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ON SOME GENERALIZATIONS
OF SYMMETRIC CONTINUITY

In this paper we shall give definitions of generalizations of the
symmetric continuity of a function f: R ®R. We shall prove several

properties of these generalizations.

1. Throughout the paper, B will denote the family of all
subsets of R (the real line) having the Baire property; 1 will
denote the a-ideal of sets of the first category. For a e R and
Ac R, we denote a = A ={a =x: xe A} and A-a = {x - a: xeA}.
Recall [7] that 0 1is an Il-density point of a set Ae B if and

only if Xn*AUIf—]i, H:I “» 1» 1id.e. if and only if, for each in-

creasing sequence natural numbers, there exists a

subsequence {n } such that X ACI-I, 11 -» 1 except on
mp peN mp p

a set belonging to I (abbr. I - a.e.). A point xQe R 1is an

I-density point of Ae B 1if and only if 0 is an I-density point
of A - xQ. A point xQse R is an I-dispersion point of Ae B if
and only if X5 is an I-density point of R\A. The set of all
I-density points of A will be denoted by $(A). In the obvious
manner we can define a right-hand I-density point. The set of all
right-hand I-density points of A will be denoted by <3 @A)-

Further, the family Tj = {AeB: Ac 4(A)} is a topology on
the real line which we call the I-density topology (see [7]).- Real
functions continuous with respect to the Tj-topology are called
I-approximately continuous functions.



DEFINITION [5]- Let f: R # R have the Baire property in a
neighbourhood of xQ. The upper Il-approximate limit of f at xQ

(I-1im sup (X)) is the greatest lower bound of the set
X-XO0

{y: {x: f(xX) >y} has xQ as an I-dispersion point}.

The lower I-approximate limit, right-hand and left-hand upper and

lower l-approximate limits are defined similarly. If

I-1im sup f(xX) = I-1lim inf f(X),

X+X B X*_XU

their common value is called the Il-approximate limit of f at xQ
and denoted by I-lim f(X).
X+X
o]
We shall say that f is l-approximately continuous at xQ if

and only if f has the Baire property 1in a neighbourhood of xgq

and I-lim f(x) = f(x ). It 1is known that f is Il-approximately
X=X
o]

continuous if and only if, for each x e R, f is l-approximately

continuous at x [7]-

The family of all I-approximately continuous functions will
be denoted by Jap"™ c» and the family of all I-approximately
continuous functions except on a set belonging to | by 'aﬁ_
-Cl-a.e.-

In the paper we shall need the following lemmas:

LEMMA [7]1- If 0 is an l-density point of A e B, then, for

each natural number n, there exists 6n >0 such that, for each

0 < h < and for each integer ks [-n, n - 1], we have

An [, -*~h3 =+ 0-

LEMMA [4].- Let G c R be an open set. A point O is an I-dis-
persion point of G if and only if, for each natural number n,

there exist a natural number k and a real number 6 > 0 such

that, for any 0 <h <6 and ie {l, ..., n}, there exist j , e
e {1, ..., K} such that
Gg-nDk+j -1 G - Dk + j

[CE T RO — h, —————————e- —£nh) =0



and
@ - 1)k + j. G-Dk+jJ. -1
Gn (———————- — *+ h, ————o——— —N——— h) = 0.

Throughout the paper, cl(A), int(A) will denote the closure
and the interior of the set A with respect to the natural topo-
logy. Except where a topology is specifically mentioned, all to-
pological notations are considered with respect to the natural
topology.-

For any x g R, we denote by P(x) the collection of all in-
tervals [a, b] such that x e (@, b) and of all sets of the form

CD CO

E = 1 [an® bJd U 4 [chnr dn] u (&} where, for every n,
n= n=

an < bn <an+tl < x <dn+tl <cn <dn and x e *(E)"
In [5], there was introduced a topology t which consists of

all sets U g TjJ such that if x g U, then there exists a set

Pg P(X) included in {X& U int U. It was proved that t is the
coarsest topology for which all [I-approximately continuous func-
tions are continuous.

