Inga Libicka, Ewa Łazarow, Bożena Szkopińska

ON SOME GENERALIZATIONS OF SYMMETRIC CONTINUITY

In this paper we shall give definitions of generalizations of the symmetric continuity of a function $f: R \rightarrow R$. We shall prove several properties of these generalizations.

1. Throughout the paper, **B** will denote the family of all subsets of R (the real line) having the Baire property; I will denote the σ -ideal of sets of the first category. For $a \in R$ and $A \subset R$, we denote $a \cdot A = \{a \cdot x: x \in A\}$ and $A - a = \{x - a: x \in A\}$. Recall [7] that 0 is an I-density point of a set $A \in B$ if and only if $\chi_{n-A\cap[-1, 1]} \xrightarrow{I}_{n \to \infty} 1$, i.e. if and only if, for each increasing sequence $\{n_m\}_{m \in N}$ of natural numbers, there exists a subsequence $\{n_m\}_{m \in N}$ of natural numbers, there exists a subsequence $\{n_m\}_{m \in N}$ of natural numbers, there exists a I-density point of $A \in B$ if and only if 0 is an I-density point of $A - x_0$. A point $x_0 \in R$ is an I-dispersion point of $A \in B$ if and only if x_0 is an I-density point of $R \setminus A$. The set of all I-density points of A will be denoted by $\phi(A)$. In the obvious manner we can define a right-hand I-density point. The set of all right-hand I-density points of A will be denoted by $\phi^+(A)$.

Further, the family $T_I = \{A \in B: A \subset \phi(A)\}$ is a topology on the real line which we call the I-density topology (see [7]). Real functions continuous with respect to the T_I -topology are called I-approximately continuous functions.

Inga Libicka, Ewa Łazarow, Bożena Szkopińska

DEFINITION [5]. Let f: $R \rightarrow R$ have the Baire property in a neighbourhood of x_0 . The upper I-approximate limit of f at x_0 (I-lim sup f(x)) is the greatest lower bound of the set

x+xo

{y: {x: f(x) > y} has x as an I-dispersion point}.

The lower I-approximate limit, right-hand and left-hand upper and lower I-approximate limits are defined similarly. If

 $I-\lim_{x \to x_{O}} \sup f(x) = I-\lim_{x \to x_{O}} \inf f(x),$

their common value is called the I-approximate limit of f at x_0 and denoted by I-lim f(x). $x \rightarrow x_0$

We shall say that f is I-approximately continuous at
$$x_0$$
 if
and only if f has the Baire property in a neighbourhood of x_0
and I-lim $f(x) = f(x_0)$. It is known that f is I-approximately

continuous if and only if, for each $x \in \mathbb{R}$, f is I-approximately continuous at x [7].

The family of all I-approximately continuous functions will be denoted by I_{ap} - C, and the family of all I-approximately continuous functions except on a set belonging to I by I_{ap} -C_{I-a.e.}.

In the paper we shall need the following lemmas:

LEMMA [7]. If 0 is an I-density point of $A \in B$, then, for each natural number n, there exists $\delta_n > 0$ such that, for each $0 < h < \delta_n$ and for each integer $k \in [-n, n - 1]$, we have

 $A \cap \left[\frac{k}{n}h, \frac{k+1}{n}h\right] \neq \emptyset.$

LEMMA [4]. Let $G \subset R$ be an open set. A point 0 is an I-dispersion point of G if and only if, for each natural number n, there exist a natural number k and a real number $\delta > 0$ such that, for any $0 < h < \delta$ and $i \in \{1, \ldots, n\}$, there exist $j_r, j_1 \in \{1, \ldots, k\}$ such that

$$G \cap \left(\frac{(i-1)k+j_r-1}{n\cdot k}h, \frac{(i-1)k+j_r}{n\cdot k}h\right) = \emptyset$$

and

$$G \cap \left(-\frac{(i-1)k+j_{1}}{n\cdot k}h,-\frac{(i-1)k+j_{1}-1}{n\cdot k}h\right) = \emptyset$$

Throughout the paper, cl(A), int(A) will denote the closure and the interior of the set A with respect to the natural topology. Except where a topology is specifically mentioned, all topological notations are considered with respect to the natural topology.

For any $x \in R$, we denote by P(x) the collection of all intervals [a, b] such that $x \in (a, b)$ and of all sets of the form

$$E = \bigcup_{n=1}^{\infty} [a_n, b_n] \cup \bigcup_{n=1}^{\infty} [c_n, d_n] \cup \{x\} \text{ where, for every } n,$$

 $a_n < b_n < a_{n+1} < x < d_{n+1} < c_n < d_n \text{ and } x \in \phi(E).$

In [5], there was introduced a topology τ which consists of all sets $U \in \mathbf{T}_{\mathbf{I}}$ such that if $\mathbf{x} \in \mathbf{U}$, then there exists a set $P \in \mathbf{P}(\mathbf{x})$ included in $\{\mathbf{x}\} \cup$ int U. It was proved that τ is the coarsest topology for which all I-approximately continuous functions are continuous.

