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ON SOME CLASS OF CARATHEODORY FUNCTIONS

Let p denote the well-known class of functions

P@ =1+ le + .+ ann + ..

holomorphic in the disc A={z: |z < I} and satisfying in this disc
the condition Re P(z) > 0. Let

k (z) =1+ — Z+ ..+ — — zZn+ ... z e A,
a() a+1 a+n

a6 C\ {-1, -2, ...}.

In the paper we examine the properties of the class Pa°f functions
of the form p « P * ka> Pep, where P * kg stands for the Hadamard
convolution of the functions P and ka. Of course, t>CD = b . We also
give a few applications and formulate some problems to be solved. The

idea of the paper has arisen in connection with the investigations

concerning the well-known class T ([5]1, [6]) and with the realiza-

tion of M. Sc. thesis [10]. Certain general questions concerning ap-

plications of the Hadamard convolution can be found, for instance,

in [A]-

1. INTRODUCTION

Let p denote the well-known ([1]) class of Caratheodory func-
tions P holomorphic in the unit disc A= z: [Z] <1, with the
expansion

a.» P(2) =1+Qxz+ ... +Qnzn + ..., ze A

satisfying the condition
a.2 Re P(z) > O, ze A



Let aeC \ {-1, -2, ...}. For the above values of the parameter
a, let us define a function ka(z) by the formula

®
aa-3 k @=1+£ -~n z e A
a nHlLa+n

DEFINITION. Denote by pé& the class of functions p of the
form
1.4 p=P™*Kka
where P e p, ka is defined by formula (1.3), while P * ka stands
for the Hadamard convolution of the functions P and kA -

In this paper we examine various properties of the classes PA

for a e C\oE(-l, -2, ...}. We also give a few applications and
formulate problems to be solved.

And so, if
(1.5) p(z) =1+qg*z + ... + gnzn + ..., z e A

pep , then from (¢.1), (1.3), (@4 and (1.5) we have

@ -s) gn =a +mn , n =1, 2, ...,

and vice versa.
Since, as is known (e.g- [12], p- 7)), Il £2, n =1, 2, ...,

therefore in the class p& the estimates

a.n Ignl * Jaz]ai]” n=1, 2, ...,
are true, with that they are sharp.

Note that the function Pj_(z) Sy, Z€ A, belonging to

the Carathéodory class £ may be treated as the identity with res-
pect to the Hadamard convolution. 1In view of (1.4), this means
that, for each a eO\{-1, -2, ...}, k e D Besides, for

a
a=o0, k@ £1, zeA, thus

pQ = (P@) £ 1, z e A}
The definition of the classes f>aA can be extended to the case
a = <& Since each coefficient of expansion (1.3) of the function
kfl tends to 1 as a tends to », we shall adopt kjz) = P1(2),

zea. In consequence, we shall get



= (p: P=Kk~*P, Pep) =p-
The respective properties of the class P and definition (1.4)

imply directly the following propositions:

PROPOSITION 1.1. If p e Pa- then, for t g R , p(eit2) e

a
PROPOSITION 1.2. If p e réG<0, 1), then p(rz) ¢ .

PROPOSITION 1.3. If pep a then p() e P5-

2. STRUCTURE FORMULAE

From (1.3) we obtain, for each as C \ {0, -1, -2, ...},

— Zg A

a zkE;(z) + k(@) = -

=

Hence and in view of the definitions of the classes pa we obtain

THEOREM 2.1. If pg p afo0, -1, ..., then there exists
a function P e p such that

@D 2@ *P@ =P@), zeA

and conversely, for any function P e p, the solution of form
(1.5) of equation (2.1) belongs to the class p.

