ACTA UNIVERSITATIS LODZIENSIS FOLIA BIOCHIMICA ET BIOPHYSICA 5, 1986

J. Szurkewski, S. Hotchandani, R. M. Leblanc D. Freckowiak

EXCITATION ENERGY TRANSFER BETWEEN CHLOROPHYLL A AND CHLOROPHYLL B OBTAINED FROM FLUORESCENCE MEASURMENTS

In this study, the fluorescence lifetime of chlorophyll a, chlorophyll b and their mixtures, and the possibility of migration of energy absorbed by chlorophyll a to chlorophyll b was examined.

With an aim to evaluate the yield of excitation energy transfer between ordered chlorophyll a and chlorophyll b molecules the fluid oriented medium-nematic liquid crystal (LC) mixture MBBA (p-methoxybenzylidene p-butylaniline) and EBBA (p-ethoxybenzylidene p-butylaniline) is used. LC is oriented by deposition of thin layer of sample between stretched polyvinyl elcohol films [1] or between silicon oxide orienting layers; pigment molecules are oriented similarly by strong interaction with LC molecules [2]. Chlorophylls in LC are monomeric except the highest concentration used (10⁻² M/1).

The results of photoscoustic spectra suggest the excitation energy transfer from chl a to chl b in investigated eystem [3]. In order to check this unexpected result the mean lifetimes of chl a, chl b and their mixture were measured. Lifetimes were measured for chl a and chl b solutions and for their mixture in the same solvent. Table 1 gathers the results of lifetimes measurements for chl a chl b and their mixture in the same LC. Every one results from Tab. 1 is obtained by everaging of three or four independent measurements. As can be seen from

[103]

104 J. Szurkowski, S. Hotchandani, R. M. Leblanc, D. Frackowiak

Table 1

Fluorescence lifetime of chl s, chl b and chl s + chl b mixture in MBEA + EBBA ($C_a = 1.7 \cdot 10^{-2}$ M/l, $C_b = 3.6 \cdot 10^{-5}$ M/l)

Czas życia fluorescencji chl a, chl b i mieszeniny chl a + chl b w MBBA + EBBA ($C_a = 1,7 \cdot 10^{-2}$ mole/l, $C_b = 3,6 \cdot 10^{-3}$ mole/l)

	Warelongth				
Sample	of excitation [nm]	of fluorescence [nm]	Lifetime [nm]		
Chl a	405	> 620	5.56-0.03		
In companded to	405	> 695	5.53-0.02		
4	436	> 620	5.59-0.02		
A STATE AND A STATE	466	> 620	5.35-0.02		
	491	> 620	5.17-0.02		
Chl b	405	> 620	8.61-0.03		
elle all'a de la militar de	405	> 695	8.91-0.03		
	436	> 620	8.81-0.03		
	466	> 620	8.75-0.03		
	491	> 620	8.46-0.03		
Chla + chlb	405	> 620	7.82\$0.03		
in any second	405	> 695	8.01-0.02		
	436	> 620	7.99±0.03		
interest and some	436	> 695	8.13-0.02		
	466	> 620	7.65-0.03		
	466	> 695	7.72-0.02		
read behave	491	> 620	7.49 0.05		
	491	> 695	7.70-0.04		

Tab. 1 for chl a + chl b mixture is much closer to that of chl b alone, then for the chl a solution in LC, even at higher chl a then chl b concentration. Measurement were done using two regions of fluorescence spectra:

1) using filter transmitting wavelenghts $\lambda > 620$ nm e.g. including whole chl a and chl b emission bands;

Excitation energy transfer between chlorophylls a and b

2) trough the filter transmitting λ) 695 nm which give nore chl a, then chl b fluorescence.

Comparing all results gathered in Tab. 1 one has to conclude, that because of strong overlapping of emission spactra of chl a chl b and their accrecates it is not possible to measure the belonging to every one of the pignents located in pigment mixture. The result of I for pigment mixture can be related with two effects:

1) the independent excitation of every one pigment followed by the overlapping of their emissions characterized by different T; All a life bon of the bis even apart that Langton bon A . A second

2) the change in the fractions of emitting pigments by the excitation energy transfer.

