ACTA UNIVERSITATIS LODZIENSIS FOLIA MATHEMATICA 8, 1996

Stefan Rolewicz

ON APPROXIMATIONS OF

FUNCTIONS ON METRIC SPACES

To Professor Lech Włodarski on His 80th birthday

Let $\Phi : X \to Y$ be a linear family of Lipschitz function. We assume that the family Φ satisfies additional conditions. Under these assumptions we show the following result:

Let $\phi_x \in \Phi$ be such that for all $x, y \in X$

$$\|[\phi_x(y) - \phi_x(x)] - [f(y) - f(x)]\|_Y \le K(d_X(x,y))^{\alpha}$$

Then ϕ_x is uniquely determined up to a constant and it satisfies Hölder condition with exponent $\alpha - 1$ with respect to x in the Lipschitz norm $\|\cdot\|_L$.

Since optimization in metric spaces, the convex analysis over metric spaces was developed (see [2]-[7]). In this paper we shall extend on a metric space the following classical theorem.

Theorem 1. Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$, be Banach spaces. Let F(x) be a differentiable mapping of an open set $U \subset X$ into Y. The differential $\partial F|_x$ as a function of x satisfies a Hólder condition with an exponent $0 < \alpha \leq 1$ and with constant K > 0 if and only if for each $x, y \in U$

(1)
$$\|[F(y) - F(x)] - \partial F_x(y - x)\|_Y \le K \|y - x\|_X^{1+\alpha}.$$

S. ROLEWICZ

The our extension concern the case when (X, d_X) is a metric space and $(Y, \|\cdot\|_Y)$ as before is a Banach space. Let Φ be a family of mappings of an open set $U \subset X$ into Y. Let F(x) be a mapping of the open set $U \subset X$ into Y. We say that a mapping $\phi \in \Phi$ is a Φ -gradient at a point x of F(x) if for each $\varepsilon > 0$ there is a neighbourhood V of x such that for all $y \in V$

(2)
$$||[F(y) - F(x)] - \phi(y) - \phi(x)||_Y \le \varepsilon d_X(y, x).$$

We say that a mapping F(x) mapping of the open set $U \subset X$ into Y is Φ -differentiable at a point x if for each x there is a Φ -gradient ϕ_x of the F(x) at the point x. Observe that under such general formulation this Φ -gradient need not to be unique.

When we want to extend Theorem 1, we need to determine something which play a role of a norm of operator. Observe that in the case of linear operators the norms in nothing else as the Lipschitz constant.

Let (X, d_X) be a metric space. Let $(Y, \|\cdot\|_Y)$ be a Banach space. Let Φ be a linear class of Lipschitzian mapping of X with values in Y. We define on Φ a quasinorm

(3)
$$\|\phi\|_{L} = \sup_{x_{1}, x_{2} \in X, \ x_{1} \neq x_{2}} \frac{|\phi(x_{1}) - \phi(x_{2})|}{d_{X}(x_{1}, x_{2})}.$$

Observe that if $\|\phi_1 - \phi_2\|_L = 0$, then the difference of ϕ_1 and ϕ_2 is a constant function, i.e. $\phi_1(x) = \phi_2(x) + c$, where $c \in Y$. Thus we consider the quotient space $\tilde{\Phi} = \Phi/R$. The quasinorm $\|\phi\|_L$ induces the norm in the space $\tilde{\Phi}$. Since it will not lead to misunderstanding this norm we shall denote also $\|\phi\|_L$.