From Theorem 2.1 and (1.2) we immediately get:

COROLLARY 2.1. A function p of form (1.5) belongs to the
class pa, a~o, -1, -.., if and only 1if it satisfies the ine-
quality

2.2 Re (a—zp’(z) +p(2)} >0, ze A

REMARK 2.1. In paper [10] M. Orciuch considered the

class p~ of functions of form (1.1), defined directly by con-

b
dition (2.2), in the special case when b =b 2 0. Hence it ap-

pears that the basic results obtained here constitute a natural
generalization of those from [i0].
Let n stand for the Schwarz class of functions & holomorphic
in the disc A and such that w(0) = 0, [w@)] < 1 for ze A
Formula (2.1) implies:

COROLLARY 2.2. A function p e pa if and only if there exists
a function we Q such that



!\ zp’@ + p@) = 1 - X2) ze A

In view of the definition of the class and formula (2.1),
we can easily prove:

THEOREM 2.2. Let aeC, Re a >0. If Pe p, then the func-
tion p defined by the formula

@23 p(z) = a / ta_1 P(zt)dt, ze A
0

belongs to the class PH- Conversely, if pe p then there

3
exists a function P 6 p such that p is of form (2.3).

Making use of the Herglotz formula in the class p (e-g- [12],
p- 9 and the Fubini theorem on the change of succession of in-
tegrating in a double Stieltjes integral, we obtain a structure

formula in the class p for ae C, Re a > 0.
THEOREM 2.3. Let aeC, Re a > 0. A function pe Pa if and
only if
L

2 1. J
2.4 p(z) =/ a [/ ta_1 g
0 0 e

T,
.T— -2z dt]dp(T)
- 1z
where u(t) 1is a real non-decreasing function normalized by the
condition
2*
1 dy(T) = 1.
0

Formula (2.4) and a suitable theorem of Carath”™odory imply,
for example,

COROLLARY 2.3. Let z # 0 be a fixed point of the disc A.
Then the set of values of the functional J() = p(2), p e Pa-
Re a > 0, 1is the closed convex hull of a curve r with the pa-
rametric description

Y(t) =a/ ta_1 elT + tz dt, te <o, 2W).
0 e - 1tz
In turn, taking account of the expansion of the function
el + &z
ellT - tz
ming formula (2.4) we shall obtain

PT(@ = in the disc A for te (0, 1), after transfor-



COROLLARY 2.4. Let a function p of form (1.5) belong to the
class pa for aeC, Re a>0. Then its coefficients are de-
fined by the formulae

In consequence, the set Vn of the system of coefficients
(PIF ..., pn), p e pa, Re a>0, 1is the closed convex hull of

the respective curve.
We also have (e.g- [12], p- 27):

PROPOSITION 2.1. Let k& be the function defined by formula
(1.3). If p e Pa, then

p(2) = P@) * ka®@ Ner S P(C)’k (z-c%)c-1dc, |z] < p,
2iri |C |FP<1 a

where Pep and vice versa.

Of course, iIn this structure formula one may also use the
Herglotz formula and, next, apply the result obtained to various
problems.

3. THE PROPERTIES OF THE CLASSES f,

We shall give a few further - including topological - pro-
perties of the classes Pa' They are consequences of the pro-

perties of the class p and those of the Hadamard convolution.

Since the class p is convex, compact and arcwise connected,
and in the disc A condition (2.1) 1is satisfied, therefore we
have (the justification as, for example, in [4]).

PROPOSITION 3.1. For any ae C \ {-1, -2, ...}, the class Pé
is convex, compact and arcwise connected.

Note that the function ka for a # 0 has all the coefficients
of expansion (1.3) different from zero, thus Hadamard convolution
(1.4) is one-to-one with respect to the function P for
ae C\{0, -1, ...). This and the fact that the extreme points of
the class p have the well-known form ([3] and, for instance,



Pn(@) = (1 + nz)/d - nz), In] =1, zen,
imply
PROPOSITION 3.2. All the extreme points of the class ® are
of the form

— *
Pn = IDn ka
where P~ is an extreme point of the class P, that Iis,

P@ =1+2
n

(nz)n, In] =1, ze A.
n-1a+n

The well-known theorem on support points of the class P ([2])
and the linearity of the Hadamard product (see [4]) imply
PROPOSITION 3.3. The set supp pé& of support points of the

class PfI consists of functions of the form p = ké,* P where

m 1+ X Z
P(2) = 2 X —-———- -, z € A,
k-1 1 - Xkz

m
where Xk 2 o, £ Ak =1 and |Xk] =1 Mm=1, 2, ..).