2. In the paper we shall consider real functions of a real variable and denote:

C - the family of all continuous functions,

C_{I-a.e.} - the family of all continuous functions except on a set belonging to I (abbr. I-almost everywhere),

sc - the family of all symmetrically continuous functions,

sc_{I-a.e.} - the family of all symmetrically continuous functions I-almost everywhere.

DEFINITION 1. Let $x_0 \in \mathbb{R}$. We shall say that a function f: $\mathbb{R} \to \mathbb{R}$ is symmetrically I-continuous at x_0 if and only if f has the Baire property in a neighbourhood of x_0 and

 $I-\lim_{h \to 0+} (f(x_0 + h) - f(x_0 - h)) = 0.$

DEFINITION 2. We shall say that a function $f: \mathbb{R} \to \mathbb{R}$ is symmetrically I-continuous if and only if, it is so at each point of its domain.

We shall denote:

I-SC - the family of all symmetrically I-continuous functions, I-SC_{I-a.e.} - the family of all symmetrically I-continuous functions I-almost everywhere.

COROLLARY 1. If a function f: $R \rightarrow R$ is a symmetrically I-continuous function I-almost everywhere, then f has the Baire property.

COROLLARY 2. If a function f: $R \rightarrow R$ is symmetrically I-continuous at $x_{c} \in R$, then, for each $\epsilon > 0$,

 $0 \in \phi^{+}(\{h > 0: |f(x_{o} + h) - f(x_{o} - h)| < \epsilon\})$ (or, for each $\epsilon > 0$, $x_{o} \in \phi^{+}(\{x > x_{o}: |f(x) - f(x')| < \epsilon$ where $x' = x_{o} - (x - x_{o})\})$).

THEOREM 1. If a function f is I-approximately continuous at $x_0 \in R$, then f is symmetrically I-continuous at x_0 .

Proof. By the assumption, we infer that

$$\sup \{\alpha: x_{o} \in \phi(\{x: f(x) \ge \alpha\})\} = f(x_{o})$$

and

$$\inf \{\alpha: x_{\alpha} \in \phi(\{x: f(x) \leq \alpha\})\} = f(x_{\alpha}),$$

and therefore, for each $\varepsilon > 0$, there exist $\alpha_1 > f(x_0) - \varepsilon$ and $\alpha_2 < f(x_0) + \varepsilon$ such that

 $x_0 \in \phi(\{x: f(x) \ge \alpha_1\})$

and

 $x_0 \in \phi(\{x: f(x) \le \alpha_2\}).$

Thus, for each $\varepsilon > 0$,

(1) there exists $\alpha_1 > f(x_0) - \varepsilon$ such that $0 \in \phi^+(A_1') \cap \phi^+(A_1'')$

where $A'_{1} = \{h > 0: f(x_{0} + h) \ge \alpha_{1}\},$

$$A_1'' = \{h > 0: f(x_0 - h) \ge \alpha_1\},$$

and

(2) there exists $\alpha_2 < f(x_0) + \varepsilon$ such that $0 \in \phi^+(A'_2) \cap \phi^+(A''_2)$ where $A'_2 = \{h > 0: f(x_0 + h) \le \alpha_2\}$, $A''_2 = \{h > 0: f(x_0 - h) \le \alpha_2\}$.