Theorem 2. Let (X, d_X) be a metric space and let $(Y, \|\cdot\|_Y)$ be a Banach space. Let Φ denote a linear class of Lipschitzian functions defined on X with values in Y, such that for each $\phi \in \Phi$, $x \in X$, t > 0, $\delta > 0$, $\varepsilon > 0$ there is $y \in X$ such that

$$(4) \qquad \qquad |d_X(x,y) - t| < \delta t$$

and

(5)
$$|\frac{\|\phi(x) - \phi(y)\|_{Y}}{d_{X}(x,y)} - \|\phi\|_{L}| < \varepsilon.$$

Let $F(x) : X \to Y$ be a Φ -differentiable function. Let ϕ_x be a Φ -gradient of the function f(x) at a point x. Suppose that for all $x, y \in X$

(6)
$$\|[\phi_x(y) - \phi_x(x)] - [f(y) - f(x)]\|_Y \le \gamma(d_X(x,y)),$$

where the real valued function $\gamma(t)$ defined for $0 \leq t$ is independent on x. Let $\frac{\gamma(t)}{t}$ tends to 0 as t tends to 0. Then ϕ_x is uniquely determined up to the constant and

(7)
$$\|\phi_x - \phi_Y\|_L \le \omega(d_X(x,y)),$$

where $\omega(t) = \frac{\gamma(2t) + 2\gamma(t)}{t}$.

Proof. Let x_0 be a fixed point in X. Let ϕ_{x_0} be a Φ -gradient of the function f(x) at x_0 . Now we shall use the fact that the class Φ is linear. Let $\tilde{f}(x) = f(x) - \phi_{x_0}(x)$. Observe that $\psi \in \Phi$ is a Φ -gradient of the function $\tilde{f}(x)$ at x_0 if and only if $\psi + \phi_{x_0}$ is a Φ -gradient of the function f(x) at x_0 . Thus we can assume without loss of generality that 0 is a Φ -gradient of the function f(x) at x_0 and

(8)
$$||f(x) - f(x_0)||_Y \le \gamma(d_X(x, x_0)).$$

Now we shall show that 0 is a unique up to a constant Φ -gradient of the function f(x) at x_0 .

Indeed, let $\phi \in \Phi$ be an arbitrary Φ -gradient of the function f(x) at x_0 . Since $\frac{\gamma(t)}{t}$ tends to 0 as t tends to 0, by (8) for each $\varepsilon > 0$ there is a t > 0 such that $d_X(x, x_0) < t$ implies

(9)
$$\|\phi(x) - \phi(x_0)\|_Y \le \varepsilon d_X(x, x_0).$$

Thus by (5) and (9)

 $\|\phi\|_L \le 2\varepsilon.$

The arbitrariness of ε implies that $\|\phi\|_L = 0$. It show the uniqueness up to a constant of the Φ -gradient.

Let x_0 be an arbitrary point in X. Now we shall show (7). Similarly as before, without loss of generality we may assume that 0 is the Φ -gradient of the function f(x) at x_0 . Let x be another arbitrary point in X. We denote $d_X(x, x_0)$ by $t, t = d_X(x, x_0)$. Let ϕ_x denote the Φ -gradient of the function f(x) at the point x. By our assumptions (4) for each $\delta > 0$, $\varepsilon > 0$ there is $y \in X$ such that

$$(4) \qquad \qquad |d_X(x,y) - t| < \delta$$

and

(5)
$$|\frac{\|\phi_x(x) - \phi_x(y)\|_Y}{d_X(x,y)} - \|\phi_x\|_L| < \varepsilon.$$

Thus by (6) we have

$$\left|\frac{\|f(x) - f(y)\|_{Y}}{d_{X}(x, y)} - \|\phi_{x}\|_{L}\right| < \frac{\gamma(d_{X}(x, y))}{d_{X}(x, y)} + \varepsilon.$$

Therefore

(10)
$$\begin{aligned} \|\phi_x\|_L &\leq \frac{\|f(y) - f(x)\|_Y}{d_X(x,y)} + \frac{\gamma(d_X(x,y))}{d_X(x,y)} + \varepsilon \\ &\leq \frac{\|f(y)\|_Y}{d_X(x,y)} + \frac{\|f(x)\|_Y}{d_X(x,y)} + \frac{\gamma(d_X(x,y))}{d_X(x,y)} + \varepsilon \end{aligned}$$

