ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 8, 1996

Janina Śladkowska

A VARIATIONAL METHOD FOR GENERALIZED GEL'FER FUNCTIONS

To Professor Lech Włodarski on His 80th birthday

The note is devoted to a class \mathcal{G}_n of functions f analytic and univalent in the unit disk U, satisfying in addition the conditions f(0) = 1 and, in the case n = 1: $O \notin f(U)$, in the case $n \ge 2$: if $w \in$ f(U), then $\varepsilon_j w \notin f(U)$, $\varepsilon_j = \exp \frac{2\pi i j}{n}$, for every $j = 1, \ldots, n-1$. Variational formulas are derived and, as applications, are given the estimations of some functions in the considered class of functions.

1. INTRODUCTION

Let \mathcal{G}_n , $n \ge 1$, be a class of functions f which are analytic and univalent in the unit disk $U = \{z : |z| < 1\}$, have a series development

$$f(z) = 1 + a_1 z + a_2 z^2 + \dots$$

and satisfy the condition:

1⁰ if
$$w \in f(U)$$
, then $\varepsilon_j w \notin f(U)$, $\varepsilon_j = \exp \frac{2\pi i j}{n}$, for every $j = 1, \ldots, n-1, n \ge 2, 0 \notin f(U)$ for $n = 1$.

J. ŚLADKOWSKA

It is clear that \mathcal{G}_2 is the well known Gel'fer class \mathcal{G} and \mathcal{G}_1 is the class of nonvanishing functions [8]. Moreover if f is in \mathcal{G}_n , then $f^{n/2}$, where $f^{n/2}(0) = 1$, is in \mathcal{G} and if f is in \mathcal{G} , then $f^{2/n}$, where $f^{2/n}(0) = 1$, is in \mathcal{G}_n . The variational method developed by Hummel in [5] for Gel'fer class induces of course a variation in the class \mathcal{G}_n . However the calculations are such that it is almost as easy to obtain the variation directly in the class \mathcal{G}_n , using the technics developed by Hummel and Schiffer in [6].

2. VARIATIONAL FORMULAS

Let D be a domain with the following property:

2⁰ if $w \in D$, then $\varepsilon_j w \notin D$, j = 1, ..., n-1, for $n \ge 2$ and $0 \notin D$ for n = 1.

Let Δ be a domain containing ∂D and such that $w \in \overline{\Delta}$ iff $\varepsilon_j w \in \overline{\Delta}$, $j = 1, \ldots, n-1$. Let $\Phi(w)$ be analytic in $\overline{\Delta}$ and let it satisfy the identity

$$\Phi(w) = \Phi(\varepsilon_j w), \quad j = 1, \dots, n-1,$$

for $n \geq 2$ and all $w \in \overline{\Delta}$. Moreover let it be such that the function

$$\Psi(w,\omega) = \begin{cases} \frac{\Phi(w) - \Phi(\omega)}{w - \omega}, & w \neq \omega, \\ \Phi'(w), & w = \omega, \end{cases}$$

is defined, analytic and uniformly bounded in $\overline{\Delta} \times \overline{\Delta}$. It can be proved that the function

$$w^*(w) = w \exp \varepsilon e^{i\alpha} \Phi(w),$$

where $\varepsilon > 0$, $\alpha \in \mathcal{R}$, for ε sufficiently small and for all α is univalent in Δ and maps the boundary ∂D onto the boundary of a new domain D^* also having the property 2^0 .

Let w_0 be any point such that $\varepsilon_j w_0 \notin \partial D$, $j = 0, \ldots, n-1$, and set

(1)
$$\Phi(w) = \frac{w^n - 1}{w^n - w_0^n}$$

It is easily shown that $\Phi(w)$ satisfies the requirements given above, and hence induces a variation for generalized Gel'fer functions.

- Let $f \in \mathcal{G}_n$ and let
 - (i) $\varepsilon_j w_0 \notin \overline{f(U)}, j = 0, ..., n-1$ or
- (ii) $w_0 \in f(U)$.

