ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 1, 1984

Krystyna Zyskowska

ON GENERAL ESTIMATIONS OF COEFFICIENTS OF BOUNDED SYMMETRIC UNIVALENT FUNCTIONS

Let $S_{p}(M)$, M > 1, be the class of functions

$$f(z) = z + \sum_{n=2}^{\infty} A_{nF} z$$

holomorphic, univalent and bounded by a constant M in the unit disc E. If K is an odd positive integer, wherses N-even, and λ , μ are real numbers such that $\lambda \ge 0$ and $\mu > 0$, then there exists a constant $M_0, M_0 > 1$, such that, for all $M > M_0$ in the class $S_R(M)$, the inequality

$$A_{KF} + A_{NF} \leq P_{K,M} + P_{N,M}$$

takes place, where

$$w = P_M(z) = z + \sum_{n=2}^{\infty} P_{n,M} z^n, z \in E,$$

is a Pick function given by the equation

$$\frac{w}{\left(1-\frac{w}{M}\right)^2} = \frac{z}{\left(1-z\right)^2}, \quad z \in E.$$

1. INTRODUCTION

Let S be the class of functions

$$F(z) = z + \sum_{n=2}^{\infty} A_{nF} z^n$$

holomorphic and univalent in the disc $E = \{z : |z| < 1\}$, and S(M), M > 1, the subclass of the above class, consisting of functions bounded by M, that is, of those which satisfy the condition

$$F(z) | \leq M, z \in E.$$

Charzyński and Tammi set the following hypothesis for the classes S(M): for every $N = 2,3,4,\ldots$, there exists a constant $M_N > 1$ such that, for all $M < M_N$ and every function Fe $\in S(M)$, the sharp estimation

$$|A_{\rm NF}| \leq P_{\rm N,M}^{(\rm N-1)}$$

takes place, where

$$P_{N,M}^{(N-1)} = \frac{2}{N-1} (1 - \frac{1}{M^{N-1}})$$

is the N-th coefficient of Taylor expansion (1) of the Pick function $w = P_M^{(N-1)}(z)$ (symmetric, of order N-1) given by the equation

$$\frac{w}{\left[1 - \left(\frac{w}{M}\right)^{N-1}\right]\frac{2}{N-1}} = \frac{z}{\left[1 - z^{N-1}\right]\frac{2}{N-1}}, z \in E$$

and satisfying the condition $P_M^{(N-1)}(0) = 0$.

This hypothesis was positively determined by Siewierski ([13], [14], [15]) and, in some other way, by Schiffer and Tammi [12].

Jakubowski raised for the classes S(M), a hypothesis antipo-

198

(1)

dal to the above-mentioned one: for every even $N = 2, 4, 6, \ldots$, there exists a constant $M_N > 1$ such that, for all $M > M_N$ and every function $F \in S(M)$, the sharp estimation

$$|A_{NF}| \leq P_{N,M}$$

takes place, where

(2)

$$= N + \sum_{m=2}^{N} \left[(-1)^{m+1} \frac{2^{m}}{M^{m-1}} \cdot \frac{1 \cdot 3 \cdot \ldots \cdot (2m-1)}{(m+1)!} \sum_{\substack{(s_{1}, \ldots, s_{m}) \\ s_{1} + \ldots + s_{m} = N \\ 1 \leq s_{j} \leq N, j = 1, \ldots, m} s_{1} s_{2} \cdots s_{m} \right]$$

(cf. [4]) is the N-th coefficient of Taylor expansion (1) of the Pick function $w = P_M(z)$ (symmetric, of order 1) given by the equation

(3)
$$\frac{w}{(1-\frac{w}{M})^2} = \frac{z}{(1-z)^2}, z \in E,$$

and satisfying the condition $P_M(0) = 0$.

The premises for raising this hypothesis were the estimations in the classes S(M), known earlier ([7], [10]):

$$|A_{2F}| \leq P_{2,M}$$
 if $M > 1$,
 $|A_{4F}| \leq P_{4,M}$ if $M > 700$,

on whose grounds, as can be seen, one may adopt, for instance, $M_2 = 1$ and $M_4 = 700$.

However, for any even N. the hypothesis has not been determined till now.

Note that, for any odd N, the above hypothesis is not valid since, as early as N = 3, in the class S(M) the sharp estimation

(4) $|A_{3F}| \leq 1 + 2\lambda^2 - 4\lambda M^{-1} + M^{-2}$ for $e \leq M < +\infty$

holds, where λ is the greater root of equation $\lambda \log \lambda = -M^{-1}$; the third coefficient of the Pick function $w = P_M(z)$ is, as can easily be verified, less than the right-hand side of (4). Denote by S_R and $S_R(M)$, M > 1, the subclasses of, respec-

tively, S and S(M) of functions with real coefficients.