First effect is trivial. To check if second effect pays important role in our system we analysed first lifetimes of pigment mixture using Pearlstein, Tumerman and Sordrin formula [4]

$$\tan \delta = \frac{(1 + \tan^2 \delta_2) f_1 \Phi_1 \tan \delta_1 + (1 + \tan^2 \delta_1) f_2 \Phi_2 \tan \delta_2}{(1 + \tan^2 \delta_2) f_1 \Phi_1 + (1 + \tan^2 \delta_1) f_2 \Phi_2}$$
(1)

where: 8 - observed phase shift for pigment mixture:

 δ_1 , δ_2 - phase shifts for the pigments in separated 580ples:

int baradian are dathered in

those he as the or d In-

aults are shown in Tob. 2.

f1, f2 - fractions of light absorbed by chl e and chl b respectively;

beit gend wilden (in da

 Φ_1 , Φ_2 - the yields of fluorescence of chl a and chl b

$tan \delta = \omega \tau; \quad \omega = 7.36 \cdot 10^7 s^{-1}$

w is 21/v frequency of light modulation used in phase fluorometer. It was found that & obtained from experiment is different free these calculated from formula (1). For example at λ_{exc} = * 491 of Sr dcal = -0.41; whereas the experimental value is 13 to as

ten δ_{exp} = -0.56 blocy out materent laster ing na-basenietestena d 10s er

It is an evidence that in our sample the emission is . at loast partiably excited by ET.

In purpose to calculate the yield and the lirection of exci-

106 J. Szurkowski, S. Hotchandani, R. M. Leblanc, D. Frackowiak

tation energy transfer between investigated pigments the formula proposed by K n o x [4] is used:

$$\delta_{f_1,f_2} = \arctan\left[\frac{(f_2 + \frac{A_1}{A_2}f_1)\omega}{K + f_2K_1 + \frac{A_1}{A_2}f_1K_2}\right]$$
 (2)

- arc
$$\tan\left(\frac{\omega}{K_2}\right)$$
 - arc $\tan\left(\frac{\omega}{K_1 + K}\right)$

where: A_1, A_2 are natural radiative rate of chl b and chl a (A_1) = $\frac{1}{\tau_{01}}; A_2 = \frac{1}{\tau_{02}};$

K₁, K₂ = total decay constants for uncoupled systems; F = rate excitation energy transfer. It is supposed in calculation that energy is transfered from chl b to chl a;

 $\delta f_1, f_2$ - phase shift predicted when absorbed fraction are f_1 and f_2 .

Data used is f₁, f₂ calculation for two wavelengths of excitating ligth are gathered in Tab. 2.

A₁ and A₂ are obtained from red absorption bands of chl b and chl a respectively using formula:

$$A = \frac{1}{\tau_0} = 3.10^{-9} \, \tilde{v}^2 \, \Delta \tilde{v} \, E_{max}$$

where: V - position of band maximum in cm 1:

 $\Delta \tilde{v}$ - half band width (in cm⁻¹);

 E_{max} - excitation at maximum of absorption M⁻¹cm⁻¹.

 $K_1 = \frac{1}{\tau chl b}$ and $K_2 = \frac{1}{\tau chl a}$ are obtained from measured lifetimes of separated pigments, f_1 , f_2 and ω are defined as in formula (1).

