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1. INTRODUCTION 

 

 

 

Considerations related to income distribution and income inequalities 

in populations of economic agents are at the core of modern economic theory. 

They appear also in public debates on taxation or pension politics, in theories of 

human capital creation or searching for regional development factors. Correctly 

estimating the parameters of income distribution and derivative measures of 

income inequality such as the Gini coefficient or Theil Index are important 

for several reasons – it is source of knowledge about income structure in society 

and also could be the basis for further economic issues such changing 

the taxation system or launching government aid programmes in order 

to redistribute some part of wealth. Underestimating the parameters of income 

distribution could lead to the conclusion that inequalities are too high and trigger 

corrective actions such as rising taxes in high income groups. If there is too 

much severity in changing the tax bracket, it may have influence on productivity 

and investment activities among well-paid citizens. Overestimating 

the parameters could have an opposite but also harmful effect on the health of 

the economy because an overly liberal taxation system would likely cause low-

paid people to get insufficient public assistance. Moreover, income distribution 

effects economic growth, market demand and is an important factor 

in determining the amount of savings in a society (Kleiber, Kotz 2003).  

In real economic data sets, it often happens that some observations 

are different to the majority. These outlying observations cause problems 

because they may strongly influence the results of an economic analysis. Robust 
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statistics attempts to detect outliers by searching for a model that fits a majority 

of the data. All classical statistical methods (e.g.: discriminant analysis, factor 

analysis, regression analysis, estimation of time series models parameters) 

can be severely distorted by outliers. It should be stressed that statistical 

inferences (an important part of each economic analysis) are based only in part 

upon observations. An equally important base is formed by prior assumptions 

about the underlying situation. Even in the simplest cases, there are explicit 

or implicit assumptions about randomness and independence, distributional 

models, possibly prior distributions for some unknown parameters, etc. 

This paper deals selected aspects of robust estimation of the income 

distribution. Attention shall be focused on two well-known models for income 

distribution, namely the Pareto and log-normal distributions, as well as 

on popular income inequality measures, namely on the Lorentz curve 

and the Gini coefficient. The presented arguments, however, are applicable 

to a wide class of over 100 models used for income distributions modelling, 

which are by default estimated using the maximal likelihood methodology. 

The rest of the paper is organised as follows. In Section 2, the selected 

income distribution models are presented. In Section 3, the selected robust 

estimators of income distribution are briefly presented. In Section 4, popular 

income distribution inequality measures are recalled. In Section 5, the results of 

simulation as well as empirical studies of statistical properties of the considered 

estimators are presented. The paper ends with conclusions and references.  

 

 

 

2. SELECTED INCOME DISTRIBUTION MODELS 

 

 

 

Modern concern about income distribution began with Pareto’s research 

during his discussions with French and Italian socialists, who were insisting on 

institutional reforms to reduce inequality in income distribution. Pareto studied 

the income distribution of economic agents for tax purposes. The distribution 

was truncated to the left at the point xm, the maximum non-taxable income, 

xm > 0. He found a regularity of the observed income distribution obtained from 

tax records – a stable linear relation of the form log N(x)=Aα log x, x ≥ xm > 0, 

α > 1, where N (x) is the number of economic units with income X > x 

and X being the income variable with the range [xm, ∞). The Pareto type I model 

is the solution of that linear relationship. In the same context, in 1898, March 

proposed the gamma probability density function (PDF) and fitted 

it to the distribution of wages in France, Germany and the United States. Today, 

there are over 100 models used for income distribution modelling (see: Kleiber, 

Kotz 2002).  
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The Pareto distribution for modelling high-income groups and dealing with 

positive asymmetric distributions that have heavy weight tails with either finite 

or infinite variance still stands at the centre of income distribution 

considerations.  

This is mainly due to its elegance, facility of interpretation and its relation to 

the popular income distribution inequality measures. Along with others, Pareto 

distribution skewed size distributions also appear in the context of economic 

data stream analysis, e.g.: for modelling data packages sizes on the Internet (see: 

Kosiorowski 2012).  

For purposes of this paper, it is enough to consider a broad classification of 

income distribution according to the tail behaviour: Pareto type distributions 

(polynomially decreasing tails), log-normal  distribution (intermediate case) 

and gamma-type distribution (exponentially decreasing tails).We shall focus our 

attention on two estimation difficulties which are good illustrations 

for the robust analysis of income distribution.  