Jakubowski raised for the classes $S_R(M)$ a hypothesis analogous to the previous one: for every even $N = 2,4,6, \ldots$, there exists a constant $M_N > 1$ such that, for all $M > M_N$ and every function' $F \in S_R(M)$, the sharp estimation

takes place, where $P_{N,M}$ is, as previously, the N-th coefficient of Taylor expansion (1) of the Pick function, $w = P_M(z)$ given by equation (3) and satisfying the condition $P_M(O) = O$.

An additional premise for the supposition and possibilities of a positive solution to the problem was the following result of Dieudonné ([1]): for every function $F \in S_p$,

(6)
$$A_{nF} \leq P_{n,\infty}, n = 2,3,4, \dots$$

where $P_{n,\infty} = n$ is the n-th coefficient in Taylor expansion (1) of the Koebe function

(7)
$$\Im(z) = P_{\infty}(z) = \frac{z}{(1-z)^2}, z \in E,$$

being the limit case of the Pick function $w = P_M(z)$ as one passes in equation (3) with M to infinity. Moreover, Koebe function (7) is the only function for which equality in estimation (6) holds when n is even.

The use of the above fact, the differential-functional equation of extremal functions and the theory of Γ -structures allowed to determine J a k u b o w s k i's hypothesis positively in the class $S_{R}(M)$ ([4], [5], [16], [17]).

The present paper constitutes a generalization of the above result. Namely, in the class $S_R(M)$, M > 1, instead of single coefficients we consider some of their linear combinations of type $\lambda A_{KF} + \mu A_{NF}$, where K and N are any positive integers,

200

(5)

 λ , μ - any non-negative real numbers. In virtue of estimation (5), it is evident that, if we assume K and N to be even, then, for M sufficiently large, the maximum of $\lambda A_{KF} + \mu A_{NF}$ is realized by the Pick function $w = P_M(z)$ only. Consequently, non-trivial is the case when .K.N are any positive integers. N - even, K - odd. Besides, it can be seen from estimation (4) that the coefficients λ , μ cannot be arbitrary; in this context, we shall further assume that $\lambda \ge 0$ and $\mu > 0$.

The method used in the paper allows one to avoid complicated integration of the differential-functional equation of extremal functions (e.g., [3], [6], [11]); instead, one makes use of the theory of Γ -structures and the above-mentioned result of Dieudonné, including the onliness of the Koebe function in estimation (6) for n even.

2. THE FUNCTIONAL AND AUXILIARY RESULTS

Consider a real functional

(8) $J(F) = \lambda A_{KF} + \mu A_{NF}, F \in S_{R}(M),$

where K,N are any positive integers, K - odd, N - even; λ , μ - any real numbers, $\lambda \ge 0$, $\mu > 0$.

It follows from the Weierstrass theorem that functional (8) is continuous, whereas the family $S_R(M)$ is compact in the topology of almost uniform convergence. Consequently, for every M > 1, in the family $S_R(M)$ there is at least one function realizing the maximum of functional (8). In the sequel, each function F_O for which

 $\max_{\mathbf{F} \in S_{\mathbf{R}}(\mathbf{M})} \mathbf{J}(\mathbf{F}) = \mathbf{J}(\mathbf{F}_{\mathbf{O}})$

will be shortly called extremal function.

We shall now give some information on the Pick functions $w = P_M(z)$ given by equation (3) and satisfying the condition $P_M(0) = 0$.

First of all, note that each of the functions $P_M(z)$; M > 1,

belongs to the class S_p(M) since it can be represented in the form

$$P_{M}(z) = M \mathcal{K}^{-1}(\frac{1}{M} \mathcal{K}(z)), \quad z \in E,$$

where % is Koebe function (7). From this relation it also follows that every function $w = P_M(z) = \frac{1}{M}P_M(z)$, M > 1, maps the disc |z| < 1 onto the disc |w| < 1 cut along the radius from -1 to $r_M = -2M + 1 + 2\sqrt{M(M - 1)}$.

Next, note that, in accordance with (2), the convergences

(9)
$$\lim_{M \to +\infty} F_{n,M} = n, \quad n = 2, 3, \dots,$$

hold.

For the extremal functions, the following property takes place:

Let $(M_h)_h = 1, 2, ...$ be any sequence of real numbers, $M_h >$ > 1, h = 1,2, ..., such that $\lim_{h\to\infty} M_h = +\infty$, and let

$$(F_h(z))_{h=1,2,\ldots,z \in E,$$

be any sequence of extremal functions realizing the maximum of functional (8) in the respective classes $S_{p}(M_{u})$, h = 1,2, ... Then the sequence $(F_h(z))_{h=1,2,...}$ is almost uniformly convergent in the disc E to the Koebe function $\mathcal{K}(z)$. Indeed, denote

$$F_{h}(z) = z + \sum_{n=2}^{\infty} A_{nh} z^{n}, h = 1, 2, ..., z \in E.$$

Since, for every h, $h = 1, 2, ..., P_{M_h}(z) \in S_R(M_h)$ and $F_h \in S_R$, therefore

 $\lambda P_{K,M_{h}} + \mu P_{N,M_{h}} \leq \lambda A_{Kh} + \mu A_{Nh} \leq \lambda K + \mu N.$

Consequently, in view of (9), we get

(10)
$$\lim_{h\to\infty} [\lambda A_{Kh} + \mu A_{Nh}] = \lambda K + \mu N.$$

Since the sequence $(F_h)_{h=1,2,\ldots}$ is a normal and almost commonly bounded sequence in the disc E, lit suffices to prove that any subsequence of $(F_h)_{h=1,2,\ldots}$, almost uniformly convergent in E, converges to the function %.