Therefore, we have,
(3) $0 \in \phi^+(B'_1) \cap \phi^+(B''_1)$, where $B'_1 = \{h > 0: f(x_0 + h) > f(x_0) - \epsilon\}$
$B_1'' = \{h > 0: f(x_0 - h) > f(x_0) - \epsilon\}, \text{ for each } \epsilon > 0,$
and
(4) $0 \in \phi^+(B'_2) \cap \phi^+(B''_2)$ where $B'_2 = \{h > 0: f(x_0 + h) < f(x_0) + \epsilon\}$
$B_2'' = \{h > 0: f(x_0 - h) < f(x_0) + \varepsilon\}, \text{ for each } \varepsilon > 0.$
Now, we shall show that
(5) $\inf \{\alpha: 0 \in \phi^+(\{h > 0: f(x_0 + h) - f(x_0 - h) \le \alpha\})\} = 0.$
Let $\alpha \in \mathbb{R}$ and $\alpha < 0$. For $\varepsilon = -\frac{\alpha}{2}$, by (3) and (4), we have that
$0 \in \phi^+(B'_1 \cap B''_2) = \phi^+(\{h > 0: f(x_0 + h) - f(x_0 - h) > \alpha\})$, and the-
refore, 0 is a right-hand I-dispersion point of a set
$\{h > 0: f(x_0 + h) - f(x_0 - h) \le \alpha\}$. Thus
(6) if $0 \in \phi^+(\{h > 0: f(x_0 + h) - f(x_0 - h) \le \alpha\}$, then $\alpha \ge 0$.
Let $\eta \in \mathbb{R}$ and $\eta > 0$. By (1) and (2), for $\varepsilon = \frac{\eta}{2}$ and $\alpha_3 = \alpha_2 - \alpha_1$
we have $\alpha_3 < \eta$ and
$0 \in \phi^{+}(A'_{2} \cap A''_{1}) = \phi^{+}(\{h > 0: f(x_{0} + h) - f(x_{0} - h) \le \alpha_{3}\}).$
Then, by the above and by (6), we have (5). In a similar way we can show
(7) $\sup \{\alpha: 0 \in \phi^+(\{h > 0: f(x_0 + h) - f(x_0 - h) \ge \alpha\})\} = 0.$
Then, by (5) and (7), we have
(8) $I-\lim_{h \to 0+} (f(x_0 + h) - f(x_0 - h)) = 0,$
and the proof of Theorem 1 is completed.
PROPOSITION 1. If a function f is symmetrically continuous
at $x_0 \in R$, then f is symmetrically I-continuous at x_0 .
Proof. Let f be a symmetrically continuous function at
$x_0 \in R$. We shall show that
(9) I-lim sup $(f(x_0 + h) - f(x_0 - h)) \le 0$. $h \to 0+$
Let $\alpha \in R$ and $\alpha > 0$. By the symmetric continuity of f at x_0 , we
have that there exists $h_0 > 0$ such that $(0, h_0) \subset A_{\alpha}$, where $A_{\alpha} =$

Inga Libicka, Ewa Łazarow, Bożena Szkopińska

= {h > 0: $f(x_0 + h) - f(x_0 - h) \le \alpha$ }. Since $0 \in \phi^+((0, h_0))$, therefore $0 \in \phi^+(A_{\alpha})$. Thus inf $\{\alpha: 0 \in \phi^+(A_{\alpha})\} \leq 0$ and condition (9) is true.

In a similar way we can show

I-lim inf $(f(x_0 + h) - f(x_0 - h)) \ge 0.$ (10) h+0+

It is easy to see that

I-lim inf $(f(x_0 + h) - f(x_0 - h))$ (11)h+0+

 \leq I-lim sup (f(x₀ + h) - f(x₀ - h)) h \rightarrow 0+ h→0+

and, by the above,

I-lim $(f(x_0 + h) - f(x_0 - h)) = 0.$ h+0+

Therefore, the function f is symmetrically I-continuous at x_o.

THEOREM 2. If f is defined on an open interval I and f is symmetrically I-continuous and monotone on I, then f is symmetrically continuous on I.

Proof. Now, we observe that, for each real function g of a real variable, we have

(12) $\liminf g(h) \leq I - \liminf g(h)$ h+0+ h+0+

and

I-lim sup $g(h) \leq \lim \sup g(h)$. (13) h→0+ h→0+

Let $\delta > 0$ and $m_{\delta} = \inf g(h)$. Then $(0, \delta) \subset \{h > 0: g(h) \ge 0\}$ 0<h<8 $\geq m_{g}$ and $0 \in \phi^{\dagger}(\{h > 0: g(h) \geq m_{g}\})$. Thus $m_{g} \leq \sup \{\alpha: 0 \in a\}$ $\in \phi^{\dagger}(\{h > 0: g(h) \ge \alpha\})$ and $\sup m_{g} \le \sup \{\alpha: 0 \in \phi^{\dagger}(\{h > 0: g(h) \ge \alpha\})$ δ $\geq \alpha$ }). Therefore

 $\liminf q(h) \leq I - \lim \inf q(h).$ h+0+ h+0+

In a similar way we can prove condition (13). Now, we shall prove that

(14) $\lim (f(x_0 + h) - f(x_0 - h)) = I - \lim (f(x_0 + h) - f(x_0 - h))$ h→0+ 0 h→0+ 0 h→0+ h+0+

Condition (14) will be followed from

2

<

$$\lim_{h \to 0+} \inf (f(x_0 + h) - f(x_0 - h))$$

I-lim inf
$$(f(x_0 + h) - f(x_0 - h))$$

h+0+

and

(15)