We shall start with the Pareto model P (xm, α), which is suitable to model 

relatively high probability in the upper tail (right-skewed tail) where a lower α 

shape parameter determines the lower probability mass at xm point. Thanks to 

this property, the model is useful and relatively effective to apply in actuarial 

applications, risk management and Economy of Welfare.  

A simple Pareto distribution P (xm, α) is given by its cumulative distribution 

function (CDF): 

 

 ( ) 1 mx
F x

x


 
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 

, (1) 

 

for x >xm, where α is the shape parameter that characterises the tail of 

the distribution and xm > 0 is the scale parameter.  

The Pareto distribution has a PDF of 
1
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x
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 for x >xm and the following 

formulas for the expected value: 
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and variance: 
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with the median 2mx   and mode xm.  

If the sample observations follow the postulated model P (xm, α), then 

it is well known that for large data sets, the maximum likelihood estimator 

(MLE) shall attain the minimum possible variance among a large class of 

competing estimators: 
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It can be easily found that ˆ2 / MLn   has a CDF of 2

2n  (see: Brazauskas, 

Serfling 2000). Although ˆ
ML  is biased, it is easy to find its unbiased version 

(MLE): 
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For large sample size n, MLE is approximately 
2

( , )N
n


  distributed. 

In case of the scale estimator, we have following maximal likelihood formula: 

 

 ( ) min{ }m i
i

MLE x X . (4) 

 

The Pareto distribution is widely used in economics due to its elegance 

and clear relations with the popular measure of income inequality known  

as the Gini coefficient GINI = 1/(2α1) for α ≥ 1 or popular risk measures 

such as value at risk. It should be stressed, however, that even small relative 

errors in the estimation of α in P (xm, α) may lead to a large relative error 

in the estimated quantiles or tail probabilities based on α. For the quantile  

q corresponding to the upper tail probability , it follows that q = xm
1/α

 

For  = 0.001, the underestimation of α = 1 by only 5% leads 

to an overestimation of q0.001 by 58%. Errors in the estimation of α may result 

in errors in the estimation of basic measures of social inequity and lead 

to incorrect social politics.  
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Next, an important distribution for modelling incomes is the log-normal 

distribution, which was developed for economic purposes by Gibrat (1931). 

The random variable Y has the log-normal distribution L (μ, σ) if X = log Y has 

the normal distribution N (μ, σ
2
).  

Three parameter form L (μ, σ, τ) is the distribution of Y = τ + e
X
, where 

τ represents a threshold value and X is a random variable with mean μ and 

standard deviation σ.  

In many applications, a problem of efficient and robust estimation of 

the expected value of this distribution 
2 2( )E Y e   appears (we assume 

the threshold τ is known). The problem leads to a nontrivial issue of the joint 

robust estimation of   and   in the context of the corresponding model 

N (μ, σ). For the sample Y
n
 = {Y1, …, Yn} from the model L (μ, σ), 

a transformation to the equivalent model N (μ, σ) yields the well-known ML 

estimators of the location μ and σ scale parameter: 
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and the estimator of the expected value: 

 

 
2ˆ ˆ /2( ) ML MLE Y e  . (7) 

 

Estimators 5, 6 and 7 have good statistical properties, i.e.: minimal 

asymptotic variances, but they fail to be robust, i.e. their breakdown point (BP) 

equals 0 and their influence function (IF) is unbounded. 

As a last landmark distribution for incomes modelling, consider 

the generalised gamma distribution with PDF: 
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, (8) 

 

where x >0,  = b
1/a

 scale parameters, a, p shape parameters. 

Model 8 is usually estimated via maximal likelihood methodology, which 

leads to estimators which are not robust.  

Each of the above distributions, particularly their parameters, have 

interesting economic interpretations expressed in terms of their elasticity of 
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survival function, maximisation of entropy, probability of increasing an agent’s 

income under some conditions, etc. Discerning between these three landmark 

distributions in cases where inliers or outliers within data are present using 

classical model selection methods may be a very difficult task. Empirical 

justifications of theoretical concepts explaining the form of income distribution 

may be shaky. Let us take, for instance, Mandelbrot (1960) who argued that 

incomes follow what he called a Pareto-Levy distribution – a maximally skewed 

stable distribution with a characteristic exponent α between 1 and 2. 