So, take any such subsequence $(F_j)_{j=1,2,\ldots}$ almost uniformly convergent in the disc E to some function \tilde{F} . It follows from the compactness of the class S_R that $\tilde{F} \in S_R$. From condition (10) and the Weierstrass theorem we conclude that

$$\lambda A_{KF} + \mu A_{NF} = \lambda K + \mu N,$$

which, in view of Dieudonné estimation (6), yields

 $(11) A_{\rm NF} = N,$

and, since Koebe function (7) is the only one in the family S_R for which (11) holds, there must be that $\tilde{F} = 36$.

Note that from the above property of extremal functions follows immediately the almost uniform convergence in E of the sequence $(F_h^m(z))_{h=1,2,\ldots}$, $m = 2,3,\ldots$, of powers of extremal functions in the families $S_R(M_h)$, $h = 1,2,\ldots$, to the function $\mathcal{K}^m(z)$, where \mathcal{K} is a Koebe function. In consequence, we shall obtain another property of extremal functions.

Let m be any positive integer, n - any index, n = m, m + + 1, ... For every number $\varepsilon > 0$, there exists a constant $M_{\varepsilon} > 1$ such that, for all M > M_E and every function F extremal in the class $S_{p}(M)$, where M > M_E, the condition

$$|A_{nF}^{(m)} - A_{nK}^{(m)}| < \epsilon$$

is satisfied, with that the coefficients $A_{nF}^{(m)}$, $m = 2,3, \ldots, n = m, m + 1, \ldots$, are given by the formula

(12)
$$F^{m}(z) = \sum_{n=m}^{\infty} A_{nF}^{(m)} z^{z}, z \in E$$

and $A_{nF}^{(1)} = A_{nF}^{}$, $n = 2, 3, \dots, A_{1F}^{(1)} = 1$.

Really, otherwise, for any fixed m and n = m, m + 1, ..., there exists a real number \mathcal{E}_{o} such that, for every $M_{\mathcal{E}_{o}}$, one can find a constant M, M > $M_{\mathcal{E}_{o}}$, and a function F extremal in the class $S_{R}(M)$, M > $M_{\mathcal{E}_{o}}$, so that $|A_{nF}^{(m)} - A_{n\mathcal{H}}^{(m)}| \ge \mathcal{E}_{o}$. Then there exist an increasing sequence $(M_{h})_{h=1,2,...}$ of real numbers $(\lim_{h\to\infty} M_{h}^{\cdot} = +\infty)$ and its corresponding sequence $(F_{h}^{m})_{h=1,2,...}$ of powers of extremal functions in the classes $S_{R}(M_{h})$, h = 1,2,...such that $|A_{nF_{h}}^{(m)} - A_{n\mathcal{H}}^{(m)}| \ge \mathcal{E}_{o}$, which contradicts the almost uniform convergence on the sequence $(F_{h}^{m})_{h=1,2,...}$ to the function χ^{m} in the disc E.

3. PROOF OF THE FUNDAMENTAL THEOREM

We shall prove the following

Theorem. Let K, N be any fixed positive integers, K - odd, N - even; λ , μ - any real numbers, $\lambda > 0$, u > 0. Then there exists a constant M₀, M₀ > 1, such that, for all M > M₀ and every function $F \in S_R(M)$, the estimation

(13)
$$\lambda A_{KF} + \mu A_{NF} \leq \lambda P_{K,M} + \mu P_{N,M}$$

1s true, where

$$w = P_M(z) = z + \sum_{n=2}^{\infty} P_{n,M} z^n$$

is a Pick function given by the equation

$$\frac{w}{\left(1-\frac{w}{M}\right)^2}=\frac{z}{\left(1-z\right)^2}, z \in E,$$

and satisfying the condition $P_M(0) = 0$. This funtion is the

only one for which, with a given $M, M > M_0$, equality holds in estimation (13).

The proof of the theorem will consist of two parts.

3.1. The differential-functional equation for extremal functions

Without loss of generality, assume that N < K.