In both cases the function (1) has the required properties for D = f(U). In the case (i) the composition $w^* \circ f$ gives us the varied function

(2)
$$f^*(z) = f(z) + \varepsilon f(z)e^{i\alpha} \frac{f^n(z) - 1}{f^n(z) - w_0^n} + o(\varepsilon).$$

In the case (ii), basing on Goluzin's method of constructing variations of functions of the class S ($f \in S$ if f is analytic and univalent in Uand f(0) = f'(0) - 1 = 0) [4] p. 98, we obtain the varied function in the form

(3)

$$f^{*}(z) = f(z) + \varepsilon f(z)e^{i\alpha} \frac{f^{n}(z) - 1}{f^{n}(z) - f^{n}(\zeta)}$$

$$- \varepsilon e^{i\alpha} z f'(z) \frac{f^{n}(\zeta) - 1}{n\zeta^{2} f^{n-2}(\zeta) f'^{2}(\zeta)} \frac{\zeta}{z - \zeta}$$

$$+ \varepsilon e^{-i\alpha} z f'(z) \frac{\overline{f^{n}(\zeta)} - 1}{n\overline{\zeta}^{2} \overline{f^{n-2}(\zeta)} \overline{f'^{2}(\zeta)}} \frac{\overline{\zeta} z}{1 - \overline{\zeta} z}$$

$$+ o(\varepsilon),$$

where $f(\zeta) = w_0$.

Other useful varied functions we can obtain by transformations in the z-plane. Let $\omega(z)$ be univalent in $U, \omega(U) \subset U, \omega(0) = 0$, then $f \circ \omega \in \mathcal{G}_n$. In particular, putting $\omega(z) = e^{\pm i\varepsilon} z$, $\varepsilon > 0$, we have a varied function

(4)
$$f^*(z) = f(e^{\pm i\varepsilon}z) = f(z) \pm \varepsilon i z f'(z) + o(\varepsilon).$$

Putting next $\omega(z) = (1 - \varepsilon)z$, $0 < \varepsilon < 1$, we have a varied function

(4')
$$f^*(z) = f((1-\varepsilon)z) = f(z) - \varepsilon z f'(z) + o(\varepsilon).$$

Putting finally $\omega(z) = k_{\alpha}^{-1}((1-\varepsilon)k_{\alpha}(z))$, where $k_{\alpha}(z) = z(1 + e^{-i\alpha}z)^{-2}$, $0 < \varepsilon < 1$, $\alpha \in \mathcal{R}$, we have the slit variation

(5)
$$f^*(z) = f(z) - \varepsilon z f'(z) \frac{e^{i\alpha} + z}{e^{i\alpha} - z} + o(\varepsilon)$$

3. SCHIFFER EQUATION

Let Ψ be a continuous complex valued functional over \mathcal{G}_n , having a Gâteaux complex derivative. That means

(6)
$$\Psi(f + \varepsilon h) = \Psi(f) + \varepsilon \Lambda_f(h) + o(\varepsilon)$$

for any $f \in \mathcal{G}_n$, h analytic in U, and any $\varepsilon > 0$, where Λ_f is continuous linear functional in h.

The class \mathcal{G}_n is not compact in the topology of uniform convergence on compact subsets. However it becomes compact by addition of the function $f(z) \equiv 1$. Thus the problem of maximizing $\operatorname{Re} \Psi$ in $\mathcal{G}_n \cup \{1\}$, if of course Ψ is defined also for f = 1, always has a solution in $\mathcal{G}_n \cup \{1\}$ and this solution is in \mathcal{G}_n , if we verify that f = 1 is not maximal.

Suppose now that $f \in \mathcal{G}_n$ is locally maximal for $\operatorname{Re} \Psi$, that means $\operatorname{Re} \Psi(f^*) \leq \operatorname{Re} \Psi(f)$ for all "nearby" $f^* \in \mathcal{G}_n$ ("nearby" in the sense of uniform convergence on compact subsets). Using the varied functions (2), (3), (4), (4') and (5) we can prove

Theorem 1. Let Ψ be a complex valued functional defined and continuous over \mathcal{G}_n , having a complex Gâteaux derivative Λ_f as defined in (6).

If $f \in \mathcal{G}_n$ is locally maximal for $\operatorname{Re} \Psi$, then f has following properties.

(a) $w = f(\zeta)$ satisfies the differential equation

(7)
$$\frac{n\zeta^2 w^{n-2} {w'}^2}{w^n - 1} \Lambda_f \left(f(z) \frac{f^n(z) - 1}{f^n(z) - w^n} \right) = \Lambda_f \left(zf'(z) \frac{\zeta}{z - \zeta} \right) - \overline{\Lambda_f \left(zf'(z) \frac{\overline{\zeta} z}{1 - \overline{\zeta} z} \right)}$$

in some ring $P = \{\zeta : r < |\zeta| < 1\}.$

- (b) Im $\Lambda_f(zf'(z)) = 0$, Re $\Lambda_f(zf'(z)) \ge 0$.
- (c) The right-hand side of (9) is an analytic function in the ring $P_1 = \{\zeta : r < |\zeta| < \frac{1}{r}\}$, real and non-positive on ∂U .