Recalling (4), we have

(11)
$$d_X(x,x_0) - \delta \le d_X(x,y) \le d_X(x,x_0) + \delta.$$

Thus

(12)
$$d_X(x_0, y) \le d_X(x, x_0) + d_X(x, y) \le 2d_X(x, x_0) + \delta.$$

Since 0 is a Φ -gradient of the function f(x) at the point x_0 , we obtain by (4) that

$$||f(x)||_Y \le \gamma(d_X(x, x_0))$$

and

$$\|f(y)\|_Y \le \gamma(2d_X(x,x_0) + \delta)$$

Combining this estimation with (10) we obtain

$$\begin{aligned} \|\phi_x\|_L &\leq \frac{\gamma(2\,d_X(x,x_0)+\delta)}{d_X(x,x_0)-\delta} + \frac{\gamma(d_X(x,x_0))}{d_X(x,x_0)-\delta} + \frac{\gamma(d_X(x,y))}{d_X(x,y)} + \varepsilon \\ &\leq \frac{\gamma(2d_X(x,x_0)+\delta)}{d_X(x,x_0)-\delta} + 2\,\frac{\gamma(d_X(x,x_0)+\delta)}{d_X(x,x_0)-\delta} + \varepsilon. \end{aligned}$$

The arbitrariness of δ and ε finish the proof.

As an obvious consequence we obtain

Theorem 3. Let (X, d_X) be a metric space and let $(Y, \|\cdot\|_Y)$ be a Banach space. Let Φ denote a linear class of Lipschitzian functions defined on X with values in Y, such that for each $\phi \in \Phi$, $x \in X$, $t > 0, \delta > 0, \varepsilon > 0$ there is $y \in X$ such that

$$(4) |d_X(x,y) - t| < \delta t$$

and

(5)
$$\left|\frac{\|\phi(x) - \phi(y)\|_{Y}}{d_{X}(x, y)} - \|\phi\|_{L}\right| < \varepsilon.$$

Let $f(x) : X \to Y$ be a Φ -differentiable function. Let ϕ_x be a Φ -gradient of the function f(x) at a point x. Suppose that for all $x, y \in X$

(14)
$$\|[\phi_x(y) - \phi_x(x)] - [f(y) - f(x)]\|_Y \le K(d_X(x,y))^{\alpha},$$

where the constant K > 0 and the exponent α , $1 < \alpha \leq 2$, are independent on x.

Then ϕ_x is uniquely determined up to a constant and it satisfies Hölder condition with exponent $\alpha - 1$ with respect to x in the norm $\|.\|_L$. In particular case when $\alpha = 2$, ϕ_x as a function of x satisfies Lipschitz condition in the Lipschitz norm.

We say that a metric space (X, d_X) is K-convex space (see [8]), $K \ge 1$, if for each $x, y \in X$ and each $\alpha > 0$, there are elements $x = x_0, x_1, \dots, x_n = y$ such that $d_X(x_i, x_{i-1}) < \alpha, i = 1, 2, \dots, n$ and

(15)
$$\sum_{i=1}^{n} d_X(x_i, x_{i-1}) \le K d_X(x, y).$$

For K = 1, K-convex sets was firstly investigated by Menger [1] in 1928. The investigations are intensively developed till today (see for example [9]).

Let a metric space (X, d_X) be given. By a *curve* in X we shall understand a homeomorphic image L of the interval [0, 1], i.e. the function $x(t), 0 \le t \le 1$ defined on interval [0, 1] with values in X such that x(t) = x(t') implies t = t'. The point x(0) is called the *beginning* of the curve, the point x(1) is called the *end of the curve*. By the length of a curve L we mean $l(L) = \sup\{\sum_{i=1}^{n} d_X(x(t_i), x(t_{i-1})) :$ $0 = t_0 < t_1 < \cdots < t_n = 1\}.$

We say that a metric space (X, d_X) is arc connected if for arbitrary $x_0, y \in X$ there is a function $x(t), 0 \leq t \leq 1$ defined on interval [0,1] with values in X such that $x(0) = x_0, x(1) = y$ and the length of the line $L = \{x(t)\}, 0 \leq t \leq 1$ can be estimated as follows $l(L) \leq Kd_X(x_0, y)$.