It is well known [2] that every function $w = f(z) = \frac{1}{M} F(z)$, where F is an extremal function in the family $S_R(M)$, M > 1, satisfies the following differential-functional equation:

(14)
$$\left(\frac{z w'}{w}\right)^2 dl(w) = dr(z), \quad 0 < |z| < 1$$

where

(15)
$$\mathcal{U}(w) = \lambda \sum_{m=2}^{K} \frac{A_{KF}^{(m)}}{M^{m-1}} (w^{m-1} + \frac{1}{w^{m-1}}) +$$

+
$$\mu \sum_{m=2}^{N} \frac{A_{NF}^{(m)}}{M^{m-1}} (w^{m-1} + \frac{1}{w^{m-1}}) - \mathcal{P},$$

(16) $\mathcal{M}(z) = \lambda(K-1)A_{KF} + \mu(N-1)A_{NF} +$

+
$$\lambda \sum_{m=2}^{K} (K-m+1) A_{K-m+1,F} (z^{m-1} + \frac{1}{z^{m-1}}) +$$

+
$$\mu \sum_{m=2}^{N} (N-m+1)A_{N-m+1,F}(z^{m-1} + \frac{1}{z^{m-1}}) - p$$

(17)
$$\varphi = \min_{\substack{N \in \mathbb{Z} \\ O \leq x \leq 2\pi}} \left[\lambda \sum_{m=2}^{K} \frac{A_{KF}^{(m)}}{M^{m+1}} e^{ix(m-1)} + \mu \sum_{m=2}^{N} \frac{A_{NF}^{(m)}}{M^{m-1}} e^{ix(m-1)} \right],$$

the numbers $A_{nF}^{(m)}$, n = 1, 2, ..., n = m, m + 1, ..., are given

by formula (12). The functions $\mathscr{M}(w)$ and $\mathscr{M}(z)$ assume, respectively, on the circles |w| = 1 and |z| = 1 real non-negative values. Either of these functions has on the respective circle at least one zero of even multiplicity. Let us still observe that, if $\mathscr{M}(w_0) = 0$, then $\mathscr{M}(\overline{w}_0) = 0$, $\mathscr{M}(\frac{1}{w_0}) = 0$ and $\mathscr{M}(\frac{1}{w_0}) = 0$, and if $\mathscr{M}(z_0) = 0$, then also $\mathscr{M}(\overline{z}_0) = 0$, $\mathscr{M}(\frac{1}{z_0}) = 0$ and $\mathscr{M}(\frac{1}{z_0}) = 0$.

From the previous remarks it follows that, for any $\varepsilon > 0$, there exists a constant M' > 1 such that, for all M > M' and every $z \in \Delta$,

(18)
$$|z^{K-1}(\partial r(z) - \partial r_0(z))| < \varepsilon,$$

where Δ is any compact set of the open plane, $\mathscr{N}(z)$ is given by formula (16), while $\mathscr{N}_{O}(z)$ is defined as follows:

(19)
$$\mathcal{M}_{O}(z) = \lambda(K-1)K + \mu(N-1)N + \lambda \sum_{m=2}^{K} (K-m+1)^{2} (z^{m-1} + \frac{1}{z^{m-1}}) +$$

+
$$\mu \sum_{m=2}^{N} (N-m+1)^2 (z^{m-1} + \frac{1}{z^{m-1}})$$

We shall determine the zeros of the function $\mathscr{W}_{O}(z)$ on the circle |z| = 1. Since

$$\sum_{m=2}^{N} (N-m+1)^{2} z^{-m+1} = \frac{1}{n^{N}} \sum_{m=2}^{N} (N-m+1)^{2} z^{N-m+1} = \frac{1}{z^{N}} \sum_{n=1}^{N-1} n^{2} z^{n} =$$
$$= \frac{1}{z^{N}} \left[\left(\left(\sum_{n=1}^{N-1} z^{n} \right)' z \right)' z \right] = \frac{1}{z^{N}} \left[\left(\frac{z^{N}-z}{z-1} \right)' z \right)' z \right] =$$
$$= \frac{1}{(z-1)^{3}} \left[(N-1)^{2} z^{2} - (2N^{2}-2N-1)z + N^{2} - z^{-N+2} - z^{-N+1} \right],$$

therefore, proceeding analogously with the remaining addends of $\mathscr{N}_{O}(z)$, we get:

$$v_{0}(z) = \frac{1}{(z-1)^{3}} \left\{ \lambda \left[-K(z+1)^{2}(z-1) + z(z+1)(z^{K} - \frac{1}{z^{K}}) \right] \right\}$$

+
$$\mu \left[-N(z+1)^2(z-1) + z(z+1)(z^N - \frac{1}{z^N}) \right] \right\}$$
.

Hence, after some transformations, we have:

(20)
$$\partial f_0(z) = \frac{(z+1)^2}{(z-1)^2} L_0(z)$$

where

(21)
$$L_o(z) = \lambda \left[\sum_{m=1}^{\frac{K-1}{2}} (z^{2m} + \frac{1}{z^{2m}}) - (K-1) \right] +$$

+
$$\mu \left[\sum_{m=1}^{\frac{N}{2}} (z^{2m-1} + \frac{1}{z^{2m-1}}) - N \right].$$

From (21) it can be seen at once that the only zero of the function $L_0(z)$ on the circle |z| = 1 is the point z = 1 which, in view of (19), is not a zero of $\partial C_0(z)$.

So, finally, it follows from (20) that the function $dr_{o}(z)$ has on the circle |z| = 1 one double zero z = -1 and K - 2 zeros inside as well as outside this circle.