2. In the paper we shall consider real functions of a real
variable and denote:

C - the family of all continuous functions,

Cl <Ge " the family of all continuous functions except on a

set belonging to 1 (abbr. I-almost everywhere),
SC - the family of all symmetrically continuous functions,

SCI—a e the family of all symmetrically continuous func-

tions I-almost everywhere.
DEFINITION 1. Let XQ g R. We shall say that a function
f: R @aR is symmetrically l-continuous at xQ if and only if f has
the Baire property in a neighbourhood of xQ and
I-lim (fF&x +h) - f& -h)) =o.
h=0+
DEFINITION 2. We shall say that a function f: R ®R is sym-
metrically I-continuous if and only if, it is so at each point of
its domain.
We shall denote:



I-SC - the family of all symmetrically I-continuous functions,
1-SCT. - the family of all symmetrically I-continuous func-

tions l-almost everywhere.

‘dee -

COROLLARY 1. If a function f: R + R is a symmetrically I-con-
tinuous function I-almost everywhere, then Ff has the Baire pro-

perty.
COROLLARY 2. If a function f: R &R is symmetrically l-conti-
nuous at xQ e R, then, for each e > 0,

oe *™Hh >o0: |[FxXQ + h) - F(XQ - h) | < €D
(or, for each e >0, xQe $+({x > xQ: [fFOCQ - FXD)] < e where
X" = xQ - (X - XQO)P).

THEOREM 1. If a function T is l-approximately continuous at
xQ e R, then f is symmetrically l-continuous at XxQ.

Proof. By the assumption, we infer that
sup {a: xQ e <({x: f(xX) £ ap} = f(xQ)
and
inf {a: xQ e <M{x: F(X) S a}p)} = F(xQ),
and therefore, for each e > 0, there exist > F(xQ) - e and
az < F(x0) + e such that
XQ e ®({x: TQ) £ o™}
and
xXQ e ®{x: fX) £ a2pP -
Thus, for each ¢ > 0,
@) there exists > f(XQ) - e such that 0 e ANl ¢ (aF)
where a™ = {h > o0: T(XQ + h) £ o},

A" {h > 0r F(xQ - h) 2 cN},

and
@) there exists <2 < f(xQ) + e such that o e $+(AMNHAA +(AN)

where A2 = {h >o0: F(XQ + h) £ a2),
A" = {h >0 fT(xXQ - h) S a2}



Therefore, we have,

(©) 0g @) n @B, where B = {h>0: F(Q+h)> F(xQ) -e}
Br= {h >0: f(xo - h) > f(xQ) - e}, for each e > o,

and

()] 0e $+(B") 0 ®@<B") where B2 - {h>0: fF(xQ+h) < f(xQ) + e}

B2={h >0: f(xQ - h) < F(XQ) + e}, for each e > o.
Now, we shall show that
(&) inf {fa- oe @(h >0: F(xXQ + h) - FxQ - h) £ ap)} = o.
Let ae R and a <0. For e=-~,by B and @), we have that
0g *>+@Bj nBY) = #&(h >0 F(xQ + h) - F(xQ - h) > a}), and the-

refore, o 1is a right-hand I-dispersion point of a set
{h >0: fF(xQ + h) - F(xQ - h) £ a}. Thus

() ifoeao(h >0: fFXQ + h) - f(xQ - h) Sa}, then a 2 o.
Let neR and n >0. By (O and (@, for e-" and a3 = a2z -

we have <n and
Oe $+AJ n A = G@{h > 0: F(xQ + h) - F(xXQ - h) £ a3>).

Then, by the above and by (6), we have (5).
In a similar way we can show

@) sup {fa: 0g ¢ {h >0: fxXQ + h) - F(xQ - h) 1 ap} = 0.
Then, by (5) and (7), we have
@) I-lim (FX +h) - f&X -h) = o,
h-0+
and the proof of Theorem 1 is completed.

PROPOSITION 1. If a function ¥ 1is symmetrically continuous
at xQ g R, then f is symmetrically Il-continuous at xq.