(d) f maps U onto a domain whose boundary was made up of analytic arcs which lie on trajectories of the quadratic differential

(8)
$$\frac{n w^{n-2}}{w^n - 1} \Lambda_f \left(f(z) \frac{f^n(z) - 1}{f^n(z) - w^n} \right) dw^2.$$

- (e) If $\Lambda_f\left(f(z)\frac{f^n(z)-1}{f^n(z)-w^n}\right)$ is a rational function $\not\equiv \text{const.}$, then the set $\mathcal{C} \setminus \bigcup_{j=0}^{n-1} \varepsilon_j f(U)$ has no interior points, where $\varepsilon_j f(U) = \{w : \exists_{z \in U} w = \varepsilon_j f(z)\}.$
- (f) If the points $\varepsilon_j w_0$, j = 0...n 1, are not in f(U), then at least one of them is on the boundary $\partial f(U)$. The points 0 and ∞ are also on this boundary.

The function $g(z) = \frac{1+f^n(z)}{1-f^n(z)}$ is univalent in U and maps U onto a domain which closure is the entire complex sphere.

Proof.

Ad (a) From the varied formula (3) and the formula (6) it follows

$$\operatorname{Re}\Psi(f^*) = \operatorname{Re}\Psi(f) + \varepsilon \operatorname{Re}\left\{e^{i\alpha}\left[\Lambda_f\left(\frac{f^n(z) - 1}{f^n(z) - f^n(\zeta)}\right) - zf'(z)\frac{f^n(\zeta) - 1}{n\zeta^2 f^{n-2}(\zeta)f'^2(\zeta)}\frac{\zeta}{z-\zeta}\right) + \overline{\Lambda_f\left(zf'(z)\frac{\overline{f^n(\zeta)} - 1}{n\overline{\zeta}^2\overline{f^{n-2}(\zeta)}}\frac{\overline{\zeta}z}{f'^2(\zeta)}\frac{1-\overline{\zeta}z}{1-\overline{\zeta}z}\right)}\right]\right\} + o(\varepsilon)$$

Furthermore, because α is arbitrary and f makes $\operatorname{Re} \Psi$ a local maximum, we have

(9)
$$\Lambda_f \left(\frac{n\zeta^2 f^{n-2}(\zeta) {f'}^2(\zeta)}{f^n(\zeta) - 1} f(z) \frac{f^n(z) - 1}{f^n(z) - f^n(\zeta)} - z f'(z) \frac{\zeta}{z - \zeta} \right) = \overline{\Lambda_f \left(z f'(z) \frac{\overline{\zeta} z}{1 - \overline{\zeta} z} \right)}.$$

Taking account of the representation of continuous linear functional in the set of analytic functions in U [1], we shall extend the functional Λ_f to a continuous linear functional on the class of functions meromorphic in U and having the poles in the ring P. As a consequence we obtain (7), where ζ is arbitrary in P.

Ad (b) The varied formulas (4) and (4') give

$$\operatorname{Re}\Psi(f^*) = \operatorname{Re}\Psi(f) + \varepsilon \operatorname{Re}\left\{\Lambda_f\left(i\,z\,f'(z)\right)\right\} + o(\varepsilon),$$

and

$$\operatorname{Re}\Psi(f^*) = \operatorname{Re}\Psi(f) - \varepsilon \operatorname{Re}\left\{\Lambda_f\left(zf'(z)\right)\right\} + o(\varepsilon).$$

Since f realizes the maximum of $\operatorname{Re} \Psi$ and ε is an arbitrary real number or an arbitrary positive number, then (b).

Ad (c),(d) The varied formula (5) shows that for $\zeta \in \partial U$

$$\operatorname{Re}\Psi(f^*) = \operatorname{Re}\Psi(f) - \varepsilon \operatorname{Re}\left\{\Lambda_f\left(zf'(z)\frac{\zeta+z}{\zeta-z}\right)\right\} + o(\varepsilon).$$

Since f is maximal for $\operatorname{Re} \Psi$ and ε is an arbitrary positive number, then

$$\operatorname{Re}\left\{\Lambda_f\left(zf'(z)\frac{\zeta+z}{\zeta-z}\right)\right\}\leq 0$$

and hence and by (b) it follows that the left-hand side of (7) is analytic for $w = f(\zeta)$ on ∂U and that

$$\operatorname{Re}\left\{\frac{n\zeta^2 f^{n-2}(\zeta) f'^2(\zeta)}{f^n(\zeta) - 1} \Lambda_f\left(f(z) \frac{f^n(z) - 1}{f^n(z) - f^n(\zeta)}\right)\right\} \le 0$$

on ∂U . Consequently, the boundary $\partial f(U)$ must lie on the trajectories of the quadratic differential (8).