 

 

 

3. ROBUST ESTIMATORS OF THE INCOME DISTRIBUTIONS 

 

 

 

Kalecki (1945) found that income increments are proportional to excess 

in ability of the given members of the distribution over the lowest (or median) 

member.  He considered the log-normal distribution for personal incomes 

in the United Kingdom for 1938-1939 and found that the log-normal distribution 

fits well only when certain parts of the data are omitted. He introduced, 

therefore, three parameter log-normal distributions. Kalecki can be treated 

as a pioneer of the robust approach to income distribution analysis. 

Robust estimation of the bounded influence function of income distribution 

parameters was extensively studied by Victoria-Fezer (2000) based  

on the M-estimation approach (see: Marona et al. 2006). We shall focus 

our attention on a less known, but very interesting, approach related to 

Brazauskas and Serfling’s studies. 

We understand robustness of the estimator in terms of the influence function 

(IF) and in terms of the finite sample breakdown point (BP) – for further details 

see: Maronna et al. (2006).  

Let us recall that for a given distribution F in   and an  > 0, the version of 

F contaminated by an  amount of an arbitrary distribution G in  is denoted by 

F(ε, G)=(1) F+ G. The influence function (IF) of the estimator T at a given 

x  for a given F is defined:  

 

  
0

( ; , ) lim ( ( , )) ( )xIF x T F T F T F


  


  , (9) 

 

where δx is the point-mass probability measure at the point x . 

IF(x, T, F) describes the relative effect (influence) on T of an infinitesimal 

point-mass contamination at point x and measures the local robustness of T. 
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An estimator with the bounded IF (with respect to a given norm) is, therefore, 

robust (locally, as well as globally) and very desirable.  

Let X
n
 = {X1, …, Xn} be a sample of size n from X in  . The replacement 

breakdown point (BP) of an estimator T for the sample X
n
 is defined as: 

 

 ( , ) : ( ) ( )n n n

m

m
BP T X T X T X

n


 
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 

, (10) 

 

where: 
n

mX  is a contaminated sample resulting from replacing m points of X
n
 

with arbitrary values, || || denotes a norm, δ is certain content-related threshold, 

i.e.: for the Gini coefficient we can take δ = 0.3 if that value is faced 

with different social politics based on the Gini coefficient. 

The BP point serves as a measure of global robustness, while the IF 

function captures the local robustness of estimators. In the context of the simple 

Pareto, log-normal or gamma distribution estimations, it is useful to discriminate 

between sample contamination with lower values (LBP) and sample 

contamination with upper values (UBP).  

It is beyond the scope of this paper to introduce the reader into the formal 

details of robust statistics. An excellent introduction into the matter could be 

found for example in Huber and Ronchetti (2009) or Marona et al. (2006). 

For our purposes it is enough to intuitively understand the following simple 

example. Suppose we have five measurements of five monthly salaries (in PLN) 

in Poland from 2011: 3 225 PLN; 3 103 PLN; 2 944 PLN; 3 100 PLN; 

1 123 PLN. Our aim is to estimate the true value of the “centre salary” in Poland 

in 2011. Calculating the mean, we obtain 2 699 PLN but when calculating 

the median we get 3 100 PLN. The median is the middle value and, in contrast 

to the mean, is not affected by outlying salary of 1 123 PLN. We can say that 

the median is more robust against the outlier than the mean. Similarly, 

calculating a typical measure of dispersion, the standard deviation (SD), we get 

886.63, but calculating robust measure of dispersion – the median of absolute 

deviations from the median (MAD) – we get 185.23. We can say that the MAD 

shows the differences in salaries in a robust manner in contrast to the SD. 

The mean and SD have unbounded influence functions and their BP are equal 

to zero. The median and the MAD have bounded IF and maximal BP values. 
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3.1 Robust estimators of Pareto and log-normal distribution 

 

 

Let us recall that for specified 1 and 2 satisfying 0 ≤ 1, 2 < ½, 

the trimmed mean is formed by discarding the population of lowest observations 

1 and the proportion of uppermost observations 2 and averaging the remaining 

ones in some sense. In particular, for estimating α with a known xm. 

