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There are given sufficient conditions in order that a nonlinear
integral operator defines a conservative method of summability.

1. There was done a lot of work concerning linear methods in
summability, as well matrix methods as continuous methods. Among
else, I should like to mention the work done by Professor L. Wiodarski
([7], [8]), concerning continuous methods. In this paper we shall de-
rive sufficient conditions in order that a nonlinear integral method of
summability for functions, defined by means of a nonlinear integral
operator, be conservative (convergence preserving) in some modular
function spaces. In place of considering matrix methods and contin-
uous methods separately, we shall deal with convergence in the sense
of a filter. This kind of approach was started in case of linear meth-
ods in [2] and developed later for nonlinear methods (see e.g. (6], [1])
in case of problems of approximation. The case of a semigroup was
started in [5].

Let G be a semigroup. Let  be a measure on a o-algebra ¥ of sub-
sets of G and let L°(G) denote the space of all extended real-valued,
Y-measurable and finite p-almost everywhere functions on G, with
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equality p-almost everywhere. The measure u is called compatible
with the structure of the semigroup G, if A € ¥ implies sA € ¥ and
At € ¥, and f € L°(G) implies f(s-) € L°(G) and f(-t) € L(G),
for every s € G, t € G (see [5]). A function K : G X R — R, where
R is the real line, is called a kernel function, if K(-, u) € L'(G) for
all u € R and K(t,0)=0forallt € G. Let L : G — R} = [0,00),
L € L'(G) and let D = [, L(t)du(t), p(t) = L(t)/D. Next, let
Y : G xR — R be E-measurable on G for every value of the
second variable and (t, 0) = 0, (¢, u) > 0 for u > 0, (¢, u) is a
continuous, nondecreasing function of u tending to +00 as u — oo
for every t € G. We say that a kernel function K is (L,)-Lipschitz,
if the inequality

|K(t, u+h) — K(t, u)| < L(t)p(t, |h])

is satisfied for all u, h € R, t € G (see [6], [5]). It is easily observed
that if p is compatible with the structure of G, then the function
K(-, f(s-)) is S-measurable for every s € G, if K is (L, ¢)-Lipschitz,

because then K is continuous with respect to the second variable.

2. We shall investigate the nonlinear integral operator T' defined
by

1) ()s) = [ K(t, Sst)autt),
G

where f € Dom T and Dom T is the set of all functions f € L°(G)
such that (T'f)(s) exists for u-almost every s € G and is a ¥-measura-
ble function of s in G.

We shall need the notion of the modular in the space L°(G). A
modular in a real vector space X is defined as a functional p : X —
R = [0, 0o] such that

1° p(0) =0, p(f) > 0for f #0, f € X,
2° p(—f) = p(f) for f € X,
3° plaf+pBg)<p(f)+plg)for g€ X,a,3>0,a+3=1.
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A modular p in X generates a modular space X, defined as
X,={f:feX, p(Af) =0 as )\ = 0*}.

(see [3]). A modular p in L°(G) is called monotone, if f,g € L°(G)
and |f| < |g| imply p(f) < p(g). A modular p is called J-convez, if
for every Y-measurable function p : G — Ry such that

[ rorau =1

G
and for every Y-measurable function F' : G x G — R there holds the
inequality

p (/p(t)lF(t, -)Id/t(t)) < /P(t)p(F(t, ))dp(t).
(€} G

Let 4 be a filter of subsets of G, possesing a basis iy such that
Uy C E. A modular 5 in L°(G) is called (7,4)-bounded if there are a

number ¢ > 1 and a £-measurable, bounded function h : G — Ry
such that h(t) — 0 in the sense of the filter { and

n[f(t)] < nlef)+h(t), teG
for all f € L°(@) such that 5(f) < oo; we shall write hyy = sup{h(t) :
te U} for U € U (see [1], [4]).