Let us surround all zeros of the function $\mathscr{N}_{O}(z)$ with sufficiently small disjoint discs. From the Hurwitz theorem and condition (18) we infer that there exists some $M_{O} > M'$ such that, for all $M > M_{O}$, zeros of the function $\mathscr{N}(z)$ given by formula (16) lie, respectively, in chosen neighbourhoods of zeros of the function $\mathscr{N}_{O}(z)$, with that in each of these neighbourhoods the number of zeros of both those functions, considering multiplicities, is the same.

It is well known [2] that the function $\mathcal{M}(z)$ has on the circle |z| = 1 at least one zero of even multiplicity. Let $\tilde{z} \neq 1$, $|\tilde{z}| = 1$, be one of these zeros. Then, for $M > M_{O}$, it lies in the vicinity of the double zero z = -1 of the function $\mathcal{M}_{O}(z)$. Since $\mathcal{M}(z)$ is a non-negative function of the circle

|z| = 1, the multiplicity of such a zero is at least 2; moreover, in the same neighbourhood there must lie a zero 2 of multiplicity at least 2, which contradicts the fact that the function $\mathcal{X}(z)$ must have exactly two zeros there, considering multiplicities. Consequently, 2 = -1 is the only zero of the function $\mathcal{X}(z)$ on the circle |z| = 1.

So, it results from the form of $\mathcal{M}(z)$ that, for $M > M_0$, this function can be represented as follows:

(22)
$$\partial r(z) = \frac{(z+1)^2}{z^{K-1}} L(z),$$

where L(z) is some polynomial of degree 2K-4, and $L(z) \neq 0$ for |z| = 1.

From the properties of the function $\mathscr{H}(z)$, given before, we know that, if $L(z_0) = 0$, then also $L(\overline{z_0}) = 0$, $L(\frac{1}{z_0}) = 0$ and

 $L\left(\frac{1}{\overline{z}_{0}}\right) = 0.$

We infer from equation (14) that the images $\tilde{W} = f(z)$ of zeros \tilde{z} , $|\tilde{z}| < 1$, of the function $\mathscr{H}(z)$ are zeros of the function $\mathscr{H}(W)$ since $f'(z) \neq 0$, whereas from the very form of the function $\mathscr{H}(W)$ it follows that also the points \overline{W} , $\frac{1}{N}$, $\frac{1}{N}$ are

its zeros. Besides, it is well known that the function $\mathcal{M}(w)$ has on the circle |w| = 1 at least one double zero w_0 . From the above properties of the function $\mathcal{M}(w)$ we deduce that, for M > > M_0 ,

(23)
$$\omega L(w) = \frac{(w - w_0)^2}{w^{K-1}} \hat{L}(w),$$

where $w_0 = -1$ or $w_0 = 1$, $\hat{L}(w)$ is some polynomial of degree 2K-4, and $\hat{L}(w) \neq 0$ for |w| = 1.

To sum up, we have shown that, for $M > M_0$, every function $w = f(z) = \frac{1}{M} \tilde{F}(z)$, where F is an extremal function, satisfies equation (14), where dl(w) and dl(z) are given by formulae (23) and (22), respectively.

3.2. Determination of extremal function

From the Royden theorem [8] one knows that every function $w = f(z) = \frac{1}{M} F(z)$ satisfying equation (14) maps the disc E onto the disc. |w| < 1 lacking a finite number of analytic arcs l_1, l_2, \ldots, l_j , $j \ge 1$, with the following properties ([9], parts III, IV):

1° The arcs 1₁,1₂, ..., 1_j lie in the disc |w| < 1 except, at most, their ends.</p>

- 2° They are disjoint except, at most, their ends.
- 3° Each common point of the arc and the circle |w| = 1, or of two arcs, is a zero of the function &(w) given by formula (15); the number of arcs and their behaviour in the neighbourhood of such common point depend on the multiplicity of the zero (see [9], part III).

4° The union of the arcs $l_1, l_2, ..., l_j$ and of the circle |w| = 1 constitutes a continuum.

5° Along each of the arcs,

(24)

Re
$$\int \sqrt{dl(w)} \frac{dw}{w} = \text{const},$$

where dk(w) is a function defined by (15), and under the integral sign there occurs any branch of the root.

6° At least one of the ends of each arc is a zero of the function &(w) given by (15).

 7° None of the arcs passes through the point w = 0.

We shall now prove that every function $w = f(z) = \frac{1}{M}F(z)$, where F is an extremal function in the class $S_R(M)$ for $M > M_o$, maps the disc E onto the dics |w| < 1 lacking one analytic arc with end at the point w_o . Really, let us take any function F extremal in $S_R(M)$ for $M > M_o$. Then the function $w = f(z) = \frac{1}{M}F(z)$ satisfies differential-functional equation (14), where the functions $\mathcal{M}(w)$ and $\mathcal{N}(z)$ are given by formulae (23) and (22), respectively, while the boundary of the image of the disc E under this mapping consists of the circle |w| = 1 and a finite number of analytic arcs described above.

