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ON SOME EXTREMUM PROBLEM 

IN THE FAMILY OF NON-DECREASING FUNCTIONS

In the paper there have been obtained, on the basis of the 

Ioffe-Tikhomirov extremum principle, an existential theorem and ne-

cessary conditions for the existence of extremum for the follaw-
b

ing optimization problem: minimize the functional J1 $(x(t), t)dt
a

under the conditions

b b 
x(t) - j q(t,T)dji(T), J* du (T) - 1 for i - 1, 2, .... n. 

a a

INTRODUCTION

In the paper there have been obtained an existential theorem

and necessary conditions for the existence of extremum for the
b

following optimization problem*, minimize the functional J1 $(x(t),
i b a

t)dt under the conditions x(t) - J* q(t,T)dp(T), where $ ;
n a

: »  *[a,b] - R, q : [a,b]*[a,b] -» R, p : [a,b] - Rn and

x * [a,b] -» R . Besides, it is assumed that £>(*) is a normed 

and non-decreasing function, whereas x(*) is absolutely con-

tinuous on the interval [a,b].

Necessary conditions for optimality, for the problem under 

consideration, have been proved on the basis of the IoffO-Tik- 

homirov extremum principle.



1. FORMULATION OF THE EXTREMUM PROBLEM.

AN EXISTENTIAL THEOREM

Let c»nd q(t,T) be functions defined on Rn * » and

R * R, respectively, with values in R.

'Assume that

1° q(«,T) is an absolutely continuous function for every T, 

2° qfc(•, •) is continuous with respect to the group of va-

riables,

3° $(•,•) and $x (*,*) are continuous functions with res-

pect to the group of variables.

Consider the following

Problem i. Determine the minimal value o{ the functional

b

(1) I(x> * J $x(t),t)dt,

a

under the conditions

t

(2) x(t) = J q(t,T)dp(T)t
a

b
(3) J  dp(T) = 1 ,  i * 1, ..., n, 

a

(4) p(-) e u,

where U is a set of non-decreasing vector functions defined on 

the interval [a, b], with values in R n . In other words,-

V(p(*)e U) and V(te [a,b]), p(t) * (p1 (t),... ,pn (t)) « R n ,

and ¿ri*), for i = 1, 2 , . n, are non-decreasing functions.

To b- jin with, let us notice that, under assumption 1°, x(*) 

is an absolutely continuous vector function, that is, for each

1 = t, 2, • n, Xj.i*) is absolutely continuous. Indeed, it



follows from assumption 1° that, for any T e [a,b],

Cq(t,T) - q(a,T) + J q{.(t,T)dt.

a

Consequently,

b b t 

x(t) - J  q (t , T ) dp (T ) = J  (q(a,T) + J  q{. (t ,T) dt) dp (T) • 

a a a

b b t

- J  q (a,T)dp(T) + J* ( J* qj. (t,T)dt)dp(T) -

a a a

t b t

q£ (t,<r)dp(T) )dt « x(a) + J  x(t)dt, 

a a a

which means the absolute continuity of the function x(*). 

Let

f bU, s- | p( *) e u j J  dp£ (T) - 1, i - 1 , 2, . nj.

a

f k UA p(.)«o I J* dPi (f) = 1, 1 = 1, 2, ..., n, p (a) * A

where A e R  is a fixed point, and let x(«) be a function 

corresponding to p{>) through relation (2).

Of course
\

inf I(x) = inf I(x). 
p e U ,  p 6 Uft

It is not hard to notice that UA is a set of commonly bounded 

functions with commonly bounded variation, where by the fu” 1. vr.- 

riation of the function p(«) we mean

\



From the second theorem of Helly (cf. [3], VI, § 6) results

the following

Lem» l.l. is a compact set in the topology of point-

wise convergence.