Brasauskas and Serfling (2000) proposed the trimmed mean estimator: 

 

  
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with cni = 0 for 1 ≤ i ≤ , cni = 0 for n[n2]+1 ≤ i ≤ n  

and cni = 1/d (1, 2, n) for [n1]+1 ≤ i ≤ n[n1], where: [] denotes the 

“greatest integer part” and 
2
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The next robust estimator appeals to the idea of the generalised median 

(GM) statistic. The GM statistics are defined by taking median of the ( )n

k  

evaluations of a given kernel h(x1, …, xk) over all k-element subsets of the data. 

Brazauskas and Serfling (2002) proposed the following estimator for the 

parameter α in Pareto model in case of a known xm: 

 

   1
ˆ , ...,GM i ikMED h X X  , (12) 

 

with a particular kernel h(x1,…,xk): 
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C
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where: Ck is a multiplicative, the median an unibasing factor, i.e.: chosen so that 

the distribution of h(x1, …, xk; xm) has a median α – and the values of Ck for 

k = 2, C2 = 1.1916, k = 3, C3 = 1.1219. 

For the log-normal distribution L (μ, σ), Serfling (2004) introduced GM 

estimators and obtained their properties. A kernel for the GM location estimator 

takes the form: 
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   1 1
ˆ ( ) median , ...,GM kk h X X  . (15) 

 

This estimator has a 1/ˆ( ( )) 1 (1/ 2) k

GMBP k    and smooth 

and bounded IF. 

In the case of a scale estimator, Serfling (2004) proposes using 

the following kernel: 
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which leads to the following robust estimator of scale in the log-normal model: 

 

   2

2 1
ˆ ( ) median , ...,GM mm h X X  . (17) 

 

 

 

4. MEASURES OF INCOME INEQUALITY 

 
 

 

Measuring income inequality within a population of economic agents 

is very closely related to estimating the probability of income distribution. 

Incorrect estimates of the distribution may lead to incorrect evaluations of 

inequalities and incorrect social politics. It should be stressed that we can 

evaluate the degree of income inequality assuming a certain model 

(e.g.: the Pareto model), estimate it and then use known relations between 

the parameters of this model and an inequality measure for evaluating of 

the degree of inequality in a population. From another point of view, 

it is possible to estimate a nonparametric degree of inequality – i.e.: without 

assuming the probability distribution generating the data. The first method 

is commonly said to be more elegant and easier for economic interpretations. 

The second method, however, is generally “closer to the reality” of the observed 

data. 
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Figure 1. Pareto densities and corresponding 

Gini inequality coefficients 
Figure 2. Lorenz curves for Pareto densities 

and corresponding Gini coefficients 

Source: own elaborations. 

Although there are at least twenty popular measures of income inequalities 

used, the benchmark measure is the Lorentz curve, a graphical representation of 

the CDF of the empirical probability of wealth. For the discrete probability 

function ( )f y , let yi, i = 1, …, n be points with non-zero probabilities indexed 

in increasing order yi < yi+1. The Lorentz curve is the continuous piecewise linear 

function connecting the points (Fi, Li), i = 1, …, n, where F0 = 0, L0 = 0, 

and 
1

( )
i

i i

j

F f x


 , 
1

( )
i

i j j

j

S f x x


 , Li = Si / Sn. For the PDF function ( )f x  

with the CDF F(x), the Lorentz curve L(F(x)) is given by: 
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x x

tf t dt tf t dt
L F x

tf t dt 
 


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 
 


, (18) 

 

with CDF F and expected value μ. The next popular measure of income 

inequality is the Gini coefficient, which is half the relative mean difference and 

usually defined based on the Lorentz Curve. For the random nonzero variable 

X with CDF F and expected value μ, the Gini coefficient is defined as: 

 

    
2

0 0

1
1 1 ( ) ( ) 1 ( )G F x dx F x F x dx



 

      . (19) 

 

The mean difference is defined as the expected value of the absolute 

difference of two random variables X and Y independently and identically 

distributed with the same unknown distribution MD = E[| X−Y |]. For the sample 

X
n
 = {x1, …, xn} it means: 
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1 n n

i j

i j

MD x x
n  

   (20) 

 

and the relative mean difference is defined as:  

 

 2 GINI
MD

RMD
x

   . (21) 

 

Other popular measures involve the Pietra coefficient, variance of 

logarithms, Zenga curve, Atchison generalised entropy measure. 

