Notice that, those properties will 
be formulated in terms of ([/-orbits of points of R.

Suppose that (1  is an arbit rary subgroup of the additive group of  
the real line. Let us recall that the (7-orbit of a point :  G R  is the
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following set,:
G{z)  = {g + z  : g e G } .

Obviously, the family of all G-orbits forms a partition of R  (which is 
usually called the partition of R  canonically associated with the given 
group G).

Let {.V, V } be a partition of R  into two subsets of R.
We say that a (7-orbit (7(z)  is .Y-admissible (respectively,  

V'-admissible) if G( z)  Ç .Y (respectively, C!(z) Ç V’).
We say that a G-orbit G (s)  is in general position with respect to 

the partition {.Y, V’} if

G(~) П .Y ф 0, G ( ; ) n r / 0 .

Using these notions we can consider the following example.

E x a m p l e  1 . Let G  be a countable subgroup ot R  and let {.Y, V } 
be a partition ol R  such t hat,

1) curd(X)  > u,'. card{ V ) > u>:
2) for all elements // G G, we have the inequalities

card((g + X ) A X )  < u), card{(g +  Г ) Д Г )  <  и .

Then it can be shown that the subsequent three relations hold:
a) there exists an uncountable family of X -admissible G'-orbits;
b) there exists an uncountable family of F-admissi-ble G-orbits;
c) the family of all those G-orbits which are in general position  

with respect to the partition { .Y, V } is at most countable.
Indeed, suppose that relation c) is not true. Then there exists an 

uncountable subset {~, : i 6  / }  of R  such that the corresponding 
family of G'-orbits

№ )  : i €  / }

is disjoint and all G-orbits from this family are in general position  
with respect to {.Y. V }. Consequently, for each index i £  / ,  there are 
elements

•('; G G(~i) П -Y. jji G G(zi )  П V.

Let us put.
{g-, ■ i €  / }  =  {//; -  : i £  I}.



Evidently, we have //, £  (7 fur every I 6  I . Si nee (7 is a countable group  
and /  is an uncountable set. there exists an element y  £  Cl such that

<ard({i  £  / : cji =  </}) >  to.

Hence, we obtain the inequality

card((g  +  А') П Y )  > u>,

which yields a contradiction with condition 2). This contradiction  
shows us that relat ion c) is true. Now, taking into account condition
1), it is easy to show that relations a) and b) are fulfilled, too.

( Conversely, suppose that a partition {А . У } of the real line satisfies  
relations a), b) and c). Then it is not difficult to check that conditions
1) and 2) hold for {A’, V}.

Thus, for an arbitrary countable subgroup Cl of R , we have a simple  
geometrical (or, if one prefers, algebraic) characterization of all parti-
tions {А . У } of R  satisfying conditions 1) and 2). YVe shall see below  
that for uncountable subgroups (7 of R  we have an essentially different  
situation.

Let Cl be an uncountable subgroup of t he real line R  and let { A , У } 
be a partition of this line into two uncountable subsets. Further, let  
(7(-) be the (7-orbit of a point z  £  R. We say that Cl(z) is X -singular  
if

0 <  card(C!(z)  П A ) <  u».

In the analogous way, we say that C!(z) is Y  singular if

0 <  card(Cl(z)  П Y )  < u j .

It immediately follows from this definition that every .V-singular ( Y -  
singular) ('i'-orl)it is in general position with respect to the given par-
tition {A\ V'}.

Let (7 be again an uncountable subgroup of R  and { A\ У' } be a 
partition of R  into two uncountable sets. We say that the partition  

is admissible for the group (7 if the following three conditions  
are fulfilled:

(1) the family of all A-singular (7-orbits is at most countable;
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(2 ) the faillily of all V'-singular (7-orbits is at most countable;
(■i) il the (7-orbit G( z)  of an arbitrary point z  6  R i s  not A'-singular  

and is not ) -singular, then Ct(z) is A"-—admissible or У—admissible.
It is easy to see that the following statement is true.

P r o p o s i t i o n  1 . I f  я part it ion  {A', V'} o f  the  real line  R  is admissible 
for a subgroup  (7 o f  R , t hen

cnvd{((j + А')ДА') < w, card((fi +  К)Д1') < ш,

for all eh •ments y  (E G. In particular.  A and Y  are almos t G-invariant  
subsets o f  R.

We waul to make some remarks in connection with Proposition 1. 
Let (i and {. X. )  } satislv the assumplions ol this proposition and let к  
be an uncountable cardinal number strictly less than the cardinality of  
the continuum c. In general, we cannot deduce, for the group G,  the 
inequality

cnrd(G) < к.