(16) I-lim sup
$$(f(x_0 + h) - f(x_0 - h))$$

 $\geq \lim_{h \to 0+} \sup (f(x_0 + h) - f(x_0 - h))$

We assume that f is nondecreasing and suppose that there exists $x_0 \in R$ such that (15) does not hold; let

$$k_1 = \liminf_{h \to 0+} (f(x_0 + h) - f(x_0 - h))$$

< I-lim inf
$$(f(x_0 + h) - f(x_0 - h)) = k_2$$
.
h+0+

Let $0 < \varepsilon < \frac{1}{2}(k_2 - k_1)$ and $B = \{h > 0: f(x_0 + h) - f(x_0 - h) \ge 0\}$ $\geq k_2 - \epsilon$ }. Since I-lim inf (f(x₀ + h) - f(x₀ - h)) = k₂, there exists $\alpha > k_2 - \varepsilon$ such that $0 \in \phi^+(\{h > 0: f(x_0 + h) - f(x_0 - h)\}$ $\geq \alpha$ and $0 \in \phi^+(B)$. Thus, by lemma [7], we have

(17) for each natural n, there exists $\delta_n > 0$ such that, for each natural $0 \le 1 \le n - 1$, $\left[\frac{1}{n}h, \frac{1+1}{n}h\right] \cap B \neq \emptyset$.

By lim inf $(f(x_0 + h) - f(x_0 - h)) = k_1 < k_2 - 2\varepsilon$, we infer that there exists a sequence $\{h_n\}_{n \in \mathbb{N}}$ such that $h_n \xrightarrow[n \to \infty]{} 0$, and, for each natural n, $h_n > 0$, $x_0 + h_n \in I$ and

 $f(x_0 + h_n) - f(x_0 - h_n) < k_2 - 2\varepsilon.$ (18)

We consider intervals $J_n = [0, h_n]$. Then

(19) for each n, $B \cap J_n = \emptyset$.

0

Indeed, if $h \in J_n$, then, by the assumption and by (18), we have

$$f(x_0 + h) \leq f(x_0 + h_n) < f(x_0 - h_n) + k_2 - 2\varepsilon$$
$$\leq f(x_0 + h) + k_2 - 2\varepsilon,$$
$$f(x + h) - f(x - h) < k_0 - 2\varepsilon, \text{ so } h \notin B.$$

Let n_0 be a natural number. By (17), we infer that there exists $\delta_{n_0} > 0$ such that, for $h_{n_1} \in \{h_n\}_{n \in \mathbb{N}}$ and $h_{n_1} < \delta_{n_0}$,

$$\begin{bmatrix} n_{o} - 1 \\ \hline n_{o} h_{n_{1}}, h_{n_{1}} \end{bmatrix} \cap B \neq \emptyset$$

holds which gives a contradiction. Thus, for each $x_0 \in I$, (15) holds.

Now, we suppose that condition (16) does not hold. Let $\mathbf{x}_{o} \in \mathbf{R}$ be such that

$$k_1 = I-\lim_{h \to 0+} \sup (f(x_0 + h) - f(x_0 - h))$$

< $\limsup_{h \to 0+} (f(x_0 + h) - f(x_0 - h)) = k_2$.

Let $0 < \varepsilon < \frac{1}{2}(k_2 - k_1)$ and $C = \{h > 0: f(x_0 + h) - f(x_0 - h) \le k_1 + \varepsilon\}$. Since I-lim sup $(f(x_0 + h) - f(x_0 - h)) = k_1$ therefore $0 \in \phi^+(C)$. By lemma [7], we have

(20) for each natural n, there exists $\delta_n > 0$ such that, for each $0 < h < \delta_n$ and for each natural $0 \le 1 \le n - 1$, $\left[\frac{1}{n}h, \frac{1+1}{n}h\right] \cap C \neq \emptyset$ holds.

By $\lim_{h\to 0+} \sup (f(x_0 + h) - f(x_0 - h)) = k_2 > k_1 + 2\varepsilon$, we have that there exists a sequence $\{h_n\}_{n\in\mathbb{N}}$ such that $h_n \xrightarrow[n\to\infty]{} 0$ and, for each natural n, $h_n > 0$, $x_0 + h_n \in I$ and $(f(x_0 + h_n) - f(x_0 - h_n) >$ $> k_1 + 2\varepsilon$. Thus, for each $h > h_n$, if $x_0 + h \in I$ and $x_0 - h \in I$, then $f(x_0 + h) \ge f(x_0 + h_n) > f(x_0 - h_n) + k_1 + 2\varepsilon > f(x_0 - h) +$ $+ k_1 + 2\varepsilon$. Therefore $f(x_0 + h) - f(x_0 - h) > k_1 + 2\varepsilon$ and

(21) for each natural n and for each $h > h_n$, we have $h \notin C$. Let n_o be a natural number. By (20), we have that there exists $\delta_{n_o} > 0$ such that, for each $h < \delta_{n_o}$, $\left[\frac{n_o - 1}{n_o}h, h\right] \cap C \neq \emptyset$, which gives a contradiction since, by (21), for each $h' > h_{n_1}$ where $h_{n_1} \in \{h_n\}_{n \in \mathbb{N}}$ and $h_{n_1} < \frac{h_o - 1}{n_o}h$, $h' \notin C$. Thus, for each

 $x_0 \in I$, condition (16) holds. Now, it is easy to see that; by (12), (13), (15) and (16), we have (14).