®
It is known that [13]: IfF P.(z) =1+ £ g/1’zk and P,(@) =
1 k-1 * i
o &2> Kk
=1+21 q z , zeA, belong to the class P, then P(2) =
k-1 K
®
=1+ H zk, z e A, belongs to p, too.
k-1

Hence we have

PROPOSITION 3.4. If p~ of form (1.5) belongs to pfl, and
®
P, @ =1+ 2z gq/~"zll, z e A, belongs to p, then p@) =
k-1 *

®
=1+\ £ z e A, belongs to the class Pa, too.
®
Indeed, since pn e £ there exists P,(z) = 1+ E Qi2)zk,
1 a 2 k-1 k

ze A, P2 e Pr such that p1 = kfl * P2* Hence



thus

PL* (2P1) = ka * <Pl *V1 =ka * (P " 2} Wher® Pe P"

therefore there exists Pe p such that

p@ =1+ [[@ * (PJijfz) = (ka * P)(2), ze A,
that is, p e P&.

The class PA is therefore invariant with respect to the con-
volution * considered in the Schur theorem on Tfunctions of the
family p.

4. ON SOME INCLUSIONS

As is known, px = p. Let aeC and Re a 2 0. Let further
pe p - Since in the disc A condition (2.2) is satisfied, there-
fore, in virtue of a suitable lemma ([9]), we obtain that
Re p(z) >0 for all ze A. So, pe p . in consequence, the
following proposition is true.

PROPOSITION 4.1. If aeC, Rea?20, then the inclusion
“4.1) pa c p =Pm
takes place.

REMARK 4.1. In paper [8], a general theorem of the type:
Re 4P (z), zP’(@) >0 => Re P(2) >0, z e A, was obtained. This
theorem implies, among others, inclusion (4.1) for a 2 o.

Directly from (1.7) it follows that a necessary condition
for a function p of the class Pa to belong to the class p 1is

that Ja] £ Ja+ n] for each n =1, 2, ... Then, after performing
some simple calculations, we shall obtain that Re a 2 - in, n =

=1, 2, .... Consequently, for a e C such that Re a < -] and

a$ {-1, -2, ...}, inclusion (4.1) does not hold.
An example of a function belonging to the class pa\p for

Re a < - ~ is the function



p“(z):1+a+lZ, ze6 A

The question whether £a\£ # 0 for aeC, -jJjs Re a<o0,

remains open.
We have (the simple proof [10] is omitted):

THEOREM 4.1. Let a, b e R, O £ a < b. Then
4.2 tac fib.

REMARK 4.2. The problem concerning the investigations analo-
gous as in Theorem 4.1, for the remaining admissible a’s, seems
to be interesting. It is open.

However, we have:

THEOREM 4.2. Let a, b e R be admissible (that 1is, a # -1,
-2, .- IT a<b <0, then
Pbn PcPanPm

The proof is carried out by means of the *"reductio ad absur-
dum” method. We make use of condition (2.2) and inequality (1.2).
Since there exist a <b <0 and a function p e pbnp such that
p € pa, therefore

Re {b zop*"(z0) + p(zo,} > °©

Re zop "(z0) + p(zo)} S °-
for some zQ e A. Consequently, (b - a)Re p(zQ) < 0, which is not
possible in view of our assumptions.