Ad (e) Suppose now that the set $E = \mathcal{C} \setminus \bigcup_{j=0}^{n-1} \varepsilon_j f(U)$ has an interior point. Hence, there exists a disk $K \subset E$. Let $w \in K$. If we apply (6) and the varied formula (2), we obtain

$$\operatorname{Re}\Psi(f^*) = \operatorname{Re}\Psi(f) + \varepsilon \operatorname{Re}\left\{e^{i\alpha}\Lambda_f\left(f(z)\frac{f^n(z)-1}{f^n(z)-w^n}\right)\right\} + o(\varepsilon).$$

f is maximal, then $\Lambda_f\left(f(z)\frac{f^n(z)-1}{f^n(z)-w^n}\right) = 0$ for $w \in K$, that contradicts our assumption.

Ad (f) The univalence of g is the consequence of the condition 1° . The rest of the properties are obvious. **Example.** To illustrate the theorem given above, we shall now find an estimate for the functional $\Psi(f) = f'(0)$. We find without any difficulties that any $f \in \mathcal{G}_n$ which locally maximizes $\operatorname{Re} f'(0)$ must satisfy the differential equation

$$\frac{n^2 w^{n-2} {w'}^2}{(1-w^n)^2} = \frac{1}{\zeta^2}.$$

Integrating this equation we receive that

$$f(\zeta) = \left(\frac{1+\zeta}{1-\zeta}\right)^{\frac{2}{n}} = 1 + \frac{4}{n}\zeta +$$

and then

(10)
$$\max_{f \in \mathcal{G}_n} \operatorname{Re} f'(0) = \frac{4}{n}.$$

4. GOLUZIN AND GRUNSKY INEQUALITIES

As an important application of the Theorem 1, consider the problem of maximizing the functional defined as follows.

Suppose that L denote a continuous and linear functional defined in the set H(U) of analytic functions in U and let L(1) = 0. Let $\varphi(z, u)$ be analytic in $U \times U$ and $\psi(z, u) = \varphi(z, \overline{u})$. We define

$$L^2(\varphi) = L(L(\varphi)), \quad |L|^2(\psi) = L(L(\psi)),$$

where we compose L successively with the function of the first remaining variable, see [7], p. 114. For L^2 the order of composition is not important by general formula of the continuous and linear functional defined in H(U). For $|L|^2$ we note that $|e^{i\alpha}L|^2 = |L|^2$ and $\operatorname{Im} |L|^2(\psi) = 0$ if $\psi(z, u) = \overline{\psi(\overline{z}, \overline{u})}$. **Theorem 2.** Assume that there exists the function which maximizes in \mathcal{G}_n the real part of the functional

$$\begin{split} \Psi(f) &= \lambda^2 \log \frac{n f'(0)}{4} + 2\lambda L \left(\log \frac{f^k(z) - 1}{z(f^k(z) + 1)} \right) \\ &+ L^2 \left(\log \frac{f^k(z) - f^k(u)}{(z - u)(f^k(z) + f^k(u))} \right), \end{split}$$

where $k = \frac{n}{2}$, $\lambda \in \mathcal{R}$, then

(11)
$$\max_{f \in \mathcal{G}_n} \operatorname{Re} \Psi(f) = |L|^2 \left(\log(1 - z\overline{u}) \right).$$

Remark. The functional Ψ is defined and continuous in \mathcal{G}_n but not in $\mathcal{G}_n \cup \{1\}$, then it is possible that the function maximal for $\operatorname{Re} \Psi$ does not exist.

Proof. Let f be the maximal function for $\operatorname{Re} \Psi$. The complex Gâteaux derivative Λ_f of Ψ is

$$\Lambda_f(h) = \lambda^2 \frac{h'(0)}{f'(0)} + 2\lambda L \left(n \frac{f^{k-1}(z)h(z)}{f^n(z) - 1} \right) + L^2 \left(n f^{k-1}(z) f^{k-1}(u) \frac{f(u)h(z) - f(z)h(u)}{f^n(z) - f^n(u)} \right).$$

Applying the Theorem 1 we obtain for $f(\zeta), \zeta \in P = \{\zeta : r < |\zeta| < 1\}$