Looking at models 18, 19, 20 and 21, it is easy to notice that robustness of 

the sample Lorentz curve is related to the robustness of the sample mean 

and robustness of the probability density estimator. The Gini coefficient may be 

calculated on several ways, which may give different results in case of 

the existence of outliers or inliers within the data. The popular method of 

“robustifying” an estimator involving, for example, trimming the data 

is applicable for model 20. We should notice, however, that the Gini coefficient 

takes a value from a bounded interval and its breakdown should be understood 

in the spirit of a certain decision process based on the Gini estimates. The theory 

for inequality measures may be obtained within the theory of empirical 

processes, where the Gini coefficient is treated as a function of the empirical 

Lorenz process or within the theory of sample quantiles so the theory for their 

robustness may be obtained at the same time. 

Let us only briefly recall that the Lorenz curve may be generalised 

to a multivariate case within a data depth concept. The generalisation was 

proposed by Mosler (2013). The data depth concept was originally introduced 

as a way to generalise the concepts of median and quantiles to the multivariate 

framework. The depth function D(x, F) associates with any 
dx ; the measure 

D(x, F) ∈ [0,1] with its centrality with regard to the probability measure F   

over 
d

 or with regard to the empirical measure 
nF   calculated from 

the sample X
n
 = {x1, …, xn}. The larger the depth of x, the more central x is with 

regard to F or Fn. As an example of depth, let us recall the weighted L
p
 depth 

from the sample X
n
 = {x1, …, xn} and is computed as follows: 
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1
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i

L D

w
n 



 
x X

x X
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where w is suitable, non-decreasing and continuous on the weight function 

[0, ∞), and || ||p stands for the L
p
 norm (when p = 2 we have the usual Euclidean 

norm and so-called spatial depth). 

The set of points for which depth takes a value not smaller than α ∈ [0, 1] 

is a multivariate analogue of the quantile and is called the α – central region: 

 

 ( ) { : ( , ) }dD D   X x x X . (23) 

 

The multivariate Lorentz curve is defined as the proportion of the mean 

confined to the central region Dα(X) to the overall mean. Let ( )f x  denote 

the wealth of a point x = (x1, …, xn), i.e.: the coordinates of points may represent 

amounts of d goods at an agent’s disposal. We can define the multivatiate 

Lorenz Curve as: 

 

 
 ( ) | ( )

( )
( ( ))

E f D
L

E f

 


 
x x X

x
. (24) 

 

Please note that the parameter α ∈ (0, 1) expresses the outlyingness of 

a point with regard to centre, i.e. a multivariate median induced by a depth 

function. It is, however, possible to use depth regions consisting of a probability 

mass not smaller than α ∈ (0, 1) and hence order them by probability. 

 

 
 

Figure 3. Contour plot for sample L2 depth Figure 4. Contour plot for sample projection 

Source: DepthProc R package. 

Figure 3 presents a contour plot for the L
2
 sample depth and Figure 4 

presents a contour plot for projection sample depth. It is easy to notice that 

model 24 shows an allocation of wealth with respect to a departure from 

the central object (a multivariate median) – which for several socio-economic 

reasons may be more interesting than the relation of the object to group of very 

rich or very poor objects. 
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5. PROPERTIES OF THE ROBUST ESTIMATORS OF INCOME 

DISTRIBUTION 

 

 

 

In order to critically study the performance of known robust estimators of 

income distributions and income inequalities, we conducted intensive simulation 

as well as empirical studies. Only a small part of the results are presented 

below.
2
 In the context of the Pareto model estimation, we considered MLE, TM 

and GM estimators, which were compared with Victoria-Faser bounded IF 

proposals as well as with constrained local polynomial estimator proposed by 

Hyndman and Yao (2002). We performed a similar analysis for the log-normal 

distribution estimators, Dagum distribution estimators and the generalised 

gamma distribution.  

In the case of the Pareto distribution, we performed intensive simulation 

studies involving simulated datasets with 500 observations from the following 

mixtures of distributions: 

1. Mixture of P (1, 5)×10% and P (10, 5)×90%. 

2. Mixture of lognormal distribution LN (2.14, 1)×10% and P (7, 2)×90%. 

3. Mixture of normal distribution N (3 300, 500)×10% and P (2 500, 4)×90%  

4. Mixture of uniform U [0, 0.1]×10% distribution and P (2 500, 4)×90% 

distribution. 