Note that at least one of these arcs must have a common end with the circle |w| = 1, or else, the arcs along with the cir-

cle would not constitute a continuum. Without loss of generality, assume that l_1 is the arc. According to property 3°, the common point of the arc l_1 and the circle |w| = 1 is a zero of the function dl(w) given by (23). Since this function has on the circle, |w| = 1 only one zero w_0 , therefore l_1 must issue from the very point. The point w_0 is a double zero of the function dl(w), and it is well known ([9], p. 46) that at the double zero four arcs of (24), equally spaced at an angle of $\frac{\pi}{2}$, meet. Two of them are arcs of the circle |w| = 1, and consequently, of the remaining two, only one may enter the interior of the circle. This must be the arc l_1 .

Note further that the union of the remaining arcs 12, ..., 14 is an empty set. For otherwise, the following cases would be possible: a) one of the arcs $1_2, \ldots, 1_i$ has a common end $\tilde{v}_0 \neq$ $= w_0$ with the circle |w| = 1, so, according to property 3°, \tilde{w}_0 would have to be a zero of the function d(w) on the circle |w! = 1, which is impossible since the only zero of this function on |w| = 1 is the point w_0 ; b) any of the arcs $l_2, ..., l_1$ has a common end with the circle |w| = 1 at the point w_0 , but then, at this point, more than four arcs of (24) would meet, which contradicts the fact that wo is a double zero of the function $\mathcal{M}(w)$ on the circle |w| = 1; c) the end \tilde{w} of the arc l_1 , lying in the dics |w| < 1, is also an end of any of the arcs l_2, \ldots, l_j and then, according to property 3° , such point W is a zero of function (23); but, as was noted earlier, each zero \Im of the function dl(w), lying in the disc |w| < 1, is the image of some zero \tilde{z} of the function $\mathcal{J}(z)$, lying in the disc |z| < 1, so \tilde{w} is an interior point of the image of the disc E under the mapping f, and consequently, it cannot lie on the boundary of this domain; d) none of the arcs $l_2, \ldots,$ 1, has common ends with the circle |w| = 1 and the arc l_1 ; this case is also impossible since, then, the union of the arcs l_1, l_2, \ldots, l_1 along with the circle |w| = 1 would not constitute a continuum, i.e., property 4° would not hold.

Consequently, we have proved that the point w_0 , $w_0 = -1$, is the end of the only cut l_1 in the image of the disc E under the mapping $w = f(z) = \frac{1}{M} F(z)$, where F is an extremal function in the class $S_p(M)$ for $M > M_0$.

It follows from the properties of the classes $S_R(M)$ considered that the image f(E) of the disc E under the mapping $w = f(z) = \frac{1}{M} F(z)$ is symmetric with respect to the real axis, i.e., if $w \in f(E)$, then also $\overline{w} \in f(E)$.

Making use of the above fact, we shall show that the arc l_1 with end at the point $w_0 = -1$ (or $w_0 = 1$), symmetric with respect to the real axis, lies entirely on the real axis (cf. [4]). Without loss of generality, assume that $w_0 = -1$.

Let h(t) be a homeomorphism of the segment <0,1> into the arc l_1 , such that h(0) = -1. Suppose, despite of the announcement, that there exists a point $t_0 \in (0,1>$ such that Im $h(t_0) \neq 0$, say, Im $h(t_0) > 0$. Denote $T = \{t \in <0, t_0\}$: Im h(t) = 0. Of course,

(25)
$$t^* = \sup T \in T$$
 and $t^* < t_a$.

Besides, from the continuity of h:

(26) Im
$$h(t) > 0$$
 for $t \in (t^*, t_{>})$

Since, for every point h(t), $t \in \langle t^*, t_0 \rangle$, the point h(t)belongs to the arc l_1 , therefore there exists a continuous function

(27)
$$\hat{t} = \hat{t}(t) = h^{-1}(h(t)), t \in \langle t^*, t \rangle$$

whose values range over an interval with endpoints

$$\hat{t}(t^*) = h^{-1}(h(t^*)) = h^{-1}(h(t^*)) = t^{3}$$

and

(28)
$$\hat{t}(t_0) = h^{-1}(\overline{h(t_0)}) = \hat{t}_0.$$

From (26) and (27) it follows immediately that

(29)
$$\hat{t} \notin (t^*, t_{-}).$$

From this and (25):

£ < t*

and, of course, Im $h(\hat{t}_0) < 0$.

Let now $\hat{T} = \{t \in \langle 0, \hat{t}_0\}$: Im $h(t) = 0\}$. Of course,

(31)
$$\hat{t}^* = \sup \hat{T} \in \hat{T}$$
 and $\hat{t}^* < \hat{t}_{a}$.

From the continuity of h:

(32) Im h(t) < 0 for t
$$\in$$
 ($\hat{t}^*, \hat{t}_0 >$.

