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ON A KIND OF METRIC DIMENSION

In the paper the properties of a dimension that can be applied 

to subsets of a metric apace, close to the Kolmoporov metric dimen-

sion, are investigated. It is proved that dim (X«V) - dim X + dim Y 

for any metric apaces. In th examples the dimensions of concrete 

spaccs are examined.

I. INTRODUCTION

One of the possible ways of measuring maBsivness of a set in 

a metric space is, given an arbitrary £ > 0 , to count the mini-
mal number of balls of the radius £ needed to cover the set and 

to observe how the number changes ..as £ tends to zero. This 

method gives raise to the notion of metric dimension, as descri-

bed in [4]. But it is also possible to look at this problem from 

the other side: given an arbitrary positive integer n, we try 

to find the minimal number £ > 0 such that the set is covered 

by exactly n balls of radius £ and then watch how the number 

changes as n tends to infinity. In this way we come to the no-

tion of dimension which resembles that of metric dimension. In 

the sequel we shall call it quasi-metric dimension. The suitable 

definition of the dimension is due to R. Jajte.

We shall keep (with insignificant changes) the terminology 

And the notion of [4], The facts from that paper which prove 

useful for our purposes will be reminded below.

Let (X,£> ) be a metric space and A its totally bounded no-

nempty subset. We say that the set U c x  is an £ - net for A

[9]



in the space X if for any a € A there exists a point u « U 

such that p (a,u) £ £ .

We denote by N^(A) the minimal number of point* In an E - 

net for A in the space X. A metric space X is called cente-

red if for every set U c X of the diameter d - 2r . there exists 

a point € X such that g (xQ ,u) S r for all u * 0. By a 

theorem of Vitushkin (Theorem VII in [4]) any totally bounded 

space A may be embedded in a centered space X.

If A c x , A c X and the space X„ is centred, then of
x ° Y  V  °

course N£o(A> £ (A). The number N*o(A), which clearly does 

not depend on the choice of the centred space XQ , is denoted 

simply by N£(A). The number H£ (A) * log2N£(A) is called the 

£-entropy of A.

Now we can define the upper and lower metric dimension of a 

totally bounded space A:

H (A)
u-dm(A) « lim sup — — r- #

£ » 0 log2£

Hf (A)
l-dm(A) * lj.m inf ---- x .

£ •• 0 1°92e’

If l-dm(A) * u-dm(A) * dm(A), the number dm(A) is called 

metric dimension of A -and A is said to be regular with 

spect to the metric dimension.

We shall denote by [x] the integral part of x and by 

the smallest integer equal to or greater than x.

2. BASIC DEFINITIONS
. . )

Let (X, g ) be a metric space, A its totally bounded no-

nempty subset and p an arbitrary positive number.
»

Definition 1. By upper (resp. lower) p-dimensional diameter 

of the set A in the space X we mean the number (possibly in-

finite)

the
re-

< x >



y  V
5_(A) « inf lim sup n p A (£iA) 
p 6 n *♦ oo n

(reap. D*(A) - inf lim inf n1/p A (|;A)), 
p | n - oo

where the infimum is taken over all sequences 5 = (x̂ ) with 

elements in X and where

“ sup "»in p(x.,a) 
n / ae A 1 S U n C 1

V

Proposition J. If# for some pQ > 0, 5p (A) < 00 (resp.

D* (A) < ® ), then D*(A) - O 
~P0 P

x
(resp. pp (A) ■ O) for every p > pQ.

We omit the easy proof.

Definition 2. By upper (resp. lower) quasi-metric dimension 

of the set A in the space X we mean the number (possibly in-

finite)

X —X
u-dqm (A) * sup {p e (0, 00) : D£(A) * 00}

* inf [p e (0, oo ) : DX(A) * O) ,
i P

X y
(resp. 1-dqm (A) » sup {p € (0, oo) : D ‘(A) « a> )

P

= inf {p e (0, oa) ; DX(A) = 0} .
P

Definition 3. For every positive integer n and arbitrary p >

> 0 we put



fin <A) * inf sup min (x ) 0 . (£>A)
(*,, x„)« Xn aeA isisn 1 *

aX(A) ■ lim sup n1/̂  fiX (A), 
P n -» oo

dX (A) - lim inf n1/p 6 X (A). 
'P n - » n

Proposition 2. For every positive integer n, every sequence 

6 with elements in X and arbitrary totally bounded subset A of 

X, we have

An (g;A) " An (*,X)

and consequently

E£(A) - 5p(A), DX (A) - Dp(A),

d*(A) *= d*(A), d*(A) » d^(A)f
P P P "T5

u-dqmX (A) = u-dqmX (A), l-dqmX (A) » l-dqmX (A).

