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Let 4> : X  —* Y  be a linear family of Lipschitz function. We 
assume that the family <ï> satisfies additional conditions. Under these 
assumptions we show the following result:

Let <f>x € ‘f* be such tha t for all x, y € X

||[<My) -  <f>x(x)] — [/(!/) — f(x)]\\Y < K{dx {x,y))a .

Then 4>T is uniquely determined up to a constant and it satis-
fies Holder condition with exponent a  — 1 with respect to x  in the 
Lipschitz norm ||.||i,.

Since optimization in metric spaces, the convex analysis over m et-
ric spaces was developed (see [2]-[7]). In this paper we shall extend 
on a metric space the following classical theorem.

Theorem 1 . Let (X , || • ||x ), (F, || ■ ||y), be Banach spaces. Let F ( x ) 
be a differentiable mapping of an open set U C  X  into Y . The 
differential dF\x as a function o f x satisfies a Holder condition with  
an exponent 0 < a  < 1 and with constant A” > 0 i f  and only i f  for 
each x , y  £ U

(1) ||[F(!,) -  F(z)] -  8F, (y -  z)||y <  K\\y -



The our extension concern the case when (X , d \ ) is a metric space 
and (F, || ■ ||y) as before is a Banach space. Let $  be a a family of 
mappings of an open set U C X  into F . Let F(x)  be a mapping of the 
open set U C X  into Y.  We say that a mapping (f> £ $  is a $ -gradient 
at a point x  of F(x)  if for each e > 0 there is a neighbourhood V  of 
x  such that for all y £ V

We say that a mapping F(x)  mapping of the open set U C X  into 
Y  is differentiable at a point x if for each x there is a ^-gradient 
<j>x of the F(x)  at the point x. Observe that under such general 
formulation this ^-gradient need not to be unique.

When we want to extend Theorem 1 , we need to determine some-
thing which play a role of a norm of operator. Observe that in the 
case of linear operators the norms in nothing else as the Lipschitz 
constant.

Let ( X , d x )  be a metric space. Let (F, || • ||y ) be a Banach space. 
Let <5 be a linear class of Lipschitzian mapping of X  with values in 
Y.  We define on $  a quasinorm

Observe that if — >̂21| Z, =  0 , then the difference of <j)\ and </>2 
is a constant function, i.e. 4>\(x) =  (f)2(x) +  c, where c € Y.  Thus we 
consider the quotient space $  =  §  j R .  The quasinorm ||</>||l induces
the norm in the space $ . Since it will not lead to misunderstanding 
this norm we shall denote also H^Hl -

T h eo rem  2 . Let ( X , d x )  be a metric space and let (F, || • ||y ) be a 
Banacli space. Let $  denote a linear class o f Lipschitzian functions  
defined on X  with values in Y , such that for each <f) G x G X , t >
0, 8 > 0, £ > 0 there is y € X  such that

(2 ) \\lF (y)  ~  ~  ~  <K*)||y < edx (y, x).

(3)

(4) |dx (x,y)  - t \  < 8t



and

d x ( x , y )

Let F(x)  : X  —» Y  be a $ -differentiable function. Let <j>x be a 
gradient o f the function f (x )  at a point x. Suppose that for all 

x ,y  € X

(6) ||{<t>x(y) -  <t>x{x)\ -  [f ( y ) -  /(a?)]||v <  l ( d x { x , y ) ) ,

where the real valued function 7 (t) defined for 0 < t is independent on 
x. Let tends to 0 as t. tends to 0. Then <f>x is uniquely determined 
up to the constant and

(7) \\<l>x ~  <I>y\\l < u ( d x (x,y)) ,  

where u( t)  =  l iM ± M 0 .

Proof. Let x0 be a fixed point in X .  Let <f>Xo be a «^-gradient of the 
function f ( x )  at x0. Now we shall use the fact that the class $  is 
linear. Let f ( x )  — f(x)-<f>Xo(x). Observe that if) 6  $  is a ^-gradient 
of the function f ( x ) at x0 if and only if ?/> +  (j)Xo is a «¡»-gradient of the 
function f (x )  at x q . Thus we can assume without loss of generality 
that 0 is a ^-gradient of the function f (x )  at xq  and

(8 ) ||f (x )  -  /(*o )||v  < l ( d x ( x , x0)).

Now we shall show that 0 is a unique up to a constant ^-gradient 
of the function f (x )  at xo-

Indeed, let <f> E $  be an arbitrary ^-gradient of the function f(x ) 
at x q . Since tends to 0 as t tends to 0, by (8 ) for each £ > 0 
there is a t, > 0 such that dx(x,x-o) < t implies

(9) ||^(x) -  <f>(x0)\\Y < £d x (x , x 0 ).

Thus by (5) and (9)



The arbitrariness of e implies that ||<?!>||/, =  0. It show the uniqueness 
up to a constant of the «^-gradient.