PROPOSITION 2. I-SC\SC $\neq \emptyset$ and I-SC\I_{ap}-C $\neq \emptyset$.

Proof. Let $P = \bigcup_{n=1}^{\infty} [a_n, b_n]$ be such that, for each natural n, $0 < b_{n+1} < a_n < b_n$ and $0 \in \phi^+(P)$. Let f be a continuous function at all $x \neq 0$ such that f(0) = 1, f(x) = 0 at $x \in P \cup (-P)$, and for each natural n, $f(\frac{1}{2}(a_n + b_{n-1})) = 1$ and $f(-\frac{1}{2}(a_n + b_{n+1})) = -1$. It is easy to see that $f \in I-SC$ and $f \notin SC \cup I_{ap}-C$.

H. Fried showed in [2] that every symmetrically continuous I-almost everywhere function is continuous I-almost everywhere. Therefore, by the above and by the theorem of R. D. M auldin [6], we have the following

THEOREM 3. $C_{I-a.e.} = SC_{I-a.e.}$. Further, $f \in C_{I-a.e.}$ if and only if, for each $a \in R$, there exist open sets A, A_1 and B, $B_1 \in E$ is such that $\{x \in R: f(x) < a\} = A \cup B$ and $\{x \in R: f(x) > a\} = A \cup B_1$.

COROLLARY 3. There exists a function f nonmeasurable in the sense of Lebesgue, such that $f \in SC_{I-a.e.}$ (S i e r p i ń s k i [9], $f \in C_{I-a.e.}$).

It is known that if a function $f \in SC$, then f is a Lebesgue measurable function (Preiss [8]).

THEOREM 4. A function $f \in I-SC_{I-a.e.}$ if and only if, for each $a \in R$, there exist A, $A_1 \in T_I$ and B, $B_1 \in I$ such that $\{x \in R: f(x) > a\} = A \cup B$ and $\{x \in R: f(x) < a\} = A_1 \cup B_1$.

Proof. Let $a \in R$ and put $A = T_I$ -int ({ $x \in R: f(x) > a$ }), $A_1 = T_I$ -int ({ $x \in R: f(x) < a$ }), $B = T_I - Fr({<math>x \in R: f(x) > a$ }) \cap \cap { $x \in R: f(x) > a$ } and $B_1 = T_I - Fr({<math>x \in R: f(x) < a$ }) \cap { $x \in R:$ f(x) < a}). Thus A, A_1 , B, $B_1 \in I$ fulfil the required conditions.

Now, we assume that, for each $a \in R$, there exist A, $A_1 \in T_I$ and B, $B_1 \in I$ such that $\{x \in R: f(x) > a\} = A \cup B$ and $\{x \in R: f(x) < a\} = A_1 \cup B_1$. Therefore, for each $a \in R$, $\{x \in R: f(x) > a\} \in$ $\in \mathbf{B}$ and $\{x \in \mathbb{R}: f(x) < a\} \in \mathbf{B}$. Thus the function f has the Baire property and, by [7], $f \in \mathbf{I}_{ap}\mathbf{C}_{I-a.e.}$. Then, by Theorem 1, we have that $f \in \mathbf{I}-\mathbf{SC}_{I-a.e.}$.

PROPOSITION 3. There exist functions f and g such that $f \in I-SC \setminus SC_{I-a,e}$, and $g \in SC_{I-a,e} \setminus I-SC$.

Proof. Let f be the Dirichlet function. Then, for each $x \in R$, $\{h > 0: f(x + h) - f(x - h) = 1\} \subset W$, where W is a set of all rational numbers.

Thus $0 \in \phi^+(\{h > 0: f(x + h) - f(x - h) = 0\})$ and $f \in I-SC$. By Theorem 3, we know that $f \notin SC_{I-a.e.} = C_{I-a.e.}$. Let g be a function such that g(x) = 0 at $x \in (-\infty, 0)$ and g(x) = 1 at $x \in (0, \infty)$. Then $g \in SC_{I-a.e.} \setminus I-SC$.

By Theorems 3, 4 and by Proposition 1, we have

 $sc_{I-a.e.} = c_{I-a.e.} \subset I-sc_{I-a.e.}$

= {f: f has the Baire property}.

DEFINITION 3. We shall say that f: $R \rightarrow R$ is a symmetrically τ -continuous function at x_0 if and only if, for each $\varepsilon > 0$, there exists a set $P \in \mathbf{P}(0)$ such that

 $P \cap (0, +\infty) \subset \text{int } \{h > 0: |f(x_0 + h) - f(x_0 - h)| < \epsilon\}.$ We shall say that f: R \rightarrow R is symmetrically τ -continuous if and only if it is symmetrically τ -continuous at all $x \in R$.