We omit the easy proof. /

Remark.1 Definitions 1, 2 and 3 may be introduced for any non-

empty subset of X, not necessarily totally bounded. But for a 

set A which is not totally bounded, l-dqmx (A) * u-dqmX(A) ■ oo, 

as can easily be verified. If A is totally bounded, its comple-
tion A is compact and A is dense in X. Now it is clear from 

Proposition 2 that is it reasonable to consider only compact 

sets A.

Proposition 3. The following inequalities hold for every com-

pact A and an arbitrary positive integer n:



X X
D °(A) S D*(A> S 5*(A) S 25 °(A) >

X X
D °(A) S D*(A) S D*(A) S 2D °(A),
I> •  Mr r r

fi n (A) S fi*(A) S «S*(A) S 2«n0 (A)f

X Y , X
d °(A) S d*(A) S d"(A) S 2d °(A),
* r r r

X X
dp°(A) S dp(A) S d£(A) S 2dp°(A),

where XQ denotes any centred space containing A and X an 

arbitrary space containing A.

Again w«f omit the easy proof.

Remark. It follows from Proposition 3 that the upper and low-

er quasi-metric dimension of a compact set A do not depend on 

the choice of the space X in which the set is (isometrically) 

embedded, so that we can simply write u-dqm(A) and l-dqm(A) 

instead of u-dqrax (A) and l-dqmx(A). In the sequel we shall 

even drop the symbol X from the denotations 8X (A), dX (A), 

X X X
dp(A), I5p(A), Dp(AV The exact meaning will always be clear from the 

context.

Theorem 1. 0 < dp (A) < oo (resp. 0 < £lp(A) < 00 ) If and only

if 0 < D (A) < oo (resp. 0 < D (A) < oo ) . More precisely,
/

(1) dp (A) S Dp(A) S 81/P dp(A)

(1') (resp. d (A) S D (A) S 81/p d(A)).—D —D —D '

P r o o f .  We shall show only (1), as (1*) can be veri-

fied similarly.



For any sequence | (with elements in X),

5n(A) s A n (|jA), so that

d (A) « lim aup n ^ P  6 (A) 5 lim sup n ^ p A (§?A) 
p n - cd n n ■* oo

Hence dp(A) S ^p (A).

For any positive integer k let us choose points

x<k> of X so that

(2) sup min p(x.(k),a> Si.(A) + 1/2k. 
aeA ISiSk 1 *

Now let us define a sequence a ■ (a^ as follows:

, _ I fnr I . Ô j-1
1 i+1-2k

Among the first 2n elements of the sequence there are points

x(2n~1) (2n”1)
*1 ' x2n-1 •

Hence and from (2) we get

(3) A k (a;A) » sup mil) g(a.,a)

2 a € A lSis2k

(2k_1)£ sup min p(x. «a)

a 6 A  lSiS2k_1

_k-1
S 62K-1 (A) + 1 /2 ‘

For any integer n > 1, denot-a by k(n) a number such that

(4) 2k(n) S n < 2k<n>+1.

Then



(5) < n/4 > S 2k(n)"\

Let us notice that the sequences (An(ouA)) and (6n (A)) 
nonincreasing. Together with (3), (4), and (5) it gives

(6) n1/p An (d»A) S <2M n ) + 1 '1/P A k(n) (ot;A)

S (2k(n)+1,1/p S k(n,., (A) + (2k(n)+1 ,1/p / 2 2

S (2n)1/p 6<n/4> (A> + (2n)1/p / 2n/4. 