Let W^CCa^b]) stand for a space of vector functions abso-

lutely continuous on the interval [a,bj, with norm

b

II x I - I x(a) | + J  |x(t) Idt. 

a

Consider an operation L i UA —  defined as follows

b

(5) (Lp)(t) j  * J  q(t,T)dp(T) - x(t).

a

r jti0»
Let us take any sequence •( u } of elements of the set U. ,

L k=1 A
pointwise convergent to a function p belonging to UA . t

From the first theorem of Helly (cf. [3], VI, § 6 ) it

follows that, for each te[a*b], the sequences of functions

ij q<t,T)dpk<r)J and | £  q^(t,T)dpk (T)| converge to the

b b 
functions J* q(t,T)dp(T) and J1 q'(t,T)dp(T), respectively.

a ' a

Hence, in particular for t = a and any C >0, there exists 

some k̂  e N such that, for each k > k^, the inequality

b b 

|J q(a,i-)dpk (T) - J  q (a, T) dp (T) | < E 

a a

takes place. 1

Let

<?k(t) := J  qj. (t,T)dpk (T) - J  q{.(t,r)dp(T) . 

a a

Fr s * ; t he above it follows that the sequence



{<PjcC*>}jj®„i is pointwise convergent to zero in Rn. Thereby, the

sequence is pointwise convergent to zero.

By making use of assumption 2° and the fact that pk <») and 

p(*) are non-decreasing functions, it is not difficult to show
v \ too '

that the sequence of function^ { ( • )  I __̂ is a sequence of com-

monly bounded functions. Consequently, in virtue of the Lebesaue 

theorem, for each E > O, there exists some k2 c N such thcit, 

for each k > k^, we have

b

| J at | < c.
a

In view of the above, for each £ > 0 , there exists some k .
V ^

0 * max|(k1,kj), such that, for each k > kQ , the inequality

0 < I (Lpk) - (Lp) I - II xk - x H » '

I b ‘ b- I J  q<a,T)dpk(T) - J  q(a, T) dp(T)
a

b b b
J j J  q^(t,T)dpk (*r) - J  q[{t,'T)dpCT) | dt < 2£

a a

takes place. Hence, and from the arbitrariness of £ , results 
the following

Lemma 1.2. L is a continuous operation in the topology of 

P°intwise convergence.

Let

■ b '
Ws «{x(.)e Ŵ tCa.b]) x(t) - J  q(t,T)dp(T) , p(*)e UA|.
i a

, »

Since L is a continuous operation, whereas the set is

Compact in the topology of pointwise convergence, .therefore



as the continuous image of the compact set, is a compact set in 

the topology of the space W^([a,b]).

Lemm* 1.3. I(*) is a functional differentiable at an arbitr-

ary point xQ and, for each x s

b

Ix(xQ)x - J ($x (xQ (t) ,t), x(t))dt. 

a

The proof of the above lemma runs identically as that of lemma 

7.2 (cf. [1], § 7).
It follows from Lemma 1.3 that !(•) is a continuous func-

tional on the space w!^([a,b]).
Under the assumptions made about the functions $ and q as 

well as in virtue of Lemmas l.l-l.3 and the Weierstrass theorem, 

the following one is trues

Theorem 1.1. Problem 1 possesses a solution (x#(*), p*(*)) 

where x*(-) is an absolutely continuous function defined by

formula (2), and p*(*) « U.

2. THE INTEGRAL NECESSARY CONDITION

Let X: = W^ 1([a,b]), Y: - w'^ ([a,b]), while

b

(6) fo (x,p): = j* $(x(t),t)dt,

a

b

11, F(x,p): * x(t) -  ̂ q(t,T)dp(T),

a

b

(8) hi(x,p): = j d^Czr) - 1, i = 1, 2 , ..., n

a

and (•; e U where U is, as before, a set of non-decreasing

vector functions.



As is well known (cf. [2], § 0.1) X and Y are Banach 

spaces and, besides,

F : X * U -  Y,

h i X * U - Rh,

where h - (h1, h2, ..., hn).

Note that, for each fixed p (•) e U and any x e X, we have

F(x + x,p) - F(x,p) * x.