Indeed, let us consider a subgroup Г of R  such that 
a ) cnr(l{ I ) =  c:
b) card(R /Г) >  ш.
Then it is not difficult to construct a partition {A ,  B )  of the real 

line R  into two uncountable subsets of R  such that
(1) the family of all /1-singular Г orbits is infinite and countable;
(2 ) the family of all /^-singular Г-orbits is infinite and countable;
(3) the family of all /Г-admissible Г-orbits is uncountable;
(4) the family of all /^-admissible Г-orbits is uncountable;
(5) if a Г-orbit is not /1-singular and is not /^-singular, then it is 

A —admissible or /?—admissible.
We see. in particular, that

cord(A)  =  a u d ( B )  — с

and the partition {/1, В } is admissible for the group Г.

1 hits, we can conclude that the existence of an admissible partition  
{ A , V } of R. for a given uncountable subgroup G  of R , does not imply,  
in general, any upper estimation of the cardinality of G.



On the ot her IihihI. we shall show in our further considerations that  
if G  is an uncountable subgroup of R  and {.V, V } is a partition oi R  
satisfying the relations

c av d (X )  >  w, c a rd (Y )  >  a>,

ctird((g +  Л^ДЛ') <  ui, card((g  +  У')ДУ') <  tu,

for all elements g £  Г/, and, in addition, {.V, V’} is not admissible for 
the group Г/, then the equality

<<trd(G) =

is fulfilled.
In order to establish this result, we need the following

P r o p o s i t io n  2. Let. ((>',+) he  an arbi trary uncountable  c o m m u -
tat ive  group and let {Л , V } be a parti t ion o f  G into two uncountable  
subsets such that

c nrd( (д +  Л )Д Л  ) <  u,’, cnrd((g  +  V )ДУ ) <  ui,

for every  e lement g 6  G. The n we have the equal i ty  card(G)  — u>\.

Proof. The argument is essentially due to Sierpiński (cf. [5]). First  
of all we deduce from the assumptions of Proposition 2 that

c n r d( X )  = c ar d(Y )  = card(G).

Further, since c ar d( X )  > w, we can lix a subset Z  of X  such that

c ard(Z)  =  .

Then it is not difficult to check that the inclusion

Y  Q U { ( A ' - _ ) \ . V  : z e Z }

holds. But, for each z  G Z, we have the inequality

m r d ( ( X  — z)  \  X )  < uJ.
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Consequently, we get the inequality

card( У ) < ui ■ uj\ = uj\.

Taking into account the fact that r a r d ( Y )  = card(G)  and that G  is an 
uncountable group, we obtain the desired equality card(G)  =  u>\.

Now, we can formulate and prove the next statement.

P r o p o s i t io n  3. Let G be an uncountable  subgroup o f  the addi tive  
group o f  the  real line R  and let {.Y, V’} be a par ti tion o f  this line such  
that

1) c o r d ( X )  >  w,  c u rd (Y )  >  ui:
2 ) for all e le men ts  </ £  G, we have

cnrd((i)  +  Л')ДЛ ) <  u,’. c<trd((<i +  Y ) A Y )  <  l o;

3) the  part it ion  {.Y, V } is not admissible for the  group G.
Then  the  equal i ty  card (G) = ui\ is true.

Proof. Since the partition {.Y, Y } is not admissible for G,  at least 
one of the following three assertions holds:

a) there exists a (7-orbit G( z )  such that

card(G (z)  П Л ) >  u>, card(G (z)  П V ) >  u>;

b) the family of all .Y-singular C/-orl)its is uncountable;
c) I lie family of all V-singular (7-orbits is uncountable.
First let, us consider the case when assertion a) is true. Let. G(z )  

be an arbitrary б'-orbit  satisfying a). It is easy to see that the set  
G( z)  can canonically be equipped with the structure of a commutative  
group isomorphic to the original group G.  We denote this new group  
by the symbol ((7* ,+ ) (notice that the zero of G* coincides with the  
point z).  Also it is not difficult to verify that the sets

X * = G ( z ) n X ,  Y*  =  G( z)  П Y  

form a partition of the group G* such that

c ard(X *)  > u>, card(Y*) > ш



and, for each element ц £  (7*, tli«* inequalities

card((y  +  X 9) A X a) <  w. r«rrf((</ +  У'*)ДГ*) <  ш

are lullilled. lienee, we can directly apply Proposition 2 to the group 
( ( '* !+ ) and to the partition {A'*, V*}. Applying the above-mentioned  
proposition, we obtain

card(G)  =  card(Cr)  =  u>\.

Now, let us consider the case when assertion h) is true. We take  
an uncountable lamily {~; : / E /}  ol points of R such that the  
corresponding family of (7-orbits

№ • ■ )  : i e i }

is disjoint, and. lor each index / G / ,  we have the inequalities

0 <  card((;(zi )  П A') <  u>.

01  course, wit hout loss of generality, we may assume that

card( I) — l o\ .