Clearly for any p > 0

(7) <2n)1/p / 2n /4 * 0 as n - oo 

and

(8) <2n)1/p £ 81/p <n/4 >1/p.

From (6), (7) and (8 ) we get

(9) D (A) £ lim sup h1y/p A (ajA)
p n -co P

£ 81/,p lim sup < n/4 >1//p &< > (A) 
n - ®

t

Obviously the sets of limit points of the sequences

(<n/4>1/p 6<n/4 > (A)) and (n1/ p 6 n <A)) 

coincide. Hence

(10) lim sup <n/4 >1/p fi< n/4 > (A)
n - oo

* lim sup n1//p 6n(A) ■ 
n •* oo

are



Frc.n (9) and (10) we conclude that

6^ (A) S 8 1/p dp(A).

This end« the proof of the theorem.

Corollary.

u-dqm(A) =» aup {p e (O,«o) ;dp(A) ■«} » inf {p e ((0 ,oo) :dp(A) * 0) 

l-dqm(A) * sup (p e (O,eo) »d (A) « 00} » inf {p e (0,w) id (A) *0).
1 F

Remark. The above corollary gives us a new and useful defi-

nition of quasi-metric dimension. It will allow us to find a 
connection between metric and quasi-metric dimension.

Definition 4. If l-dqm(A) ■ u-dqm(A) * dqm(A), we call the 

number dqm(A) the quasi-metric dimension of the set A and say 

that A is regular with respect to quasi-metric dimension (or

simply: regular). (

3. COMPARISON OF METRIC AND QUASI-METRIC DIMENSION

Theorem 2. For any compact metric space A,

l-dm(A) S l-dqm(A) £ u-dqm(A) £ u-dm(A).

P r o o f .  The inequality l-dqm(A) s u-dqm(A) is obvious. 

We shall show that l-dm(A) £ l-dqm(A). The inequality'u-dqm(A) S

< u-droEA) can be proved in a similar way.

Let us take any j. > l-dqm(A). Then dp (A) * 0  so that there

existis a number M < 00 such that

n1/p 6n (A) < M

for infinitely many n. From the above inequality we easily

infer that the inequality



(11) — isan < ---- ioa_n-----

109 "Ŝ TRJ p log n - log M

also holds for Infinitely many n (by log we mean log2). Now

let u b  put €„ ■ 6 (A). Then N_ (A) - n. n n tn

Hence and from (11) we get

log Nt (A)

l-dm(A) S 11m inf ----- p --
n «♦ » log —

**n

S lim Inf -=---- ---------- - p.
n -*• —  log n - log M 

P

This ends the proof of the theorem.

Ramark. By virtue of the above theorem, for sets regular with 

respect to the metric dimension the notions of metric and qua si - 

-metric dimension coincide. A good example is an arbitrary com-

pact subset of n-dimensional Euclidean apace with Interior po-

ints. Indeed, it is not diffcult to show that such a set is 

regular with respect to metric dimension.

A. DIMENSION OF CARTESIAN PRODUCTS

Throughout the section X and Y denote arbitrary compact 

metric spaces: X * Y will always be regarded with the usual Eu-

clidean distance. The letters §, r̂, £ will denote sequences 

with elements in spaces X, Y, X * Y respectively.

We shall constantly use the following lemma, easy proof of 

which is omitted.

Lemma 1. Let (an) be a nonincreasing sequence of nonnega-

tive real numbers and let p,q ' be arbitrary positive numbers.



Then 

(i) .

(ii)

(iii)

(iv)

lim sup n1//p a * lim sup na _ , 
n - oo n n - oo [npJ

lim inf n^p a’_ ■ lim inf na
n - oo [np]'

lim sup n1/̂ p+<** a_ ■ lim sup na _ „ , 
n n -* oo [np] [np]n - oo

lim inf n1//*p+q* a_ * lim inf na. __ r , 
n - oo n n - «> [np] [nq] ?

Theorem 3. u-dqm(X * Y) :£ u-dqm(X) + u-dqm(Y).