Consider, as before, a continuous function

(33)
$$\hat{\hat{t}} = \hat{\hat{t}}(t) = h^{-1} (\overline{h(t)}), \quad t \in \langle \hat{t}^*, \hat{t}_0 \rangle.$$

whose values now range over an interval with endpoints

$$\hat{t}(\hat{t}^*) = h^{-1}(\overline{h(\hat{t}^*)}) = h^{-1}(h(\hat{t}^*)) = \hat{t}^*$$

and

212

(30)

$$\hat{\hat{t}}(\hat{t}_{0}) = h^{-1}(\overline{h(\hat{t}_{0})}) = \hat{\hat{t}}_{0}$$

From (32) and (33) it follows immediately that

From this and (31):

(34)

In view of (28),

$$\hat{t}_{o} = h^{-1}(\overline{h(\hat{t}_{o})}) = h^{-1}(h(t_{o})) = t_{o}$$

and consequently, taking account of the inequalities in (34), (31), (30) and (25), we obtain a contradiction.

To sum up, since the point w = 0 belongs to the image of the disc E under the mapping f, therefore, for $M > M_0$, every function $w = f(z) = \frac{1}{M} F(z)$, where F is an extremal function, maps the disc |z| < 1 onto the disc |w| < 1 lacking a segment

on the real axis: a) with one end at the point $w_0 = -1$ and the other one at some point of the negative real half-axis between -1 and 0, or b) with one end at the point $w_0 = 1$ and the other one at some point of the positive real half-axis between 0 and 1. Consequently, from the properties of the Pick function $P_M(z)$ as well as from the Riemann theorem it follows that the only such function is in case: a) the function $P_M(z) = \frac{1}{M} P_M(z)$, whereas in case b) the function

$$-p_{M}(-z) = -\frac{1}{M} P_{M}(-z) = z + \sum_{n=2}^{\infty} (-1)^{n-1} P_{n,M} z^{n},$$

where $P_M(z)$ is a Pick function. Since $P_{N,M} > 0$ for $M > M_o$, the inequality

$$\lambda P_{K,M} + \mu P_{N,M} > \lambda P_{K,M} - \mu P_{N,M}$$

is self-evident, and finally, the only extremal function realizing the maximum of functional (8) in the family $S_R(M)$ for $M > M_O$ is the Pick function $w = P_M(z)$ given by equation (3) and satisfying the condition $P_M(O) = O$.

In the case when N > K, the proof of the theorem is analogous.

Consider in the family $S_{p}(M)$, M > 1, a real functional

$$\hat{f}(F) = \lambda_0 A_{NF} + \sum_{j=1}^{m} \lambda_j A_{K_jF},$$

where m is any fixed positive integer, N - an even positive integer, K_j, j = 1, 2, ..., m, - odd positive untegers, $\lambda_0 > 0$, $\lambda_j \ge 0$, j = 1, 2, ..., m.

From the theorem we have just proved follows

Corollary. There exists a constant \hat{M}_{O} , $\hat{M}_{O} > 1$, such that, for every $M > \hat{M}_{O}$ and every function $F \in S_{R}(M)$, the estimation

$$\hat{f}(F) \leq \lambda_{0} P_{N,M} + \sum_{j=1}^{m} \lambda_{j} P_{K_{j},M}$$

holds, where

$$w = P_M(z) = z + \sum_{n=2}^{\infty} P_{n,M} z^n, z \in E,$$

is a Pick function given by equation (3) and satisfying the condition $P_M(0) = 0$. It is the only function for which equality holds in the above estimation.

4. SUMMARY

The paper includes the following result: Let $S_{p}(M)$, M > 1, be the class of functions

$$F(z) = z + \sum_{n=2}^{\infty} \lambda_{nF} z^{n}$$

holomorphic and univalent in the disc $E = \{z : |z| < 1\}$, with real coefficients and such that, if $F \in S_R(M)$, then |F(z)| < Mfor $z \in E$. Let further K, N be any fixed positive integers, K = odd, N = even; λ , μ = any real numbers, $\lambda \ge 0$, $\mu \ge 0$. Then there exists a constant M_0 , $M_0 \ge 1$, such that, for all $M \ge M_0$ and every function $F \in S_R(M)$, the estimation

$$\lambda A_{KF} + \mu A_{NF} \leq \lambda P_{K,M} + \mu P_{N,M}$$

is true, where

(35)

$$w = P_M(z) = z + \sum_{n=2}^{\infty} P_{n,M} z^n, z \in E,$$

is a Pick function given by the equation

$$\frac{w}{\left(1-\frac{w}{M}\right)^2} = \frac{z}{\left(1-z\right)^2}, \quad z \in E,$$

and satisfying the condition $P_M(0) = 0$. This function is the only one for which, with a given M, $M > M_O$, equality holds in estimation (35).

From the theorem proved here follows the estimation $A_{\rm NF}$ 4

 $\leq P_{N,M}$, N = 2,4,6, ..., in the family $S_R(M)$, for M sufficiently large ([4], [5]).