Let x0 be an arbitrary point in X .  Now we shall show (7). Sim-
ilarly as before, without loss of generality we may assume that 0 is 
the ^-gradient of the function f (x )  at x n. Let x  be another arbi-
trary point in X .  We denote d x ( x , x 0) by i, t =  d x ( x , x 0). Let <j)x 
denote the ^-gradient of the function f (x )  at the point x. By our 
assumptions (4) for each 8 > 0, e > 0 there is y E X  such that

(4 )

and

(5)

Id x ( x , y )  - t \ <  8 

\\<t>x(x) -  <j>x(y)\ \Y ,,, i
d x ( x , y )

Thus by (6 ) we have

!!/(*) -  f ( y ) \ W

L <£■

(ix{x ,y )
7  (dX (x,y))  

dx(x , y )  +  •

( 10)

Therefore

U * \\L  ^  

<

dx(x ,y ) + d x ( x , y ) +  £

l l/ (y)l|v  , Il/(x)| |v 7 (dX (x,y))  ,i—;—;-----r  1----- :—;----- ----- r £■dx(x ,y )  dx (x,y)  dx (x,y)

Recalling (4), we have

(11) dx (x , x0) -  8 < dx (x,y)  < dx ( x , x 0) +  8.

Thus

(12) dx (x0, y ) < dx ( x , x0) + dx (x,y)  < 2dX (x>x 0) +  8.

Since 0 is a ^-gradient, of the function f (x )  at the point x 0, we 
obtain by (4) that

||/(* ) ||y  <  l {dx{x,  x0))



Combining this estimation with (10 ) we obtain

njl ii ^ l ( 2 d x (x , x0) +  i )  , j ( d x (x , x 0)) , 7(dx (x, y) )  _
llvM \L S 7 J------H -7 -7 ------- r---- ~ H-----J —7------r-----h £

« x ( * , * o ) ~ «  d x (x , x 0) -  <•> dx (x, y)
< 7(2rfy(g,a?o) + ¿) +  9 y (dx {x , x 0) + 8) ^
~ dx (x , x0) - 6  “ dx (x,x o ) - 6

The arbitrariness of 8 and e finish the proof.

As an obvious consequence we obtain

T h eo rem  3. Let ( X , d x )  be a metric space and let (F, || • ||y ) be a 
Banach space. Let <5 denote a linear class o f Lipschitzian  functions 
defined on X  with values in Y , such that for each <f> 6  x £ X , 
t > 0, 8 > 0, e > 0 there is y £ X  such that

Let f ( x )  : X  —> Y  be a $ -differentiable function. Let </>x be a 
<J>-gradient o f the function f ( x )  at a point x. Suppose that for all 
x ,y  e X

(14) | | [* , (y )  -  <t>x{x)} -  [f (y)  -  / (x ) ] | |y  <  K ( d x ( x , y ) ) Q,

where the constant K  > 0 and the exponent a, 1 <  a  <  2, are 
independent on x.

Then (j>x is uniquely determined up to a constant and it satisfies 
Holder condition with exponent a  — 1 with respect to x in the norm  
H-ll/,. In particular case when ol — 2, <J>X as a function o f x satisfies 
Lipschitz condition in the Lips chit z norm.

and
||/(y )||y  < 7 (2dx (x , x 0) + 8)

(4 ) \dx ( x , y ) - t \ <  St

and

(5)

We say that a metric space ( X , d x )  is K-convex space (see [8]), 
K  > 1, if for each x ,y  £ X  and each a  > 0, there are elements



x = x0, x i , . . . , x n =  y such that dx {x l , x i^ )  < a, i =  1, 2 , . . . , n  
and

n
(15) ^ d x( x j , x j - i )  < Kdx(x , y ) .

i=l

For I\ — 1, 7v-convex sets was firstly investigated by Menger [1] 
in 1928. The investigations are intensively developed till today (see 
for example [9]).

Let a metric space ( X , d x )  be given. By a curve in X  we shall 
understand a homeomorphic image L of the interval [0,1], i.e. the 
function x(t),  0 < t, < 1 defined on interval [0,1] with values in X  such 
that x(t) — x(t')  implies t. =  t ' . The point x(0) is called the beginning 
of the curve, the point x( l)  is called the end of the curve. By the 
length of a curve L we mean l(L) =  sup{£)"=1 dx (x(ti ),  x ( t i - i )) :
0 =  t0 < ti <■■■ < t n = 1}.

We say that a metric space (X,  dx )  is arc connected if for arbitrary 
x 0, y e  x  there is a function x(t), 0 <  t <  1 defined on interval [0 , 1] 
with values in X  such that x(0) =  x0, x (l) =  y and the length of 
the line L =  {;c(i)}, 0 < t < 1 can be estimated as follows l(L) < 
K d x (x0,y).