Data used in calculations and results are gathered in Tab. 2. It was found that in all cases $K_{chl} = -chl = -rate of ET$ from chl b to chl a is negative. It means that rate of ET from chl a to chl b predominates in investigated system. Therefore the yield of ET from chl s to chl b is calculated as $\Phi_{chl} = -chl b$ = $-K_{chl} = -chl = -chl b$ to chl b -- chl a -chl = -chl bbetter for not very low every one f_1 and f_2 , therefore such results are shown in Tab. 2.

a a reglar	pad th	1.201	-	it in the
-1 591. 5				Q
				e -chl
	. 26	1 0 0	.12	
	0	•	0	1
				Ф _{ch1}
				0)
	10,	1	04	41
	×		- 20	b+ch1
	0 1	1	~	7
	5		N	Kchl
- Province 18				
	2		8	N O
	1 22		26	tan f ₂ f
	-0.5513		-0.5630	44
4 7	a design of the second	and the second design of the s		-
	8.46	6.9	5.35	28
-	1 0			
	0.71	0.0	0.57	
	10,	10,	107	
the Samuel -	× ×	×	×	1
	M 60		~	
	19		18.7	
Theorem C.		-		
	10,	10,	107	-
	XX	x	×	A H
	2.83	5.4	2.78	01250
			man site and	S 40 98
	chl a (2) chl b (1)	(E) q	(2)	Pigment
			10) e1	6
	ch1 ch1	chi	Ch1	2
-				51
-			Sec. 2	Wavelength of excita- tion (nm)
	16		466	PO DE
			्व	2 4 8 8
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			NO

Excitation energy transfer between chlorophylls a and b

109

All used excitation wavelengths are located in a region of chlorophylls Soret bands. The difference $\Phi_{chl} = -chl b$ obtained for various λ_{exc} are related with different fractions of monomers and aggregates of pigment absorbing at various excitations.

One can conclude, that similarly as from PAS results, analysis of lifetimes of fluorescance of pigment mixture suggests some way of migration of energy observed by chl a molecules to chl b. The lifetime of aggregate has to be longer than that of chl a, closer to τ of chl b.

The thermal deactivation of excitation energy in aggregate has to be higher than that of chl s.

In fluorescence spectrum of pigment mixture additional maximum located at 695 nm was found Fig. 1. This maximum is not occuring in spectra of separate pigments, therefore it is probably connected with mixed aggregates of both and LC molecules.

Acknowledgement

We would like to acknowledge the financial support from The Natural Sciences and Engineering Research Council of Canada and Polish Academy of Sciences (grant MR. II.7.I.i.). We would also like to thank dr H. Manikowski for helping us with lifetime measurements. One of us (D.F.) wish to thank the Université du Québec à Trois Rivièrés for visiting professorship in the Centre de Recherche an Photobiophysique.

CRAMER'S AND AN AN ANTIMATING AND REFERENCES

[1] Koyawa H., Yamazaki Y., Matsuura N., Mada H., Kolayashi S., Mol. Cryst. Liq. Cryst. 72, 127 (1981).

[2] Freckowiek D., Beuman D., Stillman M. J., Biochim. Biophys. Acta 681, 274 (1982).
[3] Freckowiek D., Hotchendeni S., Le-

J. Szurkowski, S. Hotchandani, R. M. Leblanc, D. Frackowiak 110

blanc R. M., Szurkowski J., Photoacoustic spectra of chlorophyll a and chlorophyll b in nematic liquid crystal (to be published).

[4] K n o x R. S., Excitation energy transfer and migration; theoretical considerations in Bioenergetics of Photosynthesis, New York (1975).

> Institute of Physics Poznan Technical University Centre de Recherche en Photobiophysique Université du Québec à Trois Riviérés Québec, Canada sichte and under medical ad out and

> > A 151

16

res of a state of the Langer State are serviced as between J. Szurkowski, S. Hotchandani, R. M. Leblanc D. Freckowiek

> PRZEKAZYWANIE ENERGII POBUDZENIA POMIĘDZY CHLOROFILEM A I CHLOROFILEM B W ŚWIETLE POMIARÓW FLUORESCENCJI

Badania czasu życia fluorescencji chlorofilu a i chlorofilu b oraz mieszanin chlorofili sugeruję możliwość migracji ener-gii absorbowanej przez chlorofil a do chlorofilu b.