Proof. Let f be a symmetrically continuous function at
XQ e R. We shall show that
(©)) I-1im sup (F(xXQ + h) - F(xQ - h)) S O.
h—=0+

Let ae R and a > 0. By the symmetric continuity of f at xq, we

have that there exists hQ > o such that (o, hQ) ¢ Aa, where Aa =



=4{h >0: f(xXQ + h) - F(xQ - h) £ a}. Since 0e < (O, hQ)), the-
refore 06 @ (Aa). Thus inf {a: 0Oe P()} £ 0 and condition

) is true.
In a similar way we can show
(o) I-lim inf (F& + h) - f(x,, - h)) £o0.
h-o+ ° °
It Is easy to see that
(1) I-1im inf (F& + h) - f(x - h))
h+o+ ° °

£ I-lim sup (fx + h) - fF(x - h))
h—o + ° d

and, by the above,
I-lim (FXx + h) - f&x - h))
h=0+ ° °

0.

Therefore, the function F is symmetrically I-continuous at xq.

THEOREM 2. If f is defined on an open interval 1 and f is
symmetrically l-continuous and monotone on 1, then f is symmetri-
cally continuous on 1.

Proof. Now, we observe that, for each real function g of
a real variable, we have

12) lim inf g(h) £ I-lim inf g(h)

h*o+ h-o +
and
s I-lim sup gth) £ 1im sup g(h).
h—=o + h-o+

Let 6 >0and m, = inf g(h). Then (O, 6)c {h > 0: g(h) Z
0 O<h<5

2mfi} and Oe @Hh >0: gth) 2mAAp). Thus m £ sup {a: 0 e
e sab({h > o0:g(h) 2 a}) and supm, £ sup {a: oe €& ({h >o0:gh) 2
2 a})}- Therefore ° °

lim inf gth) £ I-1im inf g(h).

heto+ h=o+

In a similar way we can prove condition (13).
Now, we shall prove that

) lim (Fx + h) - Fx - h)) = I-lim (F(x +h) - f(x - h))
hso+  © ° h—o+  °© °



Condition (14) will be followed from
5) lim inf (F&xrt + h) - f(x,, - h))
h—=o + ° °

2 inf (F_+h) - f(x, - h))

I-1im
h-o+
and

a6) I-lim sup (f&x + h) - f(x - h))
h*o + ° °

2 lim sup (f(x + h) - f(x - h)).
h—=0+ ° °

We assume that T 1is nondecreasing and suppose that there
exists xq e R such that (15) does not hold; let

k, = Lim inf (fx. + h) - f(x,, - h)
1 h=o0+ ° °

< I-lim inf (F +h - F - h)) = k,-
h—l»g]+In ( (Xo ) (Xo ) z

Llet 0O <e <-J(ke - kD and B = {h> 0: f(xXQ + h) - F(xQ - h) 2
2 kg - e). Since Ih_-!dﬂ] inf (f(xO + h) - f(xo— h)) = k_z, there

exists a > k2 - e such that Oe W@ ({h>0: F(XQ + h)-F(xQ - h) 2
2a and Oe ¢ @B). Thus, by lemma [7], we have

an for each natural n, there exists >0 such that,
for each natural 0 £ 1S n - 1, ["h, ~h] n B £ 0.

By lim inf (f(xo +h) - f(x -h) =k. <k- -2e, we infer

that thep;OJerxists a sequence {hn)neN such that rfR -——KO, and, for

N=x<
each natural n, hn >0, xQ + hRe I and

18 f(xQ + hn) - F(xQ - hn) < k2 - 2e.
We consider intervals Jn = [ hn]. Then
a9 for each n, B A = 0.

Indeed, if he JR, then, by the assumption and by (18), we
have
f(xQ + h) S f(xQ + hn) < F(xQ - hn) + k2 - 2e

£ f(xXQ + h) + k2 - 2e,
f(xo+h)—f(xo—h) <k2—2e, so h 4 B.



Let nQ be a natural number. By (17), we Infer that there
exists ¢n >0 such that, for hn e {hn)n6N and hR < ¢n ,

n, -1

T-9-——-h h n B
L Ng ni’ nil r ¥

holds which gives a contradiction. Thus, for each xq e I, (15)
holds.