(12)
$$\frac{n^2 \zeta^2 f^{n-2}(\zeta) f'^2(\zeta)}{(1-f^n(\zeta))^2} \left(\lambda + (1-f^n(\zeta)) L\left(\frac{f^k(z)}{f^n(z) - f^n(\zeta)}\right)\right)^2 = -B(\zeta),$$

where

$$B(\zeta) = \Lambda_f\left(z f'(z) \frac{\zeta}{z-\zeta}\right) - \overline{\Lambda_f\left(z f'(z) \frac{\overline{\zeta}z}{1-\overline{\zeta}z}\right)},$$

is analytic in the ring $P_1 = \{\zeta : r < |\zeta| < \frac{1}{r}\}$ and $B(\zeta) \leq 0$ on ∂U . Hence, the left hand side of (12) has an analytic continuation on the same ring and it is a square of the function

(13)
$$\Phi(\zeta)$$

$$=\frac{n\zeta f^{k-1}(\zeta)f'(\zeta)}{1-f^n(\zeta)}\left(\lambda+(1-f^n(\zeta))L\left(\frac{f^k(z)}{f^n(z)-f^n(\zeta)}\right)\right)$$

which is analytic in the ring P. By (12) we see that there exists a branch of square root $B^*(\zeta)$ of $-B(\zeta)$ in P and it can be proved that $B^*(\zeta)$ has an analytic continuation over ∂U . The same is true for the function $\Phi(\zeta)$, so it is analytic in the ring $P_2 = \{\zeta : r < |\zeta| \le 1\}$ and, what follows from the inequality $-B(\zeta) \ge 0$ on ∂U , real on ∂U . By adding to (13) the function $-L\left(\frac{\zeta}{z-\zeta}\right) + L\left(\frac{1}{1-\zeta z}\right)$, which is analytic in P_2 and real on ∂U , we receive the function

$$X(\zeta) = \Phi(\zeta) - L\left(\frac{\zeta}{z-\zeta}\right) + \overline{L\left(\frac{1}{1-\overline{\zeta}z}\right)}$$

analytic in \overline{U} , real on ∂U and $X(0) = \Phi(0) = -\lambda$. By the Schwarz reflection principle, X extends to a bounded analytic function in \mathcal{C} . Then $X(\zeta) = X(0) = -\lambda$ for each ζ . We divide this identity by ζ and write it as follows

(14)

$$\frac{\partial}{\partial\zeta} \left(\lambda \log \frac{f^k(\zeta) - 1}{\zeta(f^k(\zeta) + 1)} + L\left(\log \frac{f^k(z) - f^k(\zeta)}{(z - \zeta)(f^k(z) + f^k(\zeta))}\right) + \overline{L(\log(1 - \overline{\zeta}z))} \right) = 0.$$

If we integrate (14) from 0 to ζ , we obtain

(15)
$$\lambda \log \frac{f^k(\zeta) - 1}{\zeta(f^k(\zeta) + 1)} + L\left(\log \frac{f^k(z) - f^k(\zeta)}{(z - \zeta)(f^k(z) + f^k(\zeta))}\right) + \overline{L(\log(1 - \overline{\zeta}z))} = c$$

where

(16)
$$c = \lambda \log \frac{n f'(0)}{4} + L \left(\log \frac{f^k(z) - 1}{z(f^k(z) + 1)} \right).$$

J. ŚLADKOWSKA

It is easily seen that $\operatorname{Re} c = 0$. Indeed, by Theorem 1 (e) the set $\mathcal{C} \setminus \bigcup_{j=0}^{n-1} \varepsilon_j f(U)$ has no interior points, then there exists a point ω which is common for the boundaries $\partial \varepsilon_{\mu} f(U)$ and $\partial \varepsilon_{\nu} f(U)$, where $\varepsilon_{\mu}^{k} = -1$ and $\varepsilon_{\nu}^{k} = 1$. Hence, there exist two sequences (z'_{m}) and $(z''_{m}), z'_{m}, z''_{m} \in U$ such that $\varepsilon_{\mu} f(z'_{m}) \to \omega, \varepsilon_{\nu} f(z''_{m}) \to \omega$ as $m \to \infty$. We may assume that $z'_{m} \to z', z''_{m} \to z'', z'' \in \partial U$. Putting in (15) successively $\zeta = z'_{m}$ and $\zeta = z''_{m}$, letting $m \to \infty$ and adding side by side the equalities obtained in such a way, we conclude that c is pure imaginary. Multiplying now (16) by λ , applying L to both sides of (15), adding side by side the equalities obtained in such a way we have (11). The maximal function satisfies the identity (15) with (16) where $\operatorname{Re} c = 0$.