If a metric space (X, d_X) is arc connected with a constant K > 0, then it is K-convex. The converse is not true. For example the set Q of all rational numbers with the standard metric is K-convex, but it is not arc connected with any constant $K \ge 1$. In the example the space X is not connected. However it is possible to construct a complete K-convex metric space (X, d_X) , which is not arc connected with any constant $K \ge 1$. We want to mention, that a complete 1convex metric space (X, d_X) is always arc connected with a constant 1.

As a consequence of Theorems 2 and 3 and the notion of arc connected spaces we obtain

Corollary 4. Let (X, d_X) be an arc connected with a constant K metric space and let $(Y, \|\cdot\|_Y)$ be a Banach space. Let Φ denote a linear class of Lipschitzian functions defined on X with values in Y, such that for each $\phi \in \Phi$, $x \in X$, t > 0, $\delta > 0$, $\varepsilon > 0$ there is $y \in X$

such that

$$(4) |d_X(x,y)-t| < \delta t$$

and

(5)
$$\left|\frac{\|\phi(x) - \phi(y)\|_Y}{d_X(x,y)} - \|\phi\|_L\right| < \varepsilon$$

Let $f(x) : X \to Y$ be a Φ -differentiable function. Let ϕ_x be a Φ -gradient of the function f(x) at a point x. Suppose that for all $x, y \in X$

(6)
$$\|[\phi_x(y) - \phi_x(x)] - [f(y) - f(x)]\|_Y \le \gamma(d_X(x,y)),$$

where the real valued function $\gamma(t)$ defined for $0 \leq t$ is independent on x. Let $\frac{\gamma(t)}{t^2}$ tends to 0. Then $f(x) = \phi(x) + c$, where $\phi \in \Phi$ and $c \in R$.

Proof. Since $\frac{\gamma(t)}{t^2}$ tends to 0, $\omega_1(t) = \frac{\gamma(2t)+2\gamma(t)}{t^2}$ tends to 0, too. Thus for each $\eta > 0$ there is $\alpha > 0$ such that $t < \alpha$ implies that $\omega_1(t) < \eta$. Therefore $\omega(t) < \eta t$.

Since X is arc connected with a constant K, it is K-convex. Thus there are elements $x = x_0, x_1, \ldots, x_n = y$ such that $d_X(x_i, x_{i-1}) < \alpha$, $i = 1, 2, \ldots, n$ and

(15)
$$\sum_{i=1}^{n} d_X(x_i, x_{i-1}) \le K d_X(x, y).$$

By formula (7)

(16)
$$\|\phi_{x_i} - \phi_{x_{i-1}}\|_L \le \omega(d_X(x_i, x_{i-1})) \le \eta d_X(x_i, x_{i-1}),$$

for i = 1, 2, ..., n. Thus by the triangle inequality and by (15)

(17)
$$\begin{aligned} \|\phi_x - \phi_y\|_L &= \|\phi_{x_0} - \phi_{x_n}\|_L \le \sum_{i=1}^n \|\phi_{x_i} - \phi_{x_{i-1}}\|_L \\ &\le \eta \sum_{i=1}^n d_X(x_i, x_{i-1}) \le K\eta d_X(x, y). \end{aligned}$$