Hence It appears that x - F(x,p) is a regular mapping of class 

C1. Since U is a convex set, and the Stjelties integral - a 

linear transformation, therefore F is a convex operator with 

respect to p. The functional doe3 not depend expli-

citly on p, so the convexity condition with respect to p is 

satisfied also for the functional fQ . Making use of lemma 1.3, 

we infer that the mapping x - fQ (x,p) is of class C 1 at any 

fixed point x a X.

The operator F, the functional f^ and the vector function 

h satisfy the assumptions of the Ioffe-Tikhomlrov extremum prin-
ciple (cf. [2 ], I, § 1.1).

With the notations introduced above, the Lagrange function 

for Problem l takes the form:

(9) X  (x,p,XQ,X1,y*) = *0 f0 <x,p) + Uj.h) + (y*,F(x,p)>, 

where e R, ^  6 Rn and Xt « u], X2,..., x"), while y*eY*.

Theorem 2.1. (The integral extremum principle). If assump-

tions 1°-3° are satisfied and the pair (x#( •),p*( •)) is a so-

lution to Problem 1, then there exist: an absolutely continuous 

function 12 (•) and constants 0 $ XQ e n, s Rn and X2 s R° 
not vanishing simultaneously and such that

(i) =» XQ4x (x*(t) ,t) for t 6 [a,b] a.e., y(b) - O

b b

(11) J (X1 * J ̂(t)q{.(t,T)dt - X2q(a,T) ,d[p(T) - p*(T)J ) > 0  

a a

for each p (•) e U.



P r o o f .  Let (x*( •) ,p*( •)) be a solution to Probiam 1. By 

the Ioffe-Tikhomirov extremum principle, there exist multipliers

0 < 6 R, a,.j € Rn and y # 6 Y* not vanishing simultaneously,

such that

(10) J5x (x*,p#,X0 , X, ,y#) - 0

and

I '
(11) «£(x*,p*, \ ■ min JG(x*,p, \. , X. ,■/).

° 1 ¡il'UU o 1

Since Y * W^fCa.b]), therefore

b ■

(12) (y#,F(x,p)) - (Xj,x(a) - J  q(a,T)dp(T)) +
a

b b 

+ J  (ty(t),i(t) “ J  q(t,T)dp(T))dt, 

a a

where e Rn, and ^t*) ® L® ([a,b]).

Let us write down explicitly the Lagrange function (9) for 

Problem j- at the point (x*( •) ,p#( •)). Taking (6 ), (8) and (12)
into consideration, we have

b

(13) ¿(x*,p*, XQ , a.1fy*) = \Q J  $(x*(t),t)dt +

a

n b b b

+ L  + J ( ̂  (t) ,x*(t) - J  q{.(t,T)dp#(T))dt +
i=1 a a a

• b

- (X2 -x*(a) - J  q (a,T)dp*(T)) .
a

. i*; r;me the differential of the function JC (•) at the point 

’ ,p*(*)). Let x be any element of X. In view of assump-

ion 3°, we have



b

+

a

£(x* ♦ x,p*, XQ r X1,/) - J!(x*, p*, \o , X1 ,y#) <» 

b

“ J  (®(x*(t) + x(t),t) - $(x*(t),t))dt + 

a

b

J  (12 <t) ,x(t) )dt + (X2 ,x(a)) � *Q J  ($x<x*(t) ,t) ,x(t) )dt +

+ *o J + 6(t)x(t),t) - $x (x*(t),t),x(t))dt +
a

b

+ 

a

J  (tj(t) ,x(t))dt + (*2,x(a)),

where 0 < 6(t) < 1 for t e [a,b]. 

It is easy to demonstrate that

J  <4x (x*(t) + ®(t)x(t),t) - $x <x*(t) ,t) ,x(t) )dt -

- 0(1 xl).

