ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 1, 1984

Maria Zofia Banassezyk, Alina Chądzyńska

ON LOCAL ONE-PARAMETER GROUPS OF LOCAL TRANSFORMATIONS IN DIFFERENTIAL SPACES

In the paper there has been considered a problem of mutual correspondence between the vector fields and local one-parameter groups of local transformations in the category of differential spaces generated by a single function.

On a C^{∞} -manifold, every vector field X corresponds to an equivalence class of local one-parameter groups of local transformations in a 1:1 manner.

In this paper we consider the problem of a correspondence. between the vector fields and local one-parameter groups of local transformations for a differential space (M,C), where C is a differential structure on M generated by a single function f.

We wish to thank Prof. W. Waliszewski for suggesting the problem.

Throughout this paper, by a differential space we shall mean a couple (M,C), where C is a differential structure on a set M in the sense of S i k o r s k i (see [1]). If h is a smooth mapping from a differential space (M,C) into a differential space (N,C'), we write h ; (M,C) + (N,C'). The set of all C^{∞} -functions on the set R of all real numbers is denoted by C^{∞} (R). Let V be an open subset of R with the natural topological structure. By C^{∞} (V) we denote the set of all C^{∞} functions on V. The set of all C^{∞} -functions on R*R is denoted by C^{∞} (R⁴). J_E designates the differential space (I_E,

[3]

Maria Zofia Banaszczyk, Alina Chądzyńska

 $C^{\infty}(I_{\xi})$), where $I_{\xi} = (-\xi, \xi)$, $\xi > 0$. C(A) denotes the set of all functions f|A, where $f \in C$ and A is an open set of the topology of (M,C).

Let (M,C) be a differential space, and let U and V betwo open sets of the topology of (M,C). A diffeomorphism φ : (U, C(U)) + (V,C(V)) is called a local transformation of (M,C). U is called the domain of φ .

A local one-parameter group of local transformations of (M, C) is a set $\{U_{\alpha}, \varepsilon_{\alpha}, \varphi_{t}, \alpha^{(\alpha)}\}_{\alpha \in \mathbb{A}}$, where U is an open set of the topology of (M,C), ε_{α} - a positive number, and $\varphi_{t}^{(\alpha)}$ - a local transformation of (M,C) for each t, $|t| < \varepsilon_{\alpha}$, satisfying the following conditions:

1) $\{U_{\alpha}\}_{\alpha \in A}$ is an open cover of (M,C),

2) the domain of $\varphi_t^{(\alpha)}$, $|t| < \varepsilon_{\alpha}$, contains U_{α} , and $\varphi_0^{(\alpha)}$ is the identity transformation on U; the map $(t,p) \rightarrow \varphi_t^{(\alpha)}(p)$ is a smooth map from $J_{\varepsilon_{\alpha}} \times (U_{\alpha}, C(U_{\alpha}))$ into (M, C), 3) if |t|, |s|, $|s+t| < \varepsilon_{\alpha}$, then $\varphi_t^{(\alpha)} \circ \varphi_s^{(\alpha)}$ is defined,

its domain contains U_{α} and $(\varphi_t^{(\alpha)} \circ \varphi_s^{(\alpha)})(q) = \varphi_{t+s}^{(\alpha)}(q)$ for $q \in U_{\alpha}$,

4) if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then for each point $p \in U_{\alpha} \cap U_{\beta}$ one can choose $\varepsilon < \min(\varepsilon_{\alpha}, \varepsilon_{\beta})$ such that, for $|t| < \varepsilon$, $\varphi_{t}^{(\alpha)}$ and $\varphi_{t}^{(\beta)}$ agree on a sufficiently small neighbourhood of p.

Let $G_1 = \left\{ U_{\alpha}, \xi_{\alpha}, \varphi_t^{(\alpha)} \right\}_{\alpha \in A}$ and $G_1' = \left\{ V_{\gamma}, \eta_{\gamma}, \Psi_t^{(\gamma)} \right\}_{\gamma \in I}$ be two local one-parameter groups of local transformations. We say that G_1 and G_1' are equivalent and write $G_1 \sim G_1'$ if the following conditions is satisfied: if $U_{\alpha} \cap V_{\gamma} \neq 0$, then for each point $p \in U_{\alpha} \cap V_{\gamma}$, there is a number $\delta > 0$, $\delta < \min(\xi_{\alpha}, \eta_{\gamma})$, such that, for $|t| < \delta, \varphi_t^{(\alpha)}$ and $\Psi_t^{(\gamma)}$ agree on a sufficiently small neighbourhood of p.

To G_1 we can associate a vector field X on (M,C) as follows. For $p \in M$ and $f \in C$ we define the value X(p) of the vector field X at p, by

(1) $X(p)(f) = \frac{d}{dt} (f \circ \varphi_t^{(\alpha)})(p)\Big|_{t=0}, p \in U_{\alpha}$

On local one-parameter groups of local transformations

The vector field X is called the infinitesimal transformation of the local one-parameter groups G_1 of local transformations.