The arbitrariness of η implies that

$$\|\phi_x - \phi_y\|_L = 0$$

for arbitrary $x, y \in X$. Thus $\phi = \phi_x$ is a Φ -gradient of the function f(x) at each point x. Take arbitrary $\hat{x}, y \in X$. Since the space X is arc connected with a constant K, there is a curve L with the beginning at \hat{x} and end at y such that the length of L is not greater then $Kd_X(\hat{x}, y)$. Take arbitrary $\varepsilon > 0$ and arbitrary $x = x(t) \in L$. Then there is δ_t such that for z such that $d_X(x, z) < \delta_t$

(19)
$$\|[\phi(z) - \phi(x)] - [f(z) - f(x)]\|_Y < \varepsilon d_X(x, z).$$

Using the fact that L is compact we obtain that there are points $\hat{x} = x_0, x_1, \ldots, x_n = y$ such that

(20)
$$\sum_{i=1}^{n} d_X(x_i, x_{i-1}) \le K d_X(\hat{x}, y)$$

and

(21)
$$\| [\phi(x_i) - \phi(x_{i-1})] - [f(x_i) - f(x_{i-1})] \|_Y \le \varepsilon d_X(x_i, x_{i-1}),$$

for i = 1, 2, ..., n. Thus by the triangle inequality and by (20)

(22)
$$\|[\phi(\hat{x}) - \phi(y)] - [f(\hat{x}) - f(y)]\|_Y \le \varepsilon d_X(\hat{x}, y),$$

The arbitrariness of ε implies that

(23)
$$[\phi(\hat{x}) - \phi(y)] - [f(\hat{x}) - f(y)]$$

and the arbitrariness of \hat{x}, y implies that $f(x) = \phi(x) + c$.

Observe that in particular case when $\gamma(t) = t^{\alpha}$, if $\alpha > 2$ Corollary 4 holds.

We do not know is Corollary 4 true without assumption that the metric space X is not arc connected with constant K?

REFERENCES

- K. Menger, Untersuchen über allgemeine Metrik I III, Math. Ann. 100 (1928), 75–163.
- [2] S. Rolewicz, On Asplund inequalities for Lipschitz functions, Arch. der Mathematik 61 (1993), 484–488.
- [3] _____, On extension of Mazur theorem on Lipschitz functions, Arch. der Mathematik 63 (1994), 535-540.
- [4] _____, On a globalization property, Appl. Math. 22 (1993), 69-73.
- [5] _____, Convex analysis without linerity, Control and Cybernetics 23 (1994), 247-256.
- [6] _____, On subdifferentials on non-convex sets, Different Aspects of Differentiablity, Diss.Math. (D. Przeworska-Rolewicz 340, ed.), 1995, pp. 301-308.
- [7] _____, On Φ -differentiability of functions over metric spaces, (submitted), Topological Methods of Nonlinear Analysis.
- [8] R. Rudnicki, Asymptotic properties of the iterates of positive operators on C(X), Bull. Pol. Acad. Sc. Math. **34** (1986), 181–187.
- [9] V.P. Soltan, Introduction in Axiomatic Theory of Convexity, in Russian, Kishiniev, 1984.

Stefan Rolewicz

O APROKSYMACJI FUNKCJI W PRZESTRZENIACH METRYCZNYCH

Niech $\Phi: X \to Y$ będzie liniową rodziną funkcji Lipschitzowskich. Załóżmy, że rodzina Φ spełnia pewne dodatkowe warunki. Pod tymi założeniami pokazujemy następujące twierdzenie:

Twierdzenie. Niech $\phi_x \in \Phi$ będzie takie, że dla wszystkich $x, y \in X$

$$\|[\phi_x(y) - \phi_x(x)] - [f(y) - f(x)]\|_Y \le K(d_X(x,y))^{\alpha}.$$

Wtedy ϕ_x jest jednoznacznie określona z dokładnością do stałej i

S. ROLEWICZ

spełnia warunek Höldera z wykładnikiem
 $\alpha-1$ ze względu na x w normie Lipschitzowskiej $\|.\|_L.$

Mathematical Institute of the Polish Academy of Sciences ul. Śniadeckich 8, 00-950 Warsaw, Poland