Finally, we shall say that (p, 1, n) where p,  are modulars in
L°(@) and ¢ : G x Rf — R is a properly directed triple, if there
exists a set G C G with pu(G \ Go) = 0 such that for every A € (0,1)
there is a number C) € (0,1) satisfying the inequality

PICx(t, |F()D] < n(AF(.))
for all t € Gy and all F € L%G) (see [1], condition (1)). This

condition implies the inequality

p[Cx1p(t, F{())] < (A Fy(+))

for every t € G¢ and for any family (Fi(-)),c of functions F; €
LY(@G).



26 J. MUSIELAK

3. We shall prove now the following

Theorem 1. Let u be a measure in the semigroup G, compatible
with the structure of G, defined in the o-algebra ¥ of subsets of
G. Let U be a filter of subsets of G with a basis g C ¥. Let p
and n be monotone modulars in L°(G), where p is J-convex and
n is (1, U)-bounded. Let K be an (L, v)-Lipschitz kernel function
and let (p, ¥, n) be a properly directed triple. Let the nonlinear
integral operator T' be defined by (1) and let f, g € (L°(G)),NDom T,
0<A<1,0<a<CyD"}). Then for an arbitrary U € U, there
holds the inequality

pla(Tf —Tg)] <n(cA(f —g)) + hv

(2) Hin2er ) +n2erg) +2hal [ pO)du)
G\U

where ¢ is the constant from the definition of (7,4)-boundedness of
n.

Proof. Let f, g € DomT. By the (L, 1)-Lipschitz condition for the
kernel function K, we obtain

(TF)(s) - (Tg)(s)| < / p(t) D(t, |£(-1) — g(- D)) du(t)
G

for p-almost every s € G. Hence, by monotony and J-convexity of p
and by the assumption that the triple (p, v, ) is properly directed,
weobtainfor 0 <a < C\D1,0< A<

pla (TS — Tg)] < / p(t) pla Dylt, |F(-) — g(-t)]}du(t)

G

< / p(O) (A1) — g(- O]} du(t).

G
Let us denote for A € ¥

v(A) = / p(t) A1) — g(- D] }du(d).

A
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Then we have for arbitrary U € 4,
(3) pla(Tf ~Tg)] < v(U)+ v(G\U).

By (7,4)-boundedness of 1,

W) < / p() 0N (F = 9)ldu(t) + / p(t) h(t)dpu(t)
U U
< nled( fi— a0l ok

Again, by monotonity and (7,4)-boundedness of 7,

v(G\U) < /p(t)n[2/\f('t)]du(t)+ /p(t)n[‘l/\g('t)]du(t)

G\U G\U
< / p(t)[n(2e A f) +n(2cAg)ldu(t) +2 / p(t) h(t)du(t)
G\U G\U
< [n(eAf) +n(2eAg) +2hy) / p(t)du(t).

G\U

Hence, by inequality (3), we get (2).

4. Let W be an abstract, nonempty set of indices and let 20 be a
filter of subsets of the set W. Let (f)wew be a filtered family of func-
tions f,, € (L°(G)), NDomT, and let (Fy)wew be a filtered family
of functions F,, € (L°(G)),. We say that (fuw)wew is n-convergent
to a function f [resp. (Fy)wew is p-convergent to a function F), if
there is a A\ > 0 such that for every € > 0 there exists a set W € 20
such that for all w € W there holds the inequality n[\(f, — f)] < €
[resp. p[A(F\, — F)] < €]. We say that (fw)wew is n-Cauchy [resp.
(Fuw)wew is p-Cauchy], if there is a A > 0 such that for every € > 0
there exists a set W € 20 such that for all v,w € W there holds
the inequality n[A(f, — fu)] < € [resp. p[A(Fy — Fy)] < €]. Obvi-
ously, n-convergence of (f,)wew implies (fu)wew to be n-Cauchy
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[resp. p-convergence of (Fy, )wew implies (Fy, )wew to be p-Cauchy |.