We shall denote:

 τ -SC - the family of all symmetrically τ -continuous functions,

 $\tau\text{-}SC_{I-a.e.}$ - the family of all symmetrically $\tau\text{-}continuous$ functions I-almost everywhere.

LEMMA 1. Let $f \in \tau - SC_{I-a.e.}$. Then, for each $x_o \in R$ such that x_o is a point of the symmetric τ -continuity of f and, for any $\gamma > 0$, $\delta > 0$, there exists a set $F = \bigcup_{n=1}^{\infty} [a_n, b_n]$ such that, for each natural n, the set

 $\{x \in x_0 + [a_n, b_n]: int (\{t: | f(t + (x - x_0))\}$

 $- f(t - (x - x_0) | < \gamma\}) \cap (x_0, x_0 + \delta) \neq \emptyset\}$

is a residual subset of $x_0 + [a_n, b_n]$; and $0 \in \phi^+(F)$.

Proof. First assume that x_0 fulfils conditions $int(\{t > 0: |f(x_0 + t) - f(x_0 - t)| < \frac{\gamma}{2}\}) \neq \emptyset$ and $(c, d) \subset int (\{t > 0: |f(x_0 + t) - f(x_0 - t)| < \frac{\gamma}{2}\})$. Let $x_1 \in (x_0 + c, x_0 + d)$ be a point of the symmetric τ -continuity of the function f, and let $\delta > 0$. We shall choose $\alpha > 0$ such that $\alpha < min(\delta, x_1 - x_0)$ and $(x_1 - \alpha, x_1 + \alpha) \subset (x_0 + c, x_0 + d)$. By our assumption about the point x_1 , we know that

int
$$(\{t > 0: |f(x_1 + t) - f(x_1 - t)| < \frac{\gamma}{2}\})$$

 $\cap (0, \alpha) \neq \emptyset.$

Let $(c_1, d_1) \subset int \{t > 0; |f(x_1 + t) - f(x_1 - t)| < \frac{\gamma}{2}\} \cap (0, \alpha)$ and $(a, b) = x_0 + (c_1, d_1)$. Then, for each $y \in (a, b)$, we have $y - x_0 \in (c_1, d_1)$ and $x_1 - y \in (c, d)$. Therefore

$$|f(x_1 + (y - x_0)) - f(x_1 - (y - x_0))| < \frac{1}{2},$$

 $|f(x_0 + (x_1 - y)) - f(x_0 - (x_1 - y))| < \frac{\gamma}{2}$

and, by the above,

 $|f(y + (x_1 - x_0)) - f(y - (x_1 - x_0)| < \gamma.$

Now, let x_0 be a point of the symmetric τ -continuity of the function f, and let $\delta > 0$, $\gamma > 0$. Then there exists a set $F = \bigcup_{n=1}^{\infty} [a_n, b_n]$ such that $0 \in \phi^+(F)$ and $F \subset int (\{t > 0: | f(x_0 + t) - f(x_0 - t) | < \frac{\gamma}{2}\})$. By the assumption, we know that, for each $n \in N$, the set $\{x \in x_0 + [a_n, b_n]: f$ is symmetrically τ -continuous at x} is a residual subset of $x_0 + [a_n, b_n]$ and, therefore, the proof of the lemma is completed.

LEMMA 2. Let $f: R \rightarrow R$, $\alpha \in R$, $\alpha > 0$ and

$$B = \{x \in \mathbb{R}: \text{ if } F = cl (F) \text{ and } o \in \phi^+(F) \text{ then} \\ \text{int } F \not = \{t > 0: |f(x + t) - f(x)| < \alpha\} \}.$$

If (a, b) is an interval such that cl (B) \supset [a, b], then for any sets F and A such that A \subset F and:

1)
$$\mathbf{F} = \bigcup_{n=1}^{\infty} [a_n, b_n],$$

2) $0 \in \phi^{+}(F)$,

3) for each $n \in N$, $[a_n, b_n] \setminus A \in I$,

and, for each (c, d) \subset (a, b) there exist two points x_1 , $x_2 \in$ (c, d) such that $x_2 - x_1 \in A$ and $|f(x_1) - f(x_2)| \ge \frac{\alpha}{2}$.

Proof. Let $y_1 \in (c, d) \cap B$ and $C = \{t > 0: |f(y_1 + t) - f(y_1)| \ge \frac{\alpha}{2}\}$. We assume that n_0 is a natural number such that $C \cap (a_{n_0}, b_{n_0})$ is a subset of the second category of (a_{n_0}, b_{n_0}) . Then $A \cap (a_{n_0}, b_{n_0}) \cap C \neq \emptyset$. Let $t_0 \in A \cap (a_{n_0}, b_{n_0}) \cap C$. Then $|f(y_1 + t_0) - f(y_1)| \ge \frac{\alpha}{2}$ and $y_1 + t_0 - y_1 \in A$. Thus, we put $x_1 = y_1$, $x_2 = y_1 + t_0$.