Now, we suppose that condition (16) does not hold. Let X, e R
be such that

ki = I-lim sup (f(x + h) - f(x - h))
1 h—=o+ ° °

N

lim sup (fF& + h) - f(x,, - h)) = kO.
h=o0+ o] o *

Let 0 <e < (k2 -kl) and C=1{h >0: fxQ + h) - f(xQ - h) S
9 k. + . since I-lim su f(x_ +h - f(x_ -h = k. therefore
At lin sup (FGx_ + m) - FO - M) =k

O0e P (@©. By lemma [7], we have

o) for each natural n, there exists 6n > o such that,

for each o <h <<% and for each natural o S1 £n - 1,

[h, —] o o~ o holds.

By lim sup (f(xX. + h) - f(x*» - h)) = k, > k. + 2e, we have that
h#*eo + ° ° 1 1

there exists a sequence {hn)neN such that hR-——»0 and, for each
s
natural n, hn > 0, Xo +nh_ g 1 and (f(xg + hn) - f(xU - h”) >

>KjJ + 2¢. Thus, for each h >hn, if xQ +h el and xQ - hg 1,
then f(xXQ + h) a f(xXQ + hR) > F(XQ - hn) + ki1 + 2¢ > F(xXQ - h) +
+ ki1 + 2e. Therefore f(xQ + h) - f(xQ - h) > kx + 2¢ and

(1) for each natural n and for each h > hn, we hace h f C.

Let nQ be a natural number. By (20), we have that there

n -1
exists in > 0 such that, for each h <e , F -——-h, h] i C # O,
o) o) o)
which gives a contradiction since, by (1), for each h" >h
nl
h -1
where hn ¢ {hn)neN and hn < -—-h, h" i C. Thus, for each

1 1 (0]



xQ e I, condition (16) holds. Now, it 1is easy to see that; by
(12), (13), (@5) and (16), we have (14).

PROPOSITION 2. 1-SC\SC t O and I—SC\Iap -C /7 0.
@

Proof. let P=1J Tan, bnfb be such that, for each na-
n=1I

tural n, O < bn+1 < an <bn and Oe < (P). Let f be a continuous

function at all x # 0 such that f(0)-1, f(X) = 0 at xePU(-P),
and for each natural n, Tf(i(an + bn-1)) = 1 and f( - an+bn+1))=

= -1. It is easy to see that fe 1-SC and £~ SC U lap“C.

H. Fried showed in [2] that every symmetrically conti-
nuous lI-almost everywhere function 1is continuous l-almost every-
where. Therefore, by the above and by the theorem of R. D. M a-
uirdin [e]1, we have the following

THEOREM 3. CLQ.;;. = SCI-a—_CO_ . Further, fe Cg( o if and
only if, for each a e R, there exist open sets A, A* and B, BM e
el such that {xe R: f(xX) <a} =AUB and {xe R: fx) > a} =
= AL U B~

COROLLARY 3. There exists a function f nonmeasurable in the
sense of Lebesgue, such that fe SCj_ae> (Sierpinski [39,

fe Cl-a.e.)"
It is known that if a function f e sc, then f 1is a Lebesgue
measurable function @ r e i s s D-

THEOREM 4. A function f s I—SC]'“d*e_. if and only if, for
each a e R, there exist A, A e Tj and B, B e 1 such that
{xe R: fFX) >a} =AUB and {xe R: f(X) < a} = ALU B~

Proof. Let ae R and put A = Tj-int ({xe6 R: f(X) > a}),
Ax = Tj-int ({xe R: f(xX) <a}), B =Tj - Fr({x e Rz f(X) > ap n
n {xe Rt F&) >a} and Br =TjJ - Fr({xe R: f(X) <ap) n {xe R:
f(x) <a}). Thus A, Ax, B, Brte I fulfil the required conditions.

Now, we assume that, for each a g4 R, there exist A, A~ e Tj
and B, Bire 1 such that {xe R: f(xX) >a} =AUB and {x e R:
f(X) < a} = AxU B~. Therefore, for each asR, {xeR: f(X) > a} e



6 B and {xeR: f(X) <a}eB. Thus the function f has the
Baire property and, by [7/1, fTe 'deI"d-G- . Then, by Theorem 1,
we have that fe I-SCT__ o -

PROPOSITION 3. There exist functions f and g such that fe

e 1-SCVSC,up.p. and g e SCT 4 o NI-SC.