If the converse implication holds we say, that the space (L°(G)), is

n-complete [resp. (L°(@)), is p-complete] with respect to the filter 20.
Let

(D F)8) = /K,,,(t,f(st))du(t).

a

We shall say that the family of nonlinear operators Ty, given by (1)
is conservative [resp. Cauchy-conservative] from (L°(G)), N Dom T,
to (L°(G)), with respect to the filter 20, if for every n-convergent
[resp. n-Cauchy] filtered family (fu)wew of functions f, € (L%(@)),
N Dom Ty, the filtered family (7T, fu,)wew is p-convergent [resp. p-
Cauchy]. We shall still need the notion of weak singularity of an
(Luw, t)-Lipschitz kernel function K. We say that the (L,,,)-Lip-
schitz kernel function K is weakly singular, if for every e > 0, U € Y,
there exists a set W € 20 such that

/ Pw(t)du(t) <e forall weW.
G\U

There holds the following

Theorem 2. Let all assumptions of Theorem 1 be satisfied and let,
moreover, the (L, 1)-Lipschitz kernel K be weakly singular. Then
the family of nonlinear integral operators T, given by (1) is Cauchy
conservative from (L°(G)), N\Dom T,, to (L°(G)), with respect to the
filter 20.

Proof. By inequality (2), we have

p[a(va,, = waw)] S U(C/\(fv o f‘w)) + hU

+[7(2eA fo) +1(2€A fu) +2ha] /pw(t)du(t)
G\U

for U € h, v,w € W, 0 < A < 1,0 < a £ C) D!, Let us
remark that if (f,)wew is n-Cauchy and f, € (L°(G)), N DomT,
for w € W, then there exists a set W, € 20 such that the family
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(n(2¢ A fuw))wew, is bounded for sufficiently small A > 0. This follows
from the inequality

N(2cA fw) S ndeMfuw = fuwo)l +n(4cA fu,)

for w, wy € W, since we may take a set Wy C 20 such that n[4 cA(f,—
fwo)] < 1 for w, wy € Wy and because f,, € (L°(G)),, we have
n(4cA fu,) < oo, if A > 0 1is sufficiently small. Thus, taking wy, € W,
fixed, we have

N(2e¢c)fu) <1l4+n(dec)fu,)=M<

for w € Wj. Let us choose an arbitrary ¢ > 0. Since K is weakly

singular and A(t) — 0 in the sense of the filter 4, we may find a set
U € iy such that

€

1
TR (B du(b) e aakeas o
hy < 3¢ and /p (t)du(t) < 6 (M 1 hig)

G\U

for w € W;. Then

Mdﬂﬂ—ﬂﬁwhwth—hﬂ+%

for v, w € Wy. Since (fy)wew is n-Cauchy, we may find W, € 20
such that

WeA(fo - fu) < 3¢

for A > 0 sufficiently small, if only v, w € W3. Hence, taking v, w €
W =W, N W, and a > 0 sufficiently small, we have

P[a (vav = waw)] <E&.
Thus, (Ty fu)wew is p-Cauchy.

From Theorem 2 it follows immediately

Theorem 3. Let us suppose the assumptions of Theorem 2 to be
satisfied. Let the space (L°(G)), be p-complete. Then the family
of nonlinear integral operators Ty, given by (1) is conservative from
(L°(G)), NDom T, to (L°(G)), with respect to the filter 20.
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O PEWNYCH ZACHOWAWCZYCH NIELINIOWYCH

OPERATORACH CALKOWYCH

Niech

(T f)(s) = / GK (¢, f(ts))dp(t)

bedzie nieliniowym operatorem catkowym, przyczym g jest miara
w polgrupie G, zgodna z dzialaniem w tej polgrupie. Oszacowano
wartoéé¢ pla(Tf — Tg)], gdzie p jest modularem nad przestrzenia
L°(G). Wynik zastosowano do uzyskania warunkow dostatecznych
na to, by sfiltrowana rodzina (T,) takich przeksztalcen byla zacho-
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wawcza, tj. by zbieznodé rodziny funkeji (f,) pociagata zbieznogé
rodziny funkcji (T, fu) W przestrzeni modularnej (L°(G)),.
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