Now, we assume that, for each $n \in N$, $C \cap [a_n, b_n]$ is a subset of the first category of $[a_n, b_n]$. We denote, for each $n \in N$, $D_n = \{t \in [a_n, b_n]: |f(y_1 + t) - f(y_1)| < \frac{\alpha}{2}\}$. Then $[a_n, b_n] \setminus D_n \in I$. Let $F_1 = (F \cap (0, d - y_1)) \cup \{0\}$. Then $0 \in \phi^+(F_1)$. We know that $y_1 \in B$ and, therefore, int $(F_1) \notin \{t > 0: |f(y_1 + t) - f(y_1)| < \alpha\}$. Let t_1 be a point such that

 $t_1 \in int F_1 \cap \{t > 0: |f(y_1 + t) - f(y_1)| \ge \alpha\} \neq \emptyset.$

Let k be a natural number such that $\mbox{t}_1\in(a_k,\ b_k).$ Then, for each $\mbox{t}\in D_k,$ we have

$$\begin{aligned} |f(y_1 + t_1) - f(y_1 + t)| \\ &\geq |f(y_1 + t_1) - f(y_1)| - |f(y_1) - f(y_1 + t)| \\ &\geq \alpha - \frac{\alpha}{2} = \frac{\alpha}{2}. \end{aligned}$$

Let $\gamma > 0$ be such that $t_1 + \gamma < \min(b_k, d - y_1)$. The set $A \cap (0, \gamma)$ is a subset of the second category of $(0, \gamma)$ and, therefore, $t_1 + (A \cap (0, \gamma))$ is a subset of the second category of $(t_1, t_1 + \gamma) \subset (a_k, b_k)$. Thus there exists a point $t_2 \in (t_1 + (A \cap (0, \gamma)) \cap D_k$, and $t_2 > t_1$.

Then

$$c < y_1 < y_1 + t_1 < y_1 + d - y_1 = d$$
,

$$c < y_1 < y_1 + t_2 < y_1 + \gamma < y_1 + d - y_1 = d$$

and

$$|f(y_1 + t_1) - f(y_1 + t_2)| \ge \frac{\alpha}{2}.$$

Now, we put $x_1 = y_1 + t_1$, $x_2 = y_1 + t_2$ Then $x_2 - x_1 = t_2 - t_1 \in A$ and the proof of the lemma is completed.

LEMMA 3. If $\{x \in \mathbb{R}: f \text{ is right-hand continuous at } x \text{ with respect to the topology } \tau\}$ is a dense subset of R, then $f \in C_{T-a,e}$.

Proof. Suppose that there exist a natural number n and an open interval (a, b) such that, for each (c, d) \subset (a, b) there exist $x_1, x_2 \in (c, d)$ such that $|f(x_1) - f(x_2)| \ge \frac{1}{n}$. Let $x_0 \in e$ (a, b) be a point of right-hand continuity with respect to the topology τ of the function f. Then int $\{x > x_0: |f(x) - f(x_0) < (\frac{1}{2n}) \cap (x_0, b) \neq \emptyset$. Therefore, there exists an interval (c, d) such that (c, d) \subset int $\{x > x_0: |f(x) - f(x_0)| < (\frac{1}{2n}) \cap (a, b)$. Then, for any $x_1, x_2 \in (c, d), |f(x_1) - f(x_2)| < (\frac{1}{n})$, which gives a contradiction with our assumption. Thus $f \in C_{I-a,e}$.

THEOREM 5. Let $f: R \rightarrow R$ and $f \in \tau - SC_{I-a.e.}$, then $f \in C_{I-a.e.}$. Proof. By Lemma 3, we may reduce our consideration to the case if $\{x \in R: f \text{ is right-hand continuous with respect to the topology <math>\tau$ at x} is not a dense subset of R. Thus, if

$$A = \bigcup_{n=1}^{\infty} \{x \in \mathbb{R}: \text{ if } F = cl (F) \text{ and } 0 \in \phi^{+}(F), \text{ then} \\ \text{ int } F \notin \{t > 0: |f(x + t) - f(x)| < \frac{1}{n}\} = \bigcup_{n=1}^{\infty} A_{n},$$

there exist an open interval (a, b) and a natural number n such that cl $(A_n \cap (a, b)) = [a, b]$.