Lemma. Let C be the smallest differential structure on M containing a function f, and let X be the infinitesimal transformation of two local one-parameter groups of local transformations $G_1 = \left\{ U_{\alpha}, \hat{\epsilon}_{\alpha}, \varphi_t^{(\alpha)} \right\}_{\alpha \in A}$ and $G_1' = \left\{ V_{\gamma}, \eta_{\gamma}, \psi_t^{(\alpha)} \right\}_{\gamma \in I}$ of (M, C). Then, for each point $p_0 \in U_{\alpha} \cap V_{\gamma}$, there exist a neighbourhood U, $U \subseteq U_{\alpha} \cap V_{\gamma}$, of p_0 and $0 < \epsilon < \min(\hat{\epsilon}_{\alpha}, \eta_{\gamma})$, such that

(2)
$$(f \circ \varphi_t^{(\alpha)})(p) = (f \circ \Psi_t^{(\alpha)})(p)$$
 for peU, teI_E.

Proof. Suppose $G_1 = \left[U_{\alpha}, \mathcal{E}_{\alpha}, q_t^{(\alpha)} \right]_{\alpha \in A}$ and $G_1^* = \left\{ V_{\gamma}, \eta_{\gamma}, \psi_t^{(\alpha)} \right\}_{\gamma \in I}$ have as their infinitesimal transformation the same vector field X. Let p_0 be a point of $U_{\alpha} \wedge V_{\gamma}$. X(f) is a smooth function on (M,C). Thus there exist a neighbourhood U_1 of p_0 contained in $U_{\alpha} \wedge V_{\gamma}$ and a function $g \in C^{\infty}(R)$, such that

(3)
$$X(p)(f) = (g \circ f)(p)$$
 for $p \in U_1$.

Denote by the symbols $\overline{\varphi}^{(\alpha)}$ and $\overline{\psi}^{(\gamma)}$ the smooth mappings. (t. p) $\mapsto \varphi_t^{(\alpha)}(p)$ from $(U_{\alpha}, C(U_{\alpha})) \times J_{E_{\alpha}}$ into (M,C) and $(t,p) \mapsto \psi_t^{(\gamma)}(p)$ from $(V_{\gamma}, C(V_{\gamma})) \times J_{\eta_{\gamma}}$ into (M,C), respectively. Because of the continuity of the mappings $\overline{\varphi}^{(\alpha)}$ and $\overline{\psi}^{(\alpha)}$ it follows that there are neighbourhood U_{α} of P_{α} contained in U_{1} and a positive number $\varepsilon_{\alpha} < \min(\varepsilon_{\alpha}, \eta_{\gamma})$ such that $\varphi_t^{(\alpha)}(U_{\alpha}) \cup \psi_t^{(\gamma)}(U_{\alpha}) \subset C U_1$ for $|t| < \varepsilon_{\alpha}$.

From condition (3) of the definition of a local one-parameter group of local transformations, one sees that, for $p \in U_{\alpha}$ and V_{γ} , it $l < \epsilon_{\alpha}$,

 $x(\varphi_t^{(\alpha)}(p))(f) = \frac{d}{dt} (f \circ \varphi_t^{(\alpha)})(p),$

(4)

$$((\Psi_t^{(\gamma)}(\mathbf{p}))(t) = \frac{d}{dt} (f \circ \Psi_t^{(\gamma)})(\mathbf{p}).$$

Next from (3) we have

$$x(q_{\pm}^{(\alpha)}(p))(f) = (g \circ f \circ q_{\pm}^{(\alpha)})(p),$$

 $p \in U_0$, $|t| < \varepsilon_0$

for $p \in U_2$, $|t| < \varepsilon$

$$X(\psi_{+}^{(\alpha)}(p))(f) = (g \circ f \circ \psi_{+}^{(\gamma)})(p).$$

The mapping fo $\overline{\varphi}^{(\alpha)}$ belongs to $C(U_{\alpha}) \times C^{\infty}(I_{\varepsilon_{\alpha}})$. The mapping fo $\overline{\psi}^{(\gamma)}$ belongs to $C(V_{\gamma}) \times C^{\infty}(I_{\eta_{\gamma}})$. Therefore, there exist a neighbourhood U_2 of p_0 contained in U_1 , a positive number $\varepsilon < \varepsilon_0$ and mappings F_{φ} and $F_{\psi} \in C^{\infty}(\mathbb{R}^2)$, such that

),

$$= o \ \overline{\varphi}^{(\alpha)}(p,t) = F_{\varphi}(f(p),t)$$

(6)

(1

(

(5)

$$f \circ \overline{\Psi}^{(\gamma)}(p,t) = F_{\Psi}(f(p),t).$$

Thus, if $p \in U_2 = U$, |t| < f, from (4), (5) and (6) we get

 $\frac{d}{dt} F_{\varphi} (f(p), t) = (g \circ F_{\varphi})(f(p), t), F_{\varphi}(f(p), 0) = f(p),$

$$\frac{d}{dt} F_{W}(f(p),t) = (g \circ F_{W})(f(p),t), F_{W}(f(p),0) = f(p).$$

From the uniqueness theorem for solutions of differential equations we have

$$P_{\omega}(f(p),t) = P_{\omega}(f(p),t)$$
 for $p \in U$, $|t| < \xi$.