Figures 5–8 present the estimated log densities for the mixtures, with xm 

taken as minimum. It is easy to notice that the estimator of xm has a crucial issue 

for the performance of the estimators. With the classical MLE estimator for xm, 

all estimators of the parameter shape perform relatively poorly. 

 

  

Figure 5. Estimated densities for the first 

mixture and xm taken as the 12% quantile 
Figure 6. Estimated densities for the second 

mixture and xm taken as the 12% quantile 

Source: own elaborations. 

                                                   
2 The rest of the results and R codes for calculating the robust estimators are available 

on request. 
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Figure 7. Estimated densities for the third 

mixture and xm taken as the 12% quantile 

Figure 8. Estimated densities for the fourth 

mixture and xm taken as the 12% quantile 

  

Figure 9. Estimated IF for the MLE estimator 

and stylised sample of 100 obs. 

Figure 10. Estimated IF for the MLE estimator 

and stylised sample of 100 obs. 

Source: own elaborations. 

Figure 9 presents the stylised empirical influence function for the GM 

estimator in the case of subsamples consisting of 7 points, the Pareto P (2 500,4) 

model and scale estimator taken as quantile of order 0.12. In this case, the GM 

estimator can be treated as robust. Figure 10 presents the stylised empirical 

influence function for the Gini coefficient. It is easy to notice that this measure 

of inequality is not robust. The results of the simulation led to similar 

conclusions, which are also similar for other well-known income distribution 

models, estimators and popular inequality measures. The conclusions may be 

summarised as follows: 

1. The GM estimators with scale (threshold in three parameter log-normal 

model) estimated as quantile of order  ∈(0, 0.3), where  is optimised using 

the Kolmogorov-Smirnov goodness of fit statistics outperforms the classical 

MLE and TM estimators. The estimators are computationally intensive, however. 

We recommend using the GM estimator for estimating scale. 

2. Estimating the income distribution nonparametrically is worth considering 

– we recommend the constrained local polynomial estimator proposed 

by Hyndman and Yao (2002), which also provides estimates of the density 

derivatives, at least on the explanatory step of the research. 
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3. We recommend calculating the Gini coefficient “nonparametrically”, 

i.e.: without using an assumption of the Pareto, log-normal, gamma distributed 

data. For popular scalar measures of inequality involving the Gini coefficient 

or Pierta coefficient, it is possible to apply the generalised median approach 

(see: Kosiorowski, Tracz 2014b). 

For evaluating the considered robust estimators in the case of real data, 

we focused our attention on the data considered in Kosiorowski et al. (2014) – 

census data from MINNESOTA POPULATION CENTER
3
. We considered data 

on TOTAL INCOME from the following countries: 

 Panama: 1960, 1970, 1980, 1990, 2000, 2010; 

 Mexico: 1960, 1970, 1990, 1995, 2000, 2005, 2010; 

 Puerto Rico: 1970, 1980, 1990, 2000, 2005; 

 Canada: 1971, 1981, 1991, 2001; 

 Brazil: 1960, 1970, 1980, 1991, 2000, 2010; 

 USA: 1960, 1970, 1980, 1990, 2000, 2005, 2010. 

Each time, we estimated the density using GM, TM and M-type estimators 

(parametrically) after selecting the models using the information criterion 

and value of the Kolmogorov goodness of fit statistic. Figures 1116 present 

densities obtained using the constrained local polynomial method, which 

in our opinion is the best counterpart to both classical and robust estimators. 

The empirical data showed us a rich set of difficulties related to the robust model 

selection issue. These difficulties are automatically omitted in the case of 

the considered nonparametric method application. It is worth noticing that 

a kernel used within this method locally protects us against outliers. Using  

the k-nearest neighbours’ type kernel protects us against inliers as well. In each 

case, the density was estimated using a local linear polynomial estimator 

in an equally spaced grid of 500 points. 

Figures 1516 presents the estimated results for the data divided by median 

incomes. The nonparametric estimator better underlies the heterogeneity of 

the incomes and should be considered at least as a preliminary research step.  

 

 

 

                                                   
3 https://international.ipums.org/international 
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Figure 11. Estimated income densities 

in Canada 1971, 1981, 1991, 2001 

Figure 12. Estimated income densities 

in Puerto Rico 1970, 1980, 1990, 200. 