P r o o f .  Take arbitrary g - (x^ and q « (y^) and ar-

bitrary positive numbers p,q. Now construct- a sequence 6 - 0 0  

so that for every n the set {z,, ..., z ) coincides with*
the set ’ t»<>] [»’]

{<*¿#3̂ -) »1 £ i s [np], 1 5 j s [n*1}).

Then, for every n,

( 1 2 ) ‘ [ » W 5”1’'1’ s “ “ “ [»�>]
As any limit points of the sequence

(max {nA <5»X), nA (ipY)})
Ln J lnyJ

is also a limit point of at least one of the sequences

(nA (£;X)) , (nA ai(»lJY)), 
ln*M lnyJ

by (12) we have

(13) lim sup nA (£»X* Y)
n - co LnFJ ln4J

S max (lim sup nA m <S«’X), lim sup nA (łj;V)} , 
n - on [nFJ n - oo [nq]



By ¿ema l, (13) implies

(14)

<nax {lim »up ri1//p a (gjX) , lim «up n1/̂q A (f̂ jY)) . 
n ■* oo • n - oo

The sequences g , rj being arbitrary« from (14) we get
*

(15) D (Xx Y) S max (D (X) , D (Y)}.p-*q p q

If u-dqm(X) « oo or u-dqm(Y) ■ oo , the theorem is obvious. 

Suppose u-dqm(X) < oo and u-dqm(Y) < oo and take an arbitrary 

r > u-dqm(X) + u-dqm(Y). We can find then positive numbers p and 

q such that p+q ■ r, p > u-dqm(X), q > u-dqm(Y). Now (15) 

implies that Dr (X*Y) - Dp+q(X*Y) - O.

This ends the proof of the theorem.
�

Lemma 3. Let s,t be arbitrary positive integers.

Then

(16) min (¿S (X), 6fc(Y)) S 2«st(X*Y).

P r o o f .  Take an arbitrary _£ and put R - Ast(£»X * Y). 

Suppose that

(17) Ss (X) > 2R

and take an arbitrary a1 c X. By (17) there exists an a, 6 * 
such that a2 i B(a1;2R) (where the symbol B(a;r) denotes a clo-

sed ball of centre a and radius r), so that the balls B(a^;R) 

and Bta^lR) are disjoint. Similarly, if there exist j points 

(j < s) a1, ..., a^ e X such that the balls B(aifR) are mutu-

ally disjoint, by (17) there exists an aj + -| e x such that 

a^+1 ft B(a^;R) for i ■ 1, ..., j. By induction we conclude the 

existence of s points a^, ..., ag « X such that the balls 

B(a ,R) are mutually disjant (i = 1, ..., s). In at least one of 

the sets Bfa^jR) * Y not more than t from the first elements 

of the sequence £ will be contained.

Hence

(18) 6t(Y) s R.



The inequalities (17) and (18) give (16).

This ends the proof of the lemma.

Theorem 4. For any positive Integer m,

u-dqm(Xm) “ m u-dqm(X).

P r o o f .  By Theorem 3, u~dqm(Xn') £ m u-dqm(X). Now, by an 

easy generalization of Lemma 2,

(19) ia(X) S 2m 6 m (Xm).

Let us take an arbitrary p > 0. From (19), for every n

(20) 5 (X) S 2m 6 (Xm).

^ P] CnP]

^y (20) and Lemma 1 (iii) (after obvious generalization) we

get

(21) dp (X) S 2m ^ „ ( X V

If pm > u-dqm(Xm), from (21) we obtain dp (X) » 0  so that p 2

2 u-dqm(X).

This ends the proof of the theorem.

Theorem 5. If X is regular, then

u-dqm(X* V) » dqm(X) + u-dqm(Y).

P r o o f .  By Theorem 3 it suffices to show the Inequality

(22) dqm(X) + u-dqm(Y) S u-dqm(X * Y).