Theorem 3. If $\lambda \neq 0$ real, then every function f of \mathcal{G}_n satisfies the inequality

(17)
$$\operatorname{Re}\Psi(f) \leq -|L|^2(\log(1-\overline{z}u)).$$

This inequality is exact in the sense that there exists the function in \mathcal{G}_n for which the inequality (17) becomes equality.

Proof. First we observe that the functional $\operatorname{Re} \Psi$ is bounded from above in \mathcal{G}_n . This follows from (10) and from the general form of the continuous linear functional in H(U) by using the inequality of Goluzin [4] $(|\log \frac{g(z)}{z} + \log(1-|z|^2)| \leq \log \frac{1+|z|}{1-|z|}$ for $g \in S$).

Let $M = \sup_{f \in \mathcal{G}_n} \operatorname{Re} \Psi(f)$. Then there exists a sequence (f_m) , $f_m \in \mathcal{G}_n$, almost uniformly convergent in U, such that $\operatorname{Re} \Psi(f_m) \to M$. Let $f_m \to f$. If $f \in \mathcal{G}_n$, then $\operatorname{Re} \Psi(f) = M$ and f is a maximal function for $\operatorname{Re} \Psi$. Suppose now that f = 1. Then $f'_m(0) \to 0$ and the first term in $\operatorname{Re} \Psi(f_m)$ has a limit $-\infty$. Let $F_m = \frac{2}{n}(f'_m(0))^{-1}(f_m^k - 1)$. We see that $F_m \in S$ and, without loss of generality, we may suppose that $F_m \to F \in S$ almost uniformly in U. Substituting $\frac{n}{2}f'(0)F_m + 1$ in the place of f_m^k in $\operatorname{Re} \Psi(f_m)$, we get that the last two terms in $\operatorname{Re} \Psi(f_m)$ converge to finite limits

$$\operatorname{Re}\left\{2\lambda\left(\log\frac{F(z)}{z}\right)\right\} \quad and \quad \operatorname{Re}\left\{L^{2}\left(\log\frac{F(z)-F(u)}{z-u}\right)\right\}$$

respectively. Hence, $M = -\infty$, which is impossible.

We shall now examine the case when $\lambda = 0$. Getting $\lambda \to 0$ in (17), we assert that

(18) Re
$$\left\{ L^2 \left(\log \frac{f^k(z) - f^k(u)}{(z - u)(f^k(z) + f^k(u))} \right) \right\} \le -|L|^2 (\log(1 - \overline{z}u))$$

for every $f \in \mathcal{G}_n$. To prove that the inequality (18) is exact, we first remind that for each $F \in S$ the inequality

(19)
$$\operatorname{Re}\left\{L^{2}\left(\log\frac{F(z)-F(u)}{z-u}\right)\right\} \leq -|L|^{2}(\log(1-\overline{z}u))$$

holds and there is a function of S for which (19) becomes equality, [7], p.114. Let \tilde{F} be such a function. Next we observe that \tilde{F} can be represented as a limit of a sequence (F_m) of bounded functions belonging to S. From the other hand, for each bounded function F_m and for the constant b_m , $|b_m|$ sufficiently small, the function $f_m(z) =$ $(1 + b_m F_m(z))^{2/n}$ belongs to \mathcal{G}_n . If we assume that $b_m \to 0$ then, by the continuity of L, we have

$$\operatorname{Re}\left\{L^{2}\left(\log\frac{f_{m}^{k}(z)-f_{m}^{k}(u)}{(z-u)(f_{m}^{k}(z)+f_{m}^{k}(u))}\right)\right\}$$
$$=\operatorname{Re}\left\{L^{2}\left(\log\frac{b_{m}(F_{m}(z)-F_{m}(u))}{(z-u)(2+b_{m}(F_{m}(z)+F_{m}(u)))}\right)\right\}$$
$$\to\operatorname{Re}\left\{L^{2}\left(\log\frac{\tilde{F}(z)-\tilde{F}(u)}{z-u}\right)\right\}=-|L|^{2}(\log(1-\overline{z}u)).$$

Hence, it is obvious that the inequality (18) can not be improved. We have thus proved

Theorem 4. For every function $f \in \mathcal{G}_n$ the following inequality

$$\operatorname{Re}\left\{L^{2}\left(\log\frac{f^{k}(z)-f^{k}(u)}{(z-u)(f^{k}(z)+f^{k}(u))}\right)\right\} \leq -|L|^{2}\log(1-\overline{z}u)$$

holds. This inequality can not be improved.