5. ON THE CLASSES P [al

Let P be any fixed function of the class p. We also know from
(4.2) that if Pep aéeo0, then Pepb for each b 2 a. So,

denote (see, for instance, [s], [1oD
ap = inf {b 20: P e pb>
and put
Pial] = Pep - ap = a}-

Note that the classes p [a] are non-empty for each O £ a £ &



Indeed, let a = +“. The function Po(z) = 1!/.: % is a function

of the Carath”odory class, thus PQe Let b > 0. Then
Re {i zp;()+PQ@)}—- » -~ <0 as z-— *1.

So, there exists a point z e a such that Re 'zOPc')(zo) +

+ p0(@0)) <° Thus PQ t pb for any b > 0. In consequence, in

virtue of the definitions of the lower bound and the class p [a],
we have that PQe p [+*°]. Analogously we can show that, for each

0 < a <+, the function P Cz) =1+ - -2z, z e A, belongs

to the class p [a], and that P~ = 1 belongs to the class ¢&Jo]-
The following theorem ([10]) is true.

THEOREM 5.1. Let Pep. Then Peplal, 0 <a <+ if and
only if P e p~ for any b 2a and P”~pb for any b e < 0, a).
Besides, P e £[0] 1if and only if Pe p& for any a 2 0. What is
more. Pep [«4] if and only if Pepm and P £ p& for any
ae <o, +).

Proof. In view of the definitions of the bound ap and the
class £[a] and by Theorem 4.1, the above theorem 1is obvious
when a =0 or a=+«.Let ae (0, +). Assume that Pe p for
any b 2a and P4Pb for be <0, a). Then we shall get ap = a,
which means that P e p [a]-

To prove the converse, suppose that P e p [a]l- Then, in virtue
of the definitions of the lower bound and the class p [a], there
must exist a sequence ibn)n6N of numbers converging to a, such

that P e pk , n=1, 2, ... . Then, from 2.2 we have
n

Re {i- zP"(2) + P} >0, ze A, n =1, 2, ... .Passing with n
n
to &>, we shall obtain in the limit: Re {7 zP*(2) + P(2)} 2 O,

ze A. Put u(@) = Re {a zP"(@ + P(2)}, ze A. It is a harmo-
nic function in A, and u(o) = 1, therefore, on the basis of the
maximum principle for harmonic functions, we get Re P (2) +

+ P(2)} >0, zeA. By this and (2.2), Pe pa# Consequently,



from (4.2) we have Pepb for b >a and, of course, Pt pb for
b < a because, otherwise, we would obtain a contradiction with
the definition of a = ap as the Jlower bound, which ends the
proof.

It is evident that the classes p [a] are disjoint and

= Dhge ¢V
REMARK 5.1. An open problem is the performance of analogous
investigations for the remaining values of the parameter a. In
particular, the determination of consequences of Theorem 4.2.

6 . ON SOME RELATIONS BETWEEN THE CLASSES Ra

As was mentioned earlier, Theorem 4.1 establishes detailed
relationships between the classes p& in the case a a 0. Similar

relations for a <0, a# -1, -2, ..., are determined by Theorem
4.2. The <case a # a is the most difficult. It turned out,
however, that some other inclusions between the classes under con-
sideration are true.

And so, condition (2.1) and the convexity of the class p imply:
THEOREM 6.1. Let a, be C\{0O, -1, -2, ...}, @=arg a=arg b
e (-it, ). Then

n¢bC satbh
2

We also have

THEOREM 6.2. Let a, b e C\{0O, -1, -2, ...}, a # b,

Uu(x>m Kz - p) 2> Xe <o/ i>-
Then
K n¢gbe *unm
1° for each X e <0, 1> if arg a=argbe (-n, t);

2° for each X e <0, 1>, X f Xn, if arg a = arg b = n, where

X lal (1131 - n

= )
» nClbl - Jal) *
3° for each Xe <0, 1> if @o=arg a=arg b + i, cpe(=n, v),



4° for each Xe <0, 1>, * = if arga=0, argb = n;

5° for each X e <0, 1> if the points a, b, 0 do not lie on
one line.