So, by (6) we obtain (2).

Theorem. Let C be the smallest differential structure on a set M which contains a function f and let the topology. (M, C) satisfy Kolmogoroff's separation axiom T_0 . If two local one-parameter groups of local transformations have the same vector field as their infinitesimal transformation, then they are equivalent.

Proof. Since the topology of (M,C) satisfies Kolmogoroff's separation axiom T_{α} , then f is one-to-one. Suppose $G_1 = \left[U_{\alpha}, \epsilon_{\alpha}, \varphi_t^{(\alpha)} \right]_{\alpha \in A}$ and $G'_1 = \left[V_{\gamma}, \eta_{\gamma}, \psi_t^{(\alpha)} \right]_{\gamma \in I}$ have, as their

On local one-parameter groups of local transformations

infinitesimal transformations, the same vector field X. We shall show that $G_1 \sim G_1'$. From Lemma, for $p_0 \in U_{\alpha} \cap V_{\gamma}$ there exist a neighbourhood U of p_0 contained in $U_{\alpha} \cap V_{\gamma}$ and $0 < \varepsilon < \min(\varepsilon_{\alpha}, \eta_{\gamma})$, such that

$$(f \circ \varphi_t^{(\alpha)})(p) = (f \circ \Psi_t^{(\alpha)})(p)$$

for $p \in U$, $|t| < \varepsilon$. Hence, $\varphi_t^{(\alpha)}$ and $\Psi_t^{(\gamma)}$ coincide on U for $|t| < \varepsilon$, and this completes the proof.

If the topology of a differential space does not satisfy the separation axiom T_0 , then the 1:1 correspondence between the vector fields and the equivalence classes of one-parameter groups of local transformations can fail. Now we shall give suitable examples.

Example 1. Let $\pi_1: \mathbb{R}^2 \to \mathbb{R}$ be the canonical projection $(\pi_1(p_1, p_2) = p_1)$ and let C be the smallest structure on \mathbb{R}^2 containing π_1 . Let us put

$$\varphi_{+}(p_{1},p_{2}) = (p_{1} + t, p_{2} + t),$$

P1,P2,teR

$$\varphi_{t}(p_{1},p_{2}) = (p_{1} + t, p_{2} - t).$$

 $\{R^2, \xi, \varphi_t\}$ and $\{R^2, \xi, \psi_t\}$, $\xi > 0$, are two different, not equivalent, local one-parameter groups of local transformations which have the same vector field as their infinitesimal transformations.

Professor Z. Moszner in his paper (which will appear in Tensor) considered the function $\varphi_1: \mathbb{R}^2 \to \mathbb{R}$ given by the formula

	0			for p	= 0, t¢	R,
$\varphi_1(\mathbf{p},\mathbf{t}) = \langle$	sgn(ln p	+ t)	plec	for p	∈ <1,∞) ∪	$(-1,0), t \in \mathbb{R},$
Participation of the second	-sgn(ln p	+ t)	plet	for p	e (0,1) y	(-∞,-1>, t∈R.

This function will be used in the following example.

Example 2. Let r be a nonzero number and let t C R. Put

7

$$\varphi_{rt}(p) = \begin{cases} 0 & \text{for } p = 0, \\ \text{sgn}(\ln \left| \frac{p}{r} \right| + t) \text{iple}^{t} & \text{for } p < (ri, \infty) \cup (-iri, 0), \\ -\text{sgn}(\ln \left| \frac{p}{r} \right| + t) \text{iple}^{t} & \text{for } p < (0, |ri|) \cup (-\infty, -|ri|), \end{cases}$$

$$q_{+}(p) = p e^{c}$$
, $f(p) = |p|$ for $p \in \mathbb{R}$.

Let C be the smallest differential structure on R which contains the function f. Consider the differential space (R,C). For each $r \neq 0$, $G_1^r = \{R, \varepsilon, \varphi_{rt}\}$ and $G_1 = \{R, \varepsilon, \varphi_t\}$, $\varepsilon > 0$, are two different, not equivalent, local one-parameter groups of local transformations which have the same vector field as their infinitesimal transformations.

REFERENCES

[1] R. Sikorski, Nstęp do geometrii różniczkowej, Warszawa 1972.

Institute of Mathematics University of Łódź

Maria Zofia Banaszczyk, Alina Chądzyńska

0 LOKALNYCH JEDNOPARAMETROWYCH GRUPACH PRZEKSZTAŁCEN NA PRZESTRZENIACH RÓŻNICZKOWYCH

W pracy rozważany jest' problem wżajemnej odpowiedniości pomiędzy polami wektorowymi i lokalnymi jednoparametrowymi grupami przeksztsiceń lokalnych' w kategorii przestrzeni różniczkowych generowanych przez jedną funkcję.