Wet want to show that rar d(G)  =  u>i, too. Suppose otherwise, i.e. 
card(G) > u>\. For any г £  I.  let us denote

Л',- =  G(zi )  П A'

and then let us put

Z  — U{A', — Zi : i e  / } .

Obviously, we have I lie relations

Z  Ç G,  i a r d ( Z)  <  ù-’i .

Consequently, there exists an element h G G  such that

(h + Z ) n Z  =  0.
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Now, it is easy to check that, for every i G I , the inclusion

h +  X i  С Ci(zi) П Y

is fulfilled. From this fact we immediately obtain the inequality

card( (h  +  А") П V ) >  W],

which gives us a contradiction with the relation

card((h +  A')A.V) <  u>.

Taking into account the obtained contradiction, we conclude that the  
desired equality card(G) =  must be true.

The case when assertion c) holds is analogous to the previous case.  
Thus, the proof of Proposition 3 is complete.

The next statement is an easy consequence of Proposition 3.

P r o p o s it i o n  4. Let G be a subgroup o f  the  real line wi th card(G) — 
с and let {A, Y } be  a part it ion o f  this line into two uncountable  subsets  
such that

cnrd((g  +  A’)Л A’) <  u>, m r d ( ( g  +  Y ) A Y )  <  u>,

for all e lements  g  G G. Then  at least one o f  the following two assertions 
is true:

1 ) the  Con t inuum Hypothes is  (c =  шt );
2 ) the parti t ion  { .V. V } is admissible for the  group G.

Notice, in connection with Proposition 4, that if G  = R , then as-
sertion 2) is false and, therefore, the (Continuum Hypothesis is fulfilled.

The next example describes a situation where {.V, Y }  is a partition 
of R  into two uncountable almost 6 - in  variant subsets and all 6 -orbits  
are A-singular (cf. [fi] and [7]).

E x a m p l e  2 . Suppose that flic (Continuum Hypothesis holds. Let 
R 2 be tJic* Euclidean plane. Consider the straight line {0} X R  lying in



this plane. Clearly, {()} x R  is an uncountable subgroup of the additive  
group of R 2. Since we have the equalities

card({0}  x  R ) =  с =  u-’i,

there exists an u,'i sequence { Г<.- : £ <  } of subsets of {0} x R  such 
that

a) c urd(Ft ) =  ui, for each ordinal £ <  и-’ь
b) r t- is a subgroup of {()} x R , for each ordinal £ <  u>i;
c.) the family {F t- : £ <  u>i } is strictly increasing with respect to 

inclusion;
d) the union of this family is equal to {()} x R.
Further, let : £ <  u,'i } be an injective u>i-sequence consisting  

of all points of the straight line R  x {()}. Then we put

Г =  {()} x R,

/1 =  U { Ft. +  xç : £ < },

В  =  R 2 \  A.

One can easily verify that
1) {Л, В } is a partition of R 2 into two uncountable sets;
2) for any element <j 6  Г. we have

<ard((<i +  Л )Д Л ) <  u.'. card((n  +  B ) A B )  <  w;

3) all Г-orbits are Л-singular; more precisely, the intersection of  
every straight line lying in R 2 and parallel to the line {0} x R  with the  
set A  is infinite and countable.

Now, let us consider the real line R  and the plane R 2 as abstract  
groups. Then it is not difficult to see that these two groups are isomor-
phic. Let us take an arbitrary isomorphism

/  : R 2 -»  R

between these groups (notice that the existence of such an isomorphism  
cannot be proved without uncountable forms of the Axiom of Choice,
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since I is a real-valued function nonmeasurable with respect to the  
standard two-dimensional Lebesgue measure). Finally, let us put

6 ' =  / (Г ) ,  X  =  f ( A ) ,  Y  = f ( B ) .

Evidently, (7 is an uncountable subgroup of R , { X ,  K} is a partition of 
R  into two uncountable sets, all (7-orbits are A'-singular and

card({g + А")ДА") < и ,  car(l((g  + К)ДК) <  u ,

for each element g  €  (7 .

Actually, ( lie argument presented above shows us that a more gen-
eral lad  is true. Namely, suppose again I hat the (Continuum Hypothesis  
holds and let (7 be an arbitrary uncountable subgroup of R  satisfying  
the inequality

c a r d ( R / G )  >  u).

Then there exist A' and Y  such that
( 1 ) { -V, ) } is a partition ol R  into two uncountable sets;
(2 ) lor any g G Ci we have the inequalities

card{(g  4 - A' ) A X )  <  u>, card((g  -f Y ) A Y )  < u>\

(3) all ( /  orbits are .Y-singular.

Remark.  Since our considerations were based only on algebraic  
properties ol the real line R , we can establish the corresponding ana-
logues of the preceding results for various uncountable commutative  
groups.
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