Proof. Let f be the Dirichlet function. Then, for each
xeR, {h >0 f(x+h) - f(x - h) = 1}y c W, where W is a set of
all rational numbers.

Thus Oe *+(h >0: f(x + h) - f(x - h) =0}) and T e I-SC.
By Theorem 3, we know that T 4 SC s e. = Clugee.- L€t g be a
function such that g(x) =0 at x e (=», 0> and gX) =1 at

x e (O, »). Then ge SC]'“d_.GQ\I—SC.
By Theorems 3, 4 and by Proposition 1, we have
SClw »0« = CX-5.0. C I A6

{f: ¥ has the Baire property}.

DEFINITION 3. We shall say that fs R + R is a symmetrically
t-continuous function at xQ if and only if, for each e > o, there
exists a set P e P(0) such that

Pfl (0, +»)c int (h >0: |fFXQ + h) - FXQ - h)] < e}.
We shall say that f: R =« R is symmetrically t-continuous if and
only if it is symmetrically T-continuous at all X e R.

We shall denote:

t-SC - the family of all symmetrically T-continuous functions,

t_SCIaA«C« - the family of all symmetrically T-continuous func-

tions l-almost everywhere.

LEMMA 1. Let fe t-SCy ., . - Then, for each x,e R such

6]
that xQ 1is a point of the symmetric t-continuity of f and, for
®
any y > 0, 6 > 0, there exists a set F = [an, bn] such that,
n=I

for each natural n, the set
{xe xQ + [an, bR] : int ({t: |f(t + (X - xXQ))

- f(t - X -xQ)I <yhD n Q, xQ + 6)
is a residual subset of xQ + [an, bR]>and 0Oe $ ()



Proof. First assume that xQ fulfils conditions int({t >
>0z [fF(xXQ + ) - F(XQ - ©)] <™ *0o and (, dc int {t >o0:
IFCQ + © - Ff(XQ - D] <}P. Let Xj e (XQ +c, xQ +d) be a
point of the symmetric t-continuity of the function F, and let
6 > 0. We shall choose a > 0 such that a < min(e, X - xQ) and
o™ -A P +ac (XQ+c, xQ+ d). By our assumption about the
point x*, we know that

int {t>o0: i+ 1) - FOxx - ] <P
l,a /o.

Let (c™ dx)c int {£ >0: [fJ+O-fFXJ-D|<*}P) A O, 3a
and (@, b) = xQ + (¢~ dx). Then, for each y e (a, b), we have
y - xQe (Cj, dx) and x1 -y e (c, d). Therefore

ITOx + (v - xQ)) - F(xx - (v - xQ)| <

IFOG + X - y)) - F(xD - (Xx - y))| <\
and, by the above,
ITQy + x - xQ)) - f(y - Gx - xQ)| <.
Now, let xQ be a point of the symmetric x-continuity of the

function f, and let & >0, y > 0. Then there exists a set

F=1J Ja
n—1 L
+ 1 - fF(xXQ - H| < )- By the assumption, we know that, for

n= bnj such that O e (F) and Feint ({t > O: |f(x_o +

each ne N, the set {x e xQ + [&R, bR]: f is symmetrically x-con-
tinuous at x} 1is a residual subset of xQ + [an, bR] and, the-
refore, the proof of the lemma is completed.

LEMMA 2. Let f: R #R, ae R, a>0 and

B={xeR if F=cl (® and oe *() then
int F {t >0: [fx+ 1 - fFX | < a}}-

IT (@, b) 1is an interval such that cl (®) = [a, b], then for

any sets F and A such that A aF and:



2) o 6 o(F),
3 for each ne N, [an, bJ\A e I,

and, for each (c, d)c(a, b) there exist two points x” x2e (c, d)
such that x2 - x* e A and |f&?) - F(x2)] 2