  

Figure 13. Estimated income densities 

in Mexico 1960, 1990, 2000, 2010 

Figure 14. Estimated income densities in USA 

1960, 1990, 2000, 2010 

  

Figure 15. Estimated income/median (income) 

densities in Mexico 1960, 1990, 2000, 2010 

Figure 16. Estimated income/median (income) 

densities in Canada 1971, 1981, 1991, 2001 

Source: own elaborations. 
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6. CONCLUSIONS 

 

 

 

Considerations related to a nature of allocation of wealth within 

a population have a central position in the economic and public debate related 

to social justice and social solidarity. Arguments used within these debates 

strongly depend on the properties of the statistical procedures used 

for estimating income distributions and income distribution measures. Classical 

maximal likelihood estimators of the income distribution parameters 

are not robust to outliers or inliers in the data. There are good robust 

and/or nonparametric alternatives for them, however. We recommend using 

the generalised median approach proposed by Brazauskas and Serfling 

in the case of the existence of some knowledge on the considered phenomena 

and the constrained local polynomial estimator in case of a lack of knowledge 

on the subject of study. 
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ABSTRACT 

 

Considerations related to income distribution and income inequalities in populations of 

economic agents belong to the core of the modern economic theory. They appear also in a public 

debate concerning postulates as to taxation or pension politics, in theories of a human capital 

creation or searching for regional development factors. 

Results of statistical inference conducted for giving arguments pro or against particular 

hypotheses, strongly depend on properties of statistical procedures used within this process. 

We mean here for example: a quality of probability density estimator in case of missing data, 

a quality of skewness measure in multivariate case departing from normality, or a quality of 

dimension reduction algorithm in case of existence of outliers.  

In this paper from the robust statistics point of view, we analyse difficulties related 

to statistical inference on income distribution models and income inequalities measures. 

Theoretical considerations are illustrated using real data obtained from Eurostat and Minessota 

Population Center (IMPUS). 

 

 

WYBRANE ZAGADNIENIA MODELOWANIA ROZKŁADU DOCHODU 

ORAZ POMIARU NIERÓWNOŚCI DOCHODOWYCH ROZPATRYWANE Z PUNKTU 

WIDZENIA STATYSTYKI ODPORNEJ 

 

ABSTRAKT 

 

Rozważania dotyczące rozkładów dochodów oraz nierówności dochodowych bez wątpienia 

należą o tzw. jądra ekonomii teoretycznej. Rozważania tego typu pojawiają się w debacie 

publicznej dotyczącej polityki podatkowej, polityki transferów społecznych, w teoriach tworzenia 

kapitału intelektualnego bądź w typowaniu czynników rozwoju regionalnego.  

Warto zauważyć, że wyniki badań statystycznych prowadzonych, aby dostarczyć 

argumentów za bądź przeciw hipotezom stawianym w debatach ekonomistów zależą krytycznie od 

własności metod statystycznych wykorzystywanych w tych badaniach.  

Mamy tutaj przykładowo na uwadze, jakość estymatora gęstości w przypadku brakujących 

danych, jakość wielowymiarowej miary skośności w przypadku odstępstwa od normalności 

populacji, bądź jakość algorytmu zmniejszającego wymiar zagadnienia statystycznego 

w przypadku występowania obserwacji odstających.  

W sytuacji, gdy w badaniach tego typu uwzględniamy dodatkowo pewien wymiar 

przestrzenny bądź społecznoekonomiczny – przeprowadzenie dobrej jakości wnioskowania 

statystycznego wydaje się stanowić szczególnym wyzwanie.  

W niniejszej pracy w krytyczny sposób analizujemy trudności związane z wnioskowaniem 

statystycznym dotyczącym wybranych modeli dochodu i wybranych miar nierówności 

dochodowych.  

Z perspektywy statystyki odpornej badamy m.in. powszechnie wykorzystywane estymatory 

parametrów modeli Pareto, Pearsona, D'Addario oraz Daguma. Proponujemy odporne 
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i nieparametryczne alternatywy dla popularnych miar nierówności dochodowych oraz pokazujemy 

jak zredukować liczbę predyktorów dla agregatów dochodowych w odporny sposób. Zwracamy 

szczególną uwagę na przestrzenny wymiar naszych badań.  

Rozważania teoretyczne ilustrujemy m.in. wykorzystując dane empiryczne pochodzące 

z Eurostatu i Minnesota Population Center (IMPUS). 