The above inclusions are obtained after applying equation
(2.1) and examining the image of the segment <o, 1> under the

mapping U (X).
Let us still notice that U(X) = » when X = X, =

— . Con-

a-b

sequently, we have

COROLLARY 6.1. Let arg a=arg b +n and arga ~ 0. Then

X~ = Ja] “+“bT 6 <0, X>" thUS n¢bc P = *»e
In the special case when a >0, b <0, we have Xe e <0, 1>,
therefore the evident inclusion pan p~c. p holds (see Theorem
4.1).
Let a = & b eC\{0, -1, b # . Using again equation
(2.1) and the convexity of the class p = pm, we obtain
PROPOSITION 6.1. For bGC\{O, -1, ...}, we have
Pbnpcp b , Xe <0, 1>, X*Xn=1+
1-X
REMARK 6.1. Since, only for Re a 2 0, the inclusion pa c p
has been determined, it seems iInteresting to ask about the gene-
ral properties of the classes
p{a} = panp, Re a < O.
Theorem 4.2 and Corollary 6.1 concern the very question.
Consider another problem of a similar type. Let
(6.1) plIr=4PIA :PeP} Ar = {z: |z < r}.

We have:

THEOREM 6.3. Let p and pé&, a eC\{o, -1, -2, ...} denote
the classes of functions, defined earlier, whereas p |r - the set
of restrictions of functions, defined by rule (6.1). Then each

function P e £]r@)" where

r@ =A +-V -777 S 1,
lal2 1*1

satisfies in the disc Ar() inequality (2.2). Moreover, the disc



Ar(a) ”or as R cannot be enlarged. In other words, each func-
tion P e p belongs™ to p, In Arla)'

Proof. (cf. [4D-. Let Pep and HP) = izP"(2) + P(2),
O f ze A. Then from [11], (6-2) we have

1?2g“(z>1 s 27| (
Re P(2) 1 - |zI2
consequently,

Re H(P) 2 Re P(z) - yiy |zP"(2)]
lal

*Re P Ix - _2_ 2| - .zj2) _
1“1z la |
Hence it appears that Re H(P) > 0 in Ar(a)# thus, really P|f
satisfies condition (2.2). Since Pi(z) = z—:lE%, fe& =1, the-

refore, for a = a, the disc cannot be enlarged.

7. ON PASSAGES TO THE LIMIT

We shall still deal with some "limit" <cases Re a - >+» and
lal — > o.
Let p be a function of the class p& when Re a > O. Then,

as follows from Theorem 2, there exists a function P of the Ca-
rath”odory class, such that in the disc A we have

p(z) = P@) -z } taP'(zt)dt.
o

Since
Pou) =2 77— — BT e,
o (e - D2
therefore
Ip(@2 - P@ 1 £ 2121 / tRe a ———-- N——— = dt, Izl = r <1.
0 1 - 11z1)2

Hence iIn the disc Ar we have

Ip@ - P@AI £ ——-1
Rea+1 (@ -r)



This means that if pep Re a > 0 and the function P satisfies
condition (2.3), then 1in each disc |z] 5 r <1 the difference
p(z) - P(z) 1is arbitrarily small when Re a is sufficiently large.

In turn, from representation (2.3) it follows that the func-
ti°en PQ®@ =1, ze A, belongs to each class p for Re a > 0.

Besides, for any function p e p&, Re a > 0, we shall get
IPz) - 1] S Ja] /7 tRe a_1 |P(zt) - 1|dt, z g A,
0
Pep. Since in the Caratheodory class the inequality

IPUU - 1] * Z6 te (0, 1>,

is satisfied, we obtain

H |
I'"'L-ns
Consequently, for any e >0 and re (0, 1), there exists a’

such that if O <Re a< Ja] <a", pe p&, then |p@) - 1] < e
in Ar.