Proof. Let £ (@, dnB and C={t>0: Iffy™+t) -

- f(yl)] £ We assume that nQ is a natural number such that
Cn @ ,bn ) is a subset of the second category of (@ ,b ).
o] o o o]
Then AO (an ,bn A C#O0. Let tQe An (an , b )Ml C. Then
o] o] o] o]

IFO + Q) - Fyx)1 2] and W+ tQ - yx e A. Thus, we put
X1=ylI" x2=yl+V
Now, we assume that, for each ne N, CD [afi, bjJ is a subset

of the first category of [an, bj . We denote, for each n e N,

Dh={t 6 f>n" bJ : If(yl +t] * f(yl>1 <f}* Then Gn" bJ \ Dnel>
Let Fj = |[FQ @O, d -y™) U {0}. Then Oe (). We know that
Yj e B and, therefore, int (F1)i {t > 0: [fF(yr1+t)-FfFYW]| < a}-
Let t be a point such that
geint F1D {£t >o0: fMH+1© - FTyx)] 2 a} Fo.
Let k be a natural number such that t e (&, b"). Then, for

each te DV, we have
IfoGl+49) - fOr + O |
2 Y™+ t1) - fyp| - Ifiynr - ffyj + ]

n a a
*og o, o,

Let y >0 be such that ~ + vy <min (O, d - yN. The set

AD (@, y) is a subset of the second category of (o, y) and, the-
refore, t1 + (Afl (O, y)) 1is a subset of the second category of
<tl" d + c Mak® bk*" Thus there exists a point t2 e (" +
+ An O, y)) n DN, and t2 > t.

Then



C<yl<yl+t2<Yl+Y<yl+d?”Yl=4d"
and

Ifyx + tx) - £(Y1 + t2)] i f.

Now, we put xi = Yi + x2 =yl + €2 Then X2 " X1 = t2 " fde A

and the proof of the lemma is completed.

LEMMA 3. If (x e R: f is right-hand continuous at x with
respect to the topology t) is a dense subset of R, then fecj a e

Proof. Suppose that there exist a natural number n and an
open interval (@, b) such that, for each (c, d) ¢ (@, b) there
exist XxIf x2 e (c, d) such that |Jf(xx) - FX2)] £~. Let xQ s

e (@, b) be a point of right-hand continuity with respect to the
topology t of the function f. Then int {X > xQ: |[fX) - f(xQ) <

<-1)0 (Q, b) €t 0. Therefore, there exists an interval (c, d)
such that (c, d) c Int {x > xQ: |[fX) - FXQ)] < n (@, b).
Then, for any Xj, x2 e (c, d), [f(x1) - FX2)] < ¢, which gives
a contradiction with our assumption. Thus fe Cj_a>e#*

THEOREM 5. Let f: R @R and fe T scx a.e.” then fe6 Ci-a.e.”’

Proof. By Lemma 3, we may reduce our consideration to the
case if {x e R: f 1is right-hand continuous with respect to the
topology t at x} is not a dense subset of R. Thus, if

A=U {xeR: ifFF=cl (® and Oe ‘F’(F), then
n=1
(<o)

int FE€{L£>0: [f X+ - FfF|<-}=11[3 An,
there exist an open interval (@, b) and a natural number n such

that cl (A\n H (@, b)) = [a, b]-

Let, for any natural k, p, for each- h < - and for each
ie {1, ..., n},
Bkphi = {xe (@a*b): re CHr1“"
=>-|f(x + 1) - f(x - r)| < g"}.

By our assumption, we have



{xe (@ b): f

is symmetrically T-continuous at Xx)

(see lemma [4] ). Therefore, there exist natural numbers k, p such
that S = f) 11 Bfcphi a subset of the second category of
h<p 1-1

(@, b). Let a~=a, b~ <b be such that S 1is a subset of the
second category of (a” bx) and let h<i be such that bx + h < b.
Then there exist i1 e {1, k} and an open interval (a2, b2)c
c <al» b such that is a dense subset of (@*, bj), We
may assume that b2 - a2 <~ e h. Then |h + a2 - 1 ~1h - b2 > 0.