Prom this and from the definition of the differential it follows 

that, for any x e X,

<14> , <£x (x*,p*, XQ , X, ,y*)x *=

b • b

* Xo J <$x <x*(t),t),x(t))dt + J (12<t) ,x(t))dt + U 2 ,Jc<a)).
a a

Integrating by parts the first addend of this last equality, we 

get

b

<15) XQ J ($x (x*(t),t)x(t))dt *



U

i \ Q J* $x (x*(T) ,T)dr,x(t) )
a

b t

t“b
+

t=a

- j  (X0 J $x(x*(T) ,T)dT,*(t))dt
a a

= U Q J $X(X*(T) ,T)dT,x(b)) - 

a

b t V

- f U Q J  $x (x*(T),TidT,i(t))dt. 
a a

Since equality (14) holds for any x 6 X, therefore it holds« 

in particular, for those x for which x(a) ■ 0 . Yet then equa-

lity (10), after taking account^of (14), (15) and x(a) ■ 0,

will take the form '

b

(16) (XQ J $x (x*(T) ,T)dT,x(b)) +

a

- J do J  ix(x#(T) ,'T)dT,3l(t))dt +
a a

b+ J* (rj (t) ,x(t) )dt *= 0 .

Since x(*) e W*?..([a,b]) and x(a) = 0, therefore x(t)
t
j *(t)dt. From this and from (16) we obtain that
a

CŁ0 f $x (x*(T),T)dT, J  x(t)dt)



b t

" 5 {Xo 5 #x U*<t),T)dr,ft<t))dt +
a a

b

♦ J  (i£ (t),x(t) )dt » O

a

and, next,

b b ' /

J (J W x#(*>'T>dT'*(t>)dt +
a a

b t

- J (J *0#x <x«(T) ,T)dT,*(t))dt +
a a

b

+ J  <i&(t) ,*(t))dt - O.

4

In virtue of the additivity of the integral, we finally get the 

equality

b b

*17) j* ( J  *o0 x <x# (T) ,T)dT + ij(t) ,*(t) )dt = O

a t

for any *{•) e W^([a,b]), x(a) = O and i|(.)e lJ, ([a,b]). 

b
The function J* XJ> (x*(T) ,T) dT + (t) is an element of the t w

space (£a,b]), whereas x ( * ) e  L^([a,b]).

Prom this and from (17) we deduce that

b

<18) J * b # x <x#lV  .*><»*♦ ^ (t) = 0 for t e [ a , b ]  a.e. 
t

°r, in the equivalent form,

(19) « ^Q$ x (x*(t) ,t) for t e  Ca,b] a.e., tj (b) = 0 .



From (18) it also follows that rj(>) is an absolutely continuous

function.

Let us now make some analysis of condition (11). Making use 

of (13) and disregarding the addends Independent of p on the 

left- and right-hand sides of equality (11), we obtain the re-

lation i

From the above and the assumption about the function q ( • , •)

follows that

b b b

a a a

b

b

b b

a a

b

a

for any p(*) e U. Hence, by changing the order of integration,

we get

b

J ( X,,d[ji(T) - ¿i#m] ) +



b b
- J  (J 1£(t)q|.(t,T)dt,d[ji{T) - p*(T)]) +

* a a

b

- J  (&2q(a,T) ,d [p(T) - p #(Z)] ) > 0 . 
a

By the additivity of the integral, we obtain at last that

b b <

(20) J  (X, - J  1j(t)q̂ (t,T)dt - *2q(a,T) ,d[p(T) - p#(T)] ) >0 '
a a

for any pi*)« U, which ends the proof of the theorem.

Renark. If, in addition, It is known that q(a,») = 0, then 

the Lagrange function (13) takes the form

J!(x*,p*, \Q , X1 ,y*) =* 

b n b

• J $(x*(t),t)dt + J] X*( f dp*(T) - 1) +

a 1*1 a

b b

+ 

a

J  <1J<t),x*(t) - J  q^(t,T)dp*(T) )dt

and, in virtue of the extremum principle, we find that the mul-

tipliers *.0,\|,^(«) do not vanish simultaneously.