Remark. By replacing L by $e^{i\alpha}L$, $\alpha \in \mathcal{R}$, we have a second version of inequality (18):

(18')
$$\left| L^2 \left(\log \frac{f^k(z) - f^k(u)}{(z - u)(f^k(z) + f^k(u))} \right) \right| \leq -|L|^2 \log(1 - \overline{z}u).$$

To illustrate the theorems given above, we shall find the estimations for some functionals defined in \mathcal{G}_n .

(A) Let
$$\lambda = 1$$
, $L(h) = 0$. Then for each $f \in \mathcal{G}_n$
 $|f'(0)| \leq \frac{4}{n}$

and the maximal function is

$$f(z) = \left(\frac{1+z}{1-z}\right)^{\frac{2}{n}}.$$

The same result was obtained directly from the equation (7).

(B) Let $L(h) = \sum_{\mu=1}^{N} \lambda_{\mu}(h(z_{\mu}) - h(0))$, where $z_1, ..., z_N$ are arbitrary points in U and $\lambda_1, ..., \lambda_N$ arbitrary complex numbers, $\lambda \in \mathcal{R}$. Then for each $f \in \mathcal{G}_n$

$$(20) \quad \operatorname{Re}\left\{\lambda^{2}\log\frac{n\,f'(0)}{4} + 2\lambda\left(\sum_{\mu=1}^{N}\lambda_{\mu}\log\frac{f^{k}(z_{\mu}) - 1}{z_{\mu}(f^{k}(z_{\mu}) + 1)}\right)\right.$$
$$\left. -\log\frac{n\,f'(0)}{4}\sum_{\mu=1}^{N}\lambda_{\mu}\right) + \sum_{\mu,\nu=1}^{N}\lambda_{\mu}\lambda_{\nu}\log\frac{f^{k}(z_{\mu}) - f^{k}(z_{\nu})}{(z_{\mu} - z_{\nu})(f^{k}(z_{\mu}) + f^{k}(z_{\nu}))}\right.$$
$$\left. -2\sum_{\mu=1}^{N}\lambda_{\mu}\cdot\sum_{\mu=1}^{N}\lambda_{\mu}\log\frac{f^{k}(z_{\mu}) - 1}{z_{\mu}(f^{k}(z_{\mu}) + 1)} + \log\frac{n\,f'(0)}{4}\left(\sum_{\mu=1}^{N}\lambda_{\mu}\right)^{2}\right\}$$
$$\leq -\sum_{\mu,\nu=1}^{N}\lambda_{\mu}\overline{\lambda_{\nu}}\log(1 - z_{\mu}\overline{z_{\nu}}).$$

We define the differential quotient $\frac{h(z)-h(u)}{z-u}$ as h'(z) when u = z. Putting in (20) $\lambda = \sum_{\mu=1}^{N} \lambda_{\mu}$, where $\sum_{\mu=1}^{N} \lambda_{\mu}$ is real, we have the inequality

(21) Re
$$\left\{\sum_{\mu,\nu=1}^{N} \lambda_{\mu} \lambda_{\nu} \log \frac{f^{k}(z_{\mu}) - f^{k}(z_{\nu})}{(z_{\mu} - z_{\nu})(f^{k}(z_{\mu}) + f^{k}(z_{\nu}))}\right\}$$

 $\leq -\sum_{\mu,\nu=1}^{N} \lambda_{\mu} \overline{\lambda_{\nu}} \log(1 - z_{\mu} \overline{z_{\nu}}).$

It is analogous to the Goluzin inequality for the class S, [4], p. 128. For the special case when N = 1, $\lambda_1 = 1$, $z_1 = z$, we have the inequality

(22)
$$\left|\frac{f'(z)}{f(z)}\right| \le \frac{4}{n(1-|z|^2)}.$$

(C) Let $\lambda = 0$, $L(h) = \lambda_1 h'(z)$, λ_1 - an arbitrary complex number, $z \in U$ arbitrary but fixed. Then for every $f \in \mathcal{G}_n$ we have the inequality

$$\operatorname{Re}\left\{\lambda_1^2\{f(z), z\} + \lambda_1^2(k^2 + \frac{1}{2})\left(\frac{f'(z)}{f(z)}\right)^2\right\} \le 6\frac{|\lambda_1|^2}{(1 - |z|^2)^2}$$

Taking in account that λ_1 is arbitrary, we have the inequality

(23)
$$\left| \{f(z), z\} + (k^2 + \frac{1}{2}) \left(\frac{f'(z)}{f(z)}\right)^2 \right| \le 6 \frac{1}{(1 - |z|^2)^2},$$

where $\{f(z), z\} = \frac{d}{dz} \left(\frac{f''(z)}{f'(z)}\right) - \frac{1}{2} \left(\frac{f''(z)}{f'(z)}\right)^2$ denote a Schwarzian derivative for f at the point z.