Let (c, d ¢c Pk 1 h + b2, ~h + a2] be such that d - c <
< 2(b2 - a2) and let x e (a2, b2) n Bkphi and xx e (c, d). Then
XX - x e [i-~~~h, |h] and JIF(x + O - X)) - F(x - (xx - x))| <
<en* Now"we Put c”=2a2 " c" d”= 2pb2 _ c" cC" = 2a2 7 d-
d" = 2b2 - d. Then d* - ¢ > 0.

Let xQ e (¢ , d") be a point of -the symmetric t—&ontinuity

of the function T.

for any natural

such that 0 e 4+{F) and,
Dn = {x e xo0o + I>n" bJ
- f(t - x - xQNI

is a residual subset

= 2(D - xQ). Then
2. We may assume that
x2, x3 e (c, d) such

Then |(x3 - x2) e D - xQc F

c (xQ, d").

we put x1

of [an, bn] + xQ. Let D :[f] Dn, F1

int ({t:

n=I
n and a positive real

If(t + (X " xoM

< gi} n (xQ, xQ + 6) / O}

2 e

n=1

By Lemma 1, there exists aset F=11la_b }
Ln n

6,

F,

st

F1 and satisfy the assumptions of Lemma
Fc (xQ, d) - xQ. Therefore, there exi
that x3 - x2 e Dx and [f(x2) - F(x3)] 2

and

XQ + |(Xx3 - x2)e Dc F + xQ <=

XQ + | (X3 - x2) < d".

There exists

an



open interval (cMfdi)c int {te R: |f(t + ~ -xQ)) - Tt -
- (g - xQ)] < n X , Xxx - x ), which means that, for each
te (G, dil), |If(t+ (X - xQ) - F(t - Ox - xQ)| < gi.

Let ~ = ;’\x3 + xX2* x e * 2_ - +ZCl ’\nAékghE“c *a2"

b2) n Bkphi and x* = 2x* - ~ e (c®, dj)- Then
IFX™ + (x2 - x" )) - FX" - (2 - x" )| <
IfX™ + 3 - x" )) - FX" - (x3 - x" )| < gi

and
XT - (X2 - X)) = X* + 0§~ - XQ),
X" - (X3 - X" ) = X* - &~ - XQ).

Since x* e (e”™ dj) therefore

If&™ - (2 -x" ) - fK" - (3 - X" )
= G + Ox - xQ)) - F(X* - (X1 - xQ))| < gi.
Thus -
[F(x2) - FX3)I £ IFX" + (2 - X ) - FX" - (x2 - x"DI
+ IfX™ - (X2 - x")) - fxX" - (x3 - x|
+ IfX" - (3 - x")) - F(X" + (x3 = x"))I < 27,

which gives a contradiction because |f(x2) - f(x3)] £ 2% There-
fore the proof of the theorem is completed.

PROPOSITION 4. If a function Ff 1is symmetrically continuous
at x e R, then T 1is symmetrically t-continuous at Xx. There
exists a function F e r-SC\SC.

Proof. The Dirichlet function satisfies the required con-
dition.

By Theorems 5 and 3 and by the above proposition, we have
t-SCc x-SCj_ae c Cj_ae = SCj.a.g- ¢ T-SC,_a e and therefore,

T SCl-a.e. = SCt-a.e. = Cl-a.e.”
Thus, we have:



COROLLARY 4. There exists a function f nonmeasurable in the
sense of Lebesgue, such that fe t-SC

By [1] and by the above, we have:

1-a.e.

COROLLARY 5. There exists a function F nonmeasurable iIn the
sense of Borel such that f e x-SC.
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0 PEWNYCH UOGOLNIENIACH SYMETRYCZNEJ CIAGLOSCI

W pracach [7] i1 [5] zostaly wprowadzone pojecia l-ciggtosci i T-ciaggtosci
W tej pracy podane sa definicje wuogélnieh symetrycznej ciggtosci funkcj i
f: R » R, a mianowicie symetrycznej l-ciggtosci oraz symetrycznej T-ciagtosci.
Udowodnione sa réwniez pewne whasnosci tych uogdélnien oraz inkluzje zachodzace
pomiedzy klasami funkcji ciagtych, symetrycznie ciaghych, symetrycznie l-ciag-
+ych oraz symetrycznie T-ciagtych.