In the sequel, by g(*) we shall mean a function of the form

(21) g(T) = x1 - J  n (t)q^(t,T)dt - X2q(a,<r)

**e shall write inequality (20) shortly in the form
b

<22) V  (j»( *) « U), /  (g(T) ,d[p(T) -p*(T)]) > o.



2. THE LOCAL NECESSARY CONDITION

In conformity with the conditions of the problem, the func-

tion pi[a,b]»Rn , and gj[a,b]-*Rn . Let |i < • ) ■ (p^ ( • ) » ...» 

•p (•))* and g(-) ■ (g^*)* ...» 9n (*))- It is not difficult to 

check that from (22) follows the veracity of the inequality

b

(23) J* g1 (T)dQi1 (T) - pJ(T)] > 0

a

for any non-decreasing function an<* i " 1# 2, n.

Moreover, note that g(*) given by formula 121) is a continuous 

vector function.

Let

m . t » min g. (T),
1 . Te[a,b] 1

whereas

i
Zm I = { T s [a,b] I g£(*r) * mA) for i - 1, 2, ..., n.

i »

We shall show that"

b ' !

(24) J  gi(T)dp£(T) * * O for i - 1, 2, n. 

a

It is known that «

b b

J  g^TJdp^iT) > in. J  dp*(T)*» mA for 1 » 1, 2, n.

a a

Since inequality (23) isi true for any non-decreasing function, 

therefore it also Holds for a function “ const. From this

and from the above



“ i  < J 9 i ( T ) d ^ ( Z )  < J g ^ T i d p ^ T )  * 0

Suppose that in. < O. Let T i 2
e i o m m(Zm / 0 ), and let 

i

^(r)

0 for T e [ a, T* ] ,

2 for % e (t*,b] .

For the function < *)# in virtue of (23), we obtain

b b 

mi < j* gi^)dHi<T> < J (Tidbit) » gi«7̂ * 2 = 2n'i

for i » 1, 2 , ..., n. Yet, the inequality obtained, < 2m^ ,

is false for < 0 and concludes the proof of equality (24).

The set Z is closed, therefore 
rai

G.t » (a,b) \ Z 
i nij

is an open linear set for i = 1, 2, ..., n. Hence

Gi - U (aj, Qk ) ,
1 k=1

Jc k
where (a ,̂ fl̂ ) for k * 1, 2, ... are disjoint open subinter-

1/
vals. We shall show that, on each interval (a ,̂ Bi), k = 1,

2, ... the function u*(*), i = 1, 2, ..., n, is constant. Sup-
1 k k 

pose that there exists an interval (a^0 , such that



And consequently, there exists a closed interval C c^,d^] C
Jc k -

<atO, B^°) such that

I*? <°±) < Fl<di‘

and min
T6 [C

n ■ t,, whare C. > 0  for i m 1, 2, •»•, n.

i-dii

Then

ci dl

0 - [ gj,(T)dpJ(T) - J gi<T)dji* {%) + J a1 (T)dpJ(T) +

a a ci

b

+ f g . ( * ) d u * ( T )  > min ?<(*) [n'UL) " P?<c.)] - 
<j T«[ci,d1j 1 ;*

- Ei [pJ(di) - pJ(Cl>] > o,

which gives a contradiction. So, is constant on each in-

terval (u ,̂ fik) for k = 1, 2 , ... and i “ 1, 2, ..., n.

The non-decreasing function p*(') possesses an at most conn- 

table number of pbints of discontinuity. Since p*(*) 1b a con-

stant function on (cu , B*> for k = 1, 2 , ... therefore its 

; poin-s c ' discontinuity are those belonging to the set Zffl̂

i - 1, 2, ..., n. It is not hard to check, either, that in

th*i case where a 4 Z or b fi Zm , P?(a) 55 H n  or'
n!i l T -* a + 0 1

act.-velv, u* (b) *» lim pi {%) for i «* 1, 2, ..., n.
1 T - b - 0  1

Index’d, suppose t;hat a 4 and let

p*(a) < . lim p*(T).
1 T -» a+0

' a) > 0 and 

b

i g.. (I)dp* (T) > g, (a) [ lim p*(T> -p*(a)] > 0 , 
J ‘ r i  1 t  -* a+0 1

f 24) .