Let $\{\lambda_m\}_{m=1}^{\infty}$ be a sequence of complex numbers such that

$$\lim_{m \to \infty} \sup |\lambda_m|^{\frac{1}{m}} < 1$$

and λ arbitrary real. By Toeplitz theorem [6] p. 36, there exists a functional $L \in H'(U)$ such that $L(z^m) = \lambda_m, m = 1, ..., L(1) = 0$. Let

$$\sum_{p,q=0}^{\infty} a_{pq} z^p u^q = \log \frac{f^k(z) - f^k(u)}{(z-u)(f^k(z) + f^k(u))},$$

then for every $f \in \mathcal{G}_n$ we have by (11) the inequality (24)

$$\operatorname{Re}\left\{\lambda^{2}\log\frac{n\,f'(0)}{4} + 2\lambda\sum_{p=1}^{\infty}\lambda_{p}a_{p0} + \sum_{p,q=1}^{\infty}\lambda_{p}\lambda_{q}a_{pq}\right\} \leq \sum_{p=1}^{\infty}\frac{|\lambda_{p}|^{2}}{p}.$$

J. ŚLADKOWSKA

It is analogous to the weak Grunsky inequality for the class S [2], p. 122. By the Toeplitz theorem mentioned above we observe that (24) represents a different form of the inequality (17).

By (24) for $\lambda = 0$ we can obtain like in [7], p. 119, the inequality

(25)
$$\sum_{p=1}^{N} p \left| \sum_{q=1}^{N} a_{pq} \lambda_{q} \right|^{2} \leq \sum_{p=1}^{N} \frac{|\lambda_{p}|^{2}}{p},$$

for all $\lambda_1, \ldots, \lambda_N \in C$, which is analogous to the strong Grunsky inequality in S, [2], p. 123.

From (25), applying the Cauchy-Schwartz inequality, we have

(26)
$$\sum_{p=1}^{N} \sum_{q=1}^{N} a_{pq} \lambda_p \mu_q \le \sum_{p=1}^{N} \frac{|\lambda_p|^2}{p} \cdot \sum_{q=1}^{N} \frac{|\mu_q|^2}{q}.$$

where λ_p and μ_q are arbitrary complex numbers. (26) is analogous to the generalized weak Grunsky inequality [7], p. 124.

Remark. The inequalities (24) are not only necessary but also sufficient for $f \in H(U)$ to be in \mathcal{G}_n .

References

- R. Cacciopoli, Sui funzioni lineari nel campo delle funzioni analitiche, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Natur 13 (1931), 263-266.
- [2] P.L. Duren, Univalent Functions, Springer-Verlag, 1983.
- [3] S.A. Gel'fer, On the class of regular functions which do not take on any pair of values w and -w, in Russian, Mat. Sbornik N. S **19(61)** (1949), 33-46.
- [4] G.M. Goluzin, Geometric Theory of Functions of a Complex Variable, Transl. Math. Monographs, 26, Amer. Math. Soc., Providence RI, 1969.
- [5] I.A. Hummel, A variational method for Gel'fer functions, J. d'Analyse Math. 30 (1976), 271-280.
- [6] I.A. Hummel, M.M. Schiffer, Variational methods for Bieberbach-Eilenberg functions and for pairs, Ser A. I. Mathematica, Ann. Acad. Sci. Fennicae 3 (1977), 3-42.
- [7] G. Schober, Univalent Functions, Selected Topics, Springer-Verlag, 1975.
- [8] J. Sladkowska, A variational method for univalent nonvanishing functions in the unit disk, Math. 16, Folia Scientiarium Universitatis Technicae Resoviensis 129 (1994), 63-77.

Janina Śladkowska

METODA WARIACYJNA DLA UOGÓLNIONYCH FUNKCJI GEL'FER'A

Praca jest poświęcona klasom \mathcal{G}_n funkcji f analitycznych i jednolistnych w kole jednostkowyn U, spełniających dodatkowo warunki f(0) = 1 i, w przypadku n = 1: $O \notin f(U)$, w przypadku $n \ge 2$: jeśli $w \in f(U)$, to $\varepsilon_j w \notin f(U)$, $\varepsilon_j = \exp \frac{2\pi i j}{n}$, dla $j = 1, \ldots, n-1$. Uzyskano wzory wariacyjne i zastosowano je do oszacowania pewnych funkcjonałów w rozważanych klasach.

> Institute of Mathematics Silesian Technical University ul. Zwycięstwa 42, 44-100 Gliwice, Poland