REFERENCES

- [1] J. Dieudonné, Sur les fonctions univalentes, Compt. rend. Acad.
 Sci., 192 (1931), 1148-1150.
- [2] I. D z i u b i n s k i, L'Equation des fonctions extrémales dans la famille des fonctions univalentes symetriques et bornées, Lódzkie Towarzystwo Naukowe, Sec. III, no 65 (1960).
- [3] Z. J. J a k u b o w s k i, Maksimum funkcjonału A₃ + A₂ w rodzinie funkcji jednolistnych o współczynnikach rzeczywistych, Zesz. Nauk. UŁ, Ser. II, 20, (1966), 43-61.
- [4] Z. J. Jakubowski, A. Zielińska, K. Zyskowska, Sharp estimation of even coefficients of bounded symmetric univalent functions, Ann. Polon. Math., (to appear).
- [5] Z. J. Jakubowski, A. Zielińska, K. Zyskowska, Sharp estimation of even coefficients of bounded symmetric univalent functions, Abstracts of short communications and poster sessions, International Congress of Mathematicians, Helsinki 1978, s. 118.
- [6] W. Janowski, Le maximum des coefficients A₂ et A₃ des fonctions univalentes bornées, Ann. Polon. Math. II, 2 (1955), 145-160.
- [7] G. Pick, Über die Konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschranktes Gebiet, Sitzgeber. Kaiserl. Akad. Wiss. Wien., Abt. IIa, 126 (1917), 247-263.
- [8] H. L. Royden, The coefficient problem for bounded schlicht functions, Proc. N.A.S., 35 (1949), 657-662.
- [9] A. C. Schaeffer, D. C. Spencer, Coefficient regions for schlicht functions, Amer. Math. Soc., Colloquium Publications, XXXV (1950).
- [10] M. Schiffer, O. Tammi, On the fourth coefficient of bounded univalent functions, Trans. Amer. Math. Soc. 119 (1965), 67-78.
- [11] M. Schiffer, O. Tammi, The fourth coefficient of bounded real univalent functions, Ann. Acad. Sci. Fennicae, Ser. AI, 354 (1965), 1-34.
- [12] M. Schiffer, O. Tammi, On bounded univalent functions which are close to identity, Ann. Acad. Sci. Fennicae, Ser. AI, Math. (1968), 3-36.

216	Krystyna Zyskowska
[13]	L. Siewierski, The local solution of coefficient problem for bounded schlicht functions, Soc. Sci. Lodziensis, Sec. III (1960), 7- -13.
[14]	L. S i e w i e r s L i, Sharp estimation of the coefficients of bound- ed univalent functions near to identity, Bull. de l'Acad. Polon. Sci., Ser. Sci. Math. Astr. et Phys., 167 (1968), 575-576.
[15]	L. S i e w i e r s k i, Sharp estimation of the coefficients of bound- ed univalent functions close to identity, Dissertationes Mathematicae LXXXVI (1971), 1-153.
[16]	A. Zielińska, K. Zyskowska, On estimation of the eight coefficient of bounded univalent functions with real coeffi- cients, Demonstr. Mathemat. XII, 1 (1979), 231-246.
[17]	A. Zielińska, K. Zyskowska, Estimation of the sixth coefficient in the class of univalent bounded functions with real coefficients, Ann. Polon. Math., (to appear).
	Institute of Mathematics University of Łódź

OGÓLNE OSZACOWANIE WSPÓŁCZYNNIKÓW FUNKCJI SYMETRYCZNYCH · OGRANICZONYCH I JEDNOKROTNYCH

Praca zawiera następujący rezultat. Niech $S_R(M)$, M > 1, będzie klasą funkcji

$$F(z) = z + \sum_{n=2}^{\infty} A_{nF} z^{T}$$

holomorficznych, jednokrotnych w kole E = {z : |z| < 1}, o rzeczywistych współczynnikach i takich, że jeśli F \in S_R(M), to |F(z)| \leq M dla z \in E. Niech dalej K. N będą dowolnymi, ustalonymi liczbami naturalnymi, K - nieparzyste, N - parzyste; λ, μ - dowolnymi liczbami rzeczywistymi, $\lambda \ge 0, \mu \ge$ > 0. Wówczas istnieje stała M₀, M₀ > 1, taka, że dla wszystkich M > M₀ i każdej funkcji F \in S_R(M) prawdziwe jest oszacowanie

$$\lambda A_{KF} + \mu A_{NF} \leq \lambda P_{K,M} + \mu P_{N,M}$$

(35)

gdzie

$$w = P_{M}(z) = z + \sum_{n=2}^{\infty} P_{n,M} z^{n}, z \in E,$$

jest funkcją Picka daną równaniem

$$\frac{w}{\left(1-\frac{w}{M}\right)^2} = \frac{z}{\left(1-z\right)^2}, \quad z \in E,$$

i spełniającą warunek $P_{M}(0) = 0$. Funkcja ta jest jedyną, dla której przy danym M, M > M₀, zachodzi równość w oszacowaniu (35).