We have thu8 proved the following

Theorem 3.1. (The local necessary condition). If assumptions, 

1°-3° are satisfied, and

4° the function g(*) - (g1 (•) ,g2 (*) » •••» 9n (’))* defined by 

formula (21), satisfies condition (22),

5° the function pi*) * (p1 (•) ,p2 (* * * sati"

sfies conditions (3) and (4),

6° the pair (x#(*), p #(*)), where x#(*) ■ (x*(•),x2(•), ..., 

**(•>),

p#(*) ■ (p*(*), pjjM, 

is a solution of Problem l, then, for each i ■ 1, 2, ..., n 

b

1) f  g4 (T)du*(T) « 0 - min g.CO, 
i 1 ^  T « [  a,b] 1

2) p*(‘) is a function constant on each interval on which 

9,(0 has a constant sign,
#

3) points of discontinuity of the function p^(*) belong to 

the set

2 » { ze [ a,b] I g1 (T) * O) . 
i

If a 4 Z or b 4 Z , then u*(a> * lim u? (t) or, respec- 
rnl m i 1 *r - a+O

tively, p*(b) - lim p*(T).
1 T - b - 0 1

Example. Determine the minimal value of the functional

2

I (x) * J  tx (t) dt,

O

Ur>der the conditions

2

x(t) = J  t2 (T2 - T) dp(T) ,
O



J dp(T) - 1,
0

where p(*) is a non-decreasing function on the interval [0 , 2]. 
Let (x*(*), p*(*)) be a solution to the problem.

Since $(x,t) - tx and q(t,T) =■= t2 (T2 - T) , therefore

$ <x*t) = t, q!(t,T) * 2t(T2 -T), q(0,T) = 0. Hence (t) -
X ' 2 

= Xo (t2 - 4)/2 and g (T) * X, + 4 ^ ( T  - T) . Note that \Q + 0,

for in the contrary case, n(») ■ 0 and 0 = min o(%)
T *  [0 ,2 ]

= min ( A.) = X,, which contradicts the extremum prin-
z e [0 ,2]

ciple.
Hence \ > 0. The function g(*) attains its minimum for T »

o
= 0.5. In view of the above, p*(*) is constant on the inter-* 

vals (0, 0.5) and (0.5, 2). Consequently,

a for T e [o, 0.5],

1 + a . for T « (0.5, 2], 

where a is an arbitrary real number. Then

and

2

x*(t) = J  t2 (T2 - T)dp*(T) * t2(i - • 1 » -t2/4

rnln = I(x#) “ J t(-t2/4)dt = -1 .

So, the extremal function for this problem is each piecewise 

constant function p(*) possessing exactly one jump of value 1

for T = 0.5.
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Wyższa Szkoła Inżynieryjna 
Radom

Harlan Kośka

0 PEWNYM ¡JADANIU EKSTREMALNYM W RODZINIE FUNKCJI NIEMAŁEJ^CYCH

W pracy uzyskane zostało twierdzenie egzystencjalne oraz warunki konie-

czne istnienia ekstremum dla następującego zadania optymalizacyjnego; zmini-

b b 
®alizować funkcjonał J* $(x( O, t)dt, przy warunkach x(t) « f q (t, T)dfi(T),

r . u ‘ 8
I dji.Cr)“ 1 dla i“ 1, 2.... n. Zakłada się, że }j (») jest funkcja nie-
a

■»alejaca, natomiast x(*)jest funkcja absolutnie ciagłg na przedziale La, bj.

Warunki konieczne optymalnoici uzyskane zostały na podstawie zasady eks-

tremum Joffego-Tichomirowa.