8 . CONCLUDING REMARKS

Let us First observe that function (1.3) is a special case of
the hypergeometric series ([7]), p- 240)

3.1D) Ga, b, c; =1+ z @k bk zk, z
k=o (c)kkl
Namely, form (1.3) and (8.1) we have
.2 k&_z) =G6(1, a, 1 +a; 2, zg A.
Since, as we know, ka g P, therefore inclusion (4.1) proves that

special form (8.2) of hypergeometric series (8.1) is a Caratheodo-
ry function with positive real part if only Re a 2 0. Similar
properties of series (8 .2) follow also from other theorems proved
above.

Since pi * p2 = P2 * PI"™ one can easilY obtain various pro-
perties of a new two-parameter family p& b, a, beC\{-I, -2,...},

of functions p defined by the formula
p = ka * kb * P



where Pep (cf. [5])- OF course, =p,p&b - c N
if only Re a, Re b £ 0, ‘i‘3>® = Pg-

Proceeding analogously as in the case of Theorem 1 (cf. [5D),
we obtain

THEOREM 8.1. If pefa<b, a, beC\{-1, -2, ...}, then
there exists a function Pe p such that

@3 " z2p"(@)+a+al *12p"(@) +p(d) =P@E), ze A

and conversely, for any function Pep, solution (1.5) of equa-
tion (8.3) belongs to the class P o

Proof. If P e <Pa if then there exists p e pb such that
p=kg*p, p=kBa*P, Pep. Consequently, form (2.1) we have

g zp"(@D + p@@)=P@, zeA,

and

~"zpt@ +p@ =p(2), ze A

Hence we get equation (8.3). Comparing the coefficients, one can
verify that if p 1is of form (1.5) and satisfies equation (8.3)
for some Pep, then

gn = a +nb + n Qn” n=1,2, ...,

thus pe b, which concludes the proof.

In particular, from Theorem 8.1, proceeding as in Section 2,
one can obtain many properties of the classes , among others,
an analogue of condition (2 .2), and the like.

In Proceedings [5], two more general problems were formulated:
1° Determine the set of all (@, b, ) eC3,c#0, -1, ..., such
that hypergeometric series (15) be a Carath™odory function.
2° For any admissible points (@, b, ¢) e C3, examine the extre-
mal properties of the class £(ab) of functions p = P * G where
the functions P belong to the class p, while G is series (8.1).

In general, both these problems are open. The results of our
paper give only partial solutions. In paper [15], the author in-
vestigates a somewhat different question, namely, the problem of



the univalence of series (8.1). Applications of the properties of
generalized hypergeometric series can be found, for instance,
in [14].

To Ffinish with, let us only make mention of other possible ap-
plications. One can examine, Tfor example, new classes of func-
tions, generated by functions of the class <6, - in particular, it
seems purposeful to investigate the families R, > §*,dsf of func-

tions of the form

9 n
f(z) =z + a2z + ... +anz + ..., ze A,

satisfying the conditions
f’e 't%. zf (2)/f(2) e Ad 1+ zF"(@)/f"(2) e p.,

respectively. This is not, however, the object of the considera-
tions of this paper.
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0 PEWNEJ KLASIE FUNKCJI CARATHEODORY EGO

Niech oznacza znanag klase funkcji

P@ « 1+ QiF + ..+ rF" + ...

holomorficznych w kole A = (z: | @A <1} i spekniajacych w tym kole warunek
Re P(z) > 0. Niech

ka(z) =1+ r+T Z+ e + jT+H Z" + ze N~ aeC\{1, -2, ...}



W pracy badane sg wkasnosci klasy j),\ funkcji p«P*k ,aP e<p, gdzie P * ka
oznacza splot Hadamarda funkcji P oraz ka> Oczywiscie gm - Qo Ponado tez

kilka zastosowann i sformutowano zadania do rozwigzania. Idea pracy powstata
w zwigzku z badaniami dotyczacymi znanej klasy T ([5], [6]) oraz realiza-
cja pracy dyplomowej [10] -

Pewne ogélne zagadnienia dotyczace zastosowan splotu Hadamarda mozna
znalez¢ np. w [4] .