If a metric space (X,  dx )  is arc connected with a constant K  > 0 , 
then it is A -convex. The converse is not true. For example the set 
Q of all rational numbers with the standard metric is A'-convex, but 
it is not arc connected with any constant K  >  1 . In the example 
the space X  is not connected. However it is possible to construct a 
complete A-convex metric space (X ,dx ) ,  which is not arc connected 
with any constant A > 1. We want to mention, that a complete 1- 
convex metric space (X,  d x ) is always arc connected with a constant
1.

As a consequence of Theorems 2 and 3 and the notion of arc con-
nected spaces we obtain

C oro llary  4. Let (X,  dx )  be an arc connected with a constant K  
metric space and let (F, || • ||y ) be a Banach space. Let $  denote a 
linear class o f Lipschitzian functions defined on X  with values in Y ,  
such that for each (f> <E x £ X , t, > 0, S > 0, £ > 0 there is y £ X



such that

(4)

and

(5)

\ dx ( x , y ) - t \  < St 

||<f>{x) -  (j>{y)\\Y
dX {x,y) < e.

Let / (x )  : X  —► Y  he a differentiable function. Let (¡>x be a
gradient o f the function f (x)  at a point x. Suppose that for all 

x ,y  6 X

(6 ) II[4x(y) -  (f>x(x)] -  [f ( y ) -  /(* )] ||y < y(dx (x,xj)),

where the real valued function 7 (t) defined for 0 <  t is independent 
on x. Let ^  tends to 0. Then f (x )  = < (̂x) +  c, where (j> G $  and 
c 6  R.

Proof. Since ^  tends to 0, a;i(i) =  tends to 0 , too. Thus
for each ?/ >  0 there is a  >  0 such that t <  a  implies that (t) <  77. 

Therefore u(t)  < r/t.
Since X  is arc connected with a constant K ,  it is A"-convex. Thus 

there are elements x = x 0, x \ , . . .  , x n =  y such that dx (xi,  x,-_j) < a ,
i =  1, 2 , . . . ,  n and

(15) 2 2 dx{x i ,X i - i )  < K d x (x,y).

By formula (7)

(16) \\4xi ~  <t>xi-.x\\L < u{dx (xi ,x i - i ) )  < r)dx ( xi , x i - i ) ,  

for i — 1 , 2 , . . . ,  71.  Thus by the triangle inequality and by (15)

ll î <t>y || L — Ĥ xo 1U —
1=1



The arbitrariness of ?/ implies that

(18) \\<f>X -  <f>y\\L =  0

for arbitrary x ,y  £ X .  Thus (j> =  (f>x is a ‘5-gradient of the function 
f (x )  at each point x.  Take arbitrary x , y  (E X.  Since the space 
X  is arc connected with a constant K , there is a curve L with the 
beginning at x and end at y such that the length of L is not greater 
then K d x (x,y).  Take arbitrary e > 0 and arbitrary x = x(t)  € L. 
Then there is St such that for 0 such that dx (x,z)  < 8t

(19) |\[<j>(z) -  <j)(x)\ -  [f ( z ) -  /(x)] ||y  < edx (x,z).

Using the fact that L is compact we obtain that there are points 
x =  xo , x \ , . . . ,  x n = y such that

n

(20) ^ 2 d x (x i ,Xi- i)  < K d x (x,y)
1=1

and

(21) ||[^(*j) -  4>(xi-i)] -  [f(xi) -  f ( x i - i )]||v < e d x i x i ^ x ^ ) ,  

for i = 1,2, Thus by the triangle inequality and by (20)

(22) |p ( x )  -  (j)(y)\ -  [f(x) -  f(y)]\\Y < edx ( x , y ),

The arbitrariness of e implies that

(23) [¿ (x ) -  <6(y)] -  [f ( x)  -  / M ]

and the arbitrariness of x ,y  implies that f (x )  = <j)(x) -(- c.

Observe that in particular case when 7 (i) =  t a , if c* > 2 Corollary 
4 holds.

We do not know is Corollary 4 true without assumption that the 
metric space X  is not arc connected with constant K ?
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Stefan Rolewicz

O A P R O K S Y M A C JI  F U N K C JI  
W  P R Z E S T R Z E N IA C H  M E T R Y C Z N Y C H

Niech $  : X  —» Y  będzie liniową, rodziną funkcji Lipschitzowskich. 
Załóżmy, że rodzina $  spełnia pewne dodatkowe warunki. Pod tymi 
założeniami pokazujemy następujące twierdzenie:

T w ie rdzen ie . Niech (j>x £ $  będzie takie, że dla wszystkich x, y £ X

II[(¡>x{y) -  <t>x{x)\ -  U(y)  -  / (*)] | |y  ^ K ( d x (x, y) )a .

W tedy <j)x jest jednoznacznie określona z dokładnością do stałej i



spełnia warunek HóJdera z wykładnikiem a  -  1 ze względu na x w 
normie Lipschitzowskiej ||.||¿.
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