If dqm(X) « 0 or dqm(Y) * 0, (22) is fairly obvious. Suppose 

dqm(X) ? 0 and u-dqm(Y) + 0. Take an arbitrary positive nuihber 

r < dqm(X) + u-dqm(Y). There exist positive numbers p,q such 

that p < dqm(X), q < u-dqm(Y) and p+q - r. By virtue of Lem-

ma 1 (i), there exists an increasing sequence (kn> of positi-

ve integers such that



(23) kn®[k q](Y) ■* 00 as n "* *•

Similarly, by Lamaa l (ii),

<24) lim. inf k^r.p-» (X) - ».
n » oc 1 n J

The equality (24) means that

(25) kn^[k p] "* ® as n - oo*

By teoau 2, for every n

(26) min (n6 <X)# nfi (Y>)
LnFJ Ln^J

* 2n 6[n*Q[nq3( X ‘ Y)*

Prom (23), (25) and (26) we get

kn4 [knPH k nq](X " Y> ■*°0 ** n ~°°'

what implies
*

(27) lim sup n 6 _(X * Y) - «•
n ■» oo [nFJ [nHJ

Now, by lemma i (iii) and (27) we obtain 

S dr(X « Y) » dp+q(X » Y) - oo ,

so that r £ virdqm(X * Y).

This ends the proof of the theorem.

CoroJiary. If X and Y are regular, then X* Y is regular

and

dqm(XxY) » dqm(X) + dqm(Y) .

P r o o f .  The equality will follow at once from Theorem 5 

if we show regularity of X*Y. We shall make use of the proof 

°f Theorem 5. We can replace (23) and (25) by



(28) n 6 (X) ■ - ® as n - »
Lnp J '

and

(29) n fi (Y) - a» as n - » .
In'1]

From (26), (28) and (29) we get

(30) n i .(X * Y) - oo as. n - a».
InpJ ln4J

From (30) we conclude the inequality

(31) dqm(X) ♦ dqm(Y) < l-dqm(X » Y).

But by Theorem 3 we have

(32) u-dqm(X * Y) S dqm(X) + dqm(Y).

From (31) and (32) we deduce the required regularity of X»Y.

This ends the proof of the corollary.

5. SOME COMMENT AND EXAMPLES

The proofs of the facts given in this section will all be , 

omitted. Almost all of them are easy.

There is an interesting relation between Hausdorff dimension 

(see, for example, [l], section 14) and quasi-metric dimension. 

Namely, H-dim(X) £ l-dqm(X), where H-dim denotes Hausdorff di-

mension. This allows us to calculate without difficulty the 

quasi-metric dimension of some interesting sets. For example, the 

Cantor set (which turns out to be regular) has the dimension
3 •

equal to log3 2. Also, if M is the surface in R determined 

by a real function defined on the unit square and satisfying 

there the Lipschitz condition with an arbitrary constant, then 

M is regular and dqn(M) * 2 (cf. [1], section 14).

Any compact subset X of Rm with (strictly) positive m-di- 

mensional Lebesgue measure is regular and dqm(X) « m.

Now we shall point out a class of countable subsets of the 

unit interval with positive dimension. Namely, putting Xp =

* (1/np :-n = 1,2 , __) we get a regular set with the dimension



dq*(Xp) » 1/n+p). If we replace the natural distance on Xp by 

the equivalent distance

g(x,y) - |x3 - y3 I,

the new dimension will be equal to 1/(1+3p), which shows clear-

ly that the dimension is not a topological invariant.

The set (1/2n > n * 1*2, ...) :is of dimension zero (so are 

all finite sets). On the other hand, the Hilbert cube has the 

dimension equal to infinity.

It may be difficult (even in the simplest cases) but quite 

Interesting to find the p-dimensional diameter of a set. For 

example, for the unit interval I, 5^(1) * 1/log4 (for p^roof, 

see [2], section 12.7, problem 6 and [3]).

1
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0 PEWNYM RODZAJU WYMIARU METRYCZNEGO

W pracy bada si« własności pewnego wymiaru, dającego sic stosować do pod-

zbiorów przestrzeni metrycznej, a zbliżonego do wymiaru metrycznego Kołmogoro- 

wa. Dowodzi sit miedzy innymi, ze dim X*Y “ dim X + dim Y dla dowolnych 

przestrzeni metrycznych X i Y. Praca zawiera tez przykłady wymiarów „konkret-

nych przestrzeni.