Let, for any natural k, p, for each $h < \frac{1}{p}$ and for each $i \in \{1, ..., n\}$,

$$B_{kphi} = \{x \in (a, b): r \in \left[\frac{i-1}{k}h, \frac{i}{k}h\right]$$
$$\implies |f(x + r) - f(x - r)| < \frac{1}{6n}\}.$$

By our assumption, we have

 $\{x \in (a, b): f \text{ is symmetrically } \tau \text{-continuous at } x\}$

$$= \bigcup_{k=1}^{\infty} \bigcup_{p=1}^{\infty} \bigcap_{h < \frac{1}{p}} \bigcup_{i=1}^{k} B_{kphi}$$

(see lemma [4]). Therefore, there exist natural numbers k, p such that $S = \bigcap_{h < \frac{1}{p}} \bigcup_{i=1}^{k} B_{kphi}$ is a subset of the second category of

(a, b). Let $a_1 = a$, $b_1 < b$ be such that S is a subset of the second category of (a_1, b_1) and let $h < \frac{1}{p}$ be such that $b_1 + h < b$. Then there exist $i \in \{1, ..., k\}$ and an open interval $(a_2, b_2) \subset c (a_1, b_1)$ such that B_{kphi} is a dense subset of (a_2, b_2) . We may assume that $b_2 - a_2 < \frac{1}{2k} \cdot h$. Then $\frac{i}{k}h + a_2 - \frac{i-1}{k}h - b_2 > 0$.

Let $(c, d) \in \left[\frac{i-1}{k}h + b_2, \frac{i}{k}h + a_2\right]$ be such that $d - c < (2(b_2 - a_2))$ and let $x \in (a_2, b_2) \cap B_{kphi}$ and $x_1 \in (c, d)$. Then $x_1 - x \in \left[\frac{i-1}{k}h, \frac{i}{k}h\right]$ and $|f(x + (x_1 - x)) - f(x - (x_1 - x))| < (\frac{1}{6n})$. Now, we put $c = 2a_2 - c$, $d = 2b_2 - c$, $c'' = 2a_2 - d$, $d'' = 2b_2 - d$. Then d'' - c > 0.

Let $x_0 \in (c', d'')$ be a point of the symmetric τ -continuity of the function f. By Lemma 1, there exists a set $F = \bigcup_{n=1}^{\infty} [a_n, b_n]$ such that $0 \in \phi^+(F)$ and, for any natural n and a positive real δ ,

 $D_n = \{x \in x_0 + [a_n, b_n]: int (\{t: | f(t + (x - x_0))\}$

 $- f(t - (x - x_0)) | < \frac{1}{6n} \} \cap (x_0, x_0 + \delta) \neq \emptyset \}$

is a residual subset of $[a_n, b_n] + x_0$. Let $D = \bigcup_{n=1}^{\infty} D_n$, $F_1 = 2 \cdot F$, $D_1 = 2(D - x_0)$. Then F_1 and D_1 satisfy the assumptions of Lemma 2. We may assume that $F \subset (x_0, d'') - x_0$. Therefore, there exist $x_2, x_3 \in (c, d)$ such that $x_3 - x_2 \in D_1$ and $|f(x_2) - f(x_3)| \ge \frac{1}{2n}$. Then $\frac{1}{2}(x_3 - x_2) \in D - x_0 \subset F$ and $x_0 + \frac{1}{2}(x_3 - x_2) \in D \subset F + x_0 \subset (x_0, d'')$. We put $x_1 = x_0 + \frac{1}{2}(x_3 - x_2) < d''$. There exists an

open interval $(c_1, d_1) \subset int \{t \in \mathbb{R}: |f(t + (x_1 - x_0)) - f(t - (x_1 - x_0))| < \frac{1}{6n} \} \cap (x_0, x_1 - x_0), which means that, for each t \in (c_1, d_1), |f(t + (x_1 - x_0)) - f(t - (x_1 - x_0))| < \frac{1}{6n}.$

Let $\xi_1 = \frac{1}{2}(x_3 + x_2)$, $x \in (\frac{\xi_1 + c_1}{2}, \frac{\xi_1 + d_1}{2}) \cap B_{kphi} \subset (a_2, b_2) \cap B_{kphi}$ and $x^* = 2x - \xi_1 \in (c_1, d_1)$. Then

$$|f(x' + (x_2 - x')) - f(x' - (x_2 - x'))| < \frac{1}{6n},$$

$$|f(x' + (x_3 - x')) - f(x' - (x_3 - x'))| < \frac{1}{6n}$$

and

$$\begin{aligned} \mathbf{x}^{-} &- (\mathbf{x}_{2}^{-} - \mathbf{x}^{-}) &= \mathbf{x}^{*} + (\mathbf{x}_{1}^{-} - \mathbf{x}_{0}), \\ \mathbf{x}^{-} &- (\mathbf{x}_{3}^{-} - \mathbf{x}^{-}) &= \mathbf{x}^{*} - (\mathbf{x}_{1}^{-} - \mathbf{x}_{0}). \end{aligned}$$

Since $x^* \in (c_1, d_1)$ therefore

$$|f(x' - (x_2 - x')) - f(x' - (x_3 - x'))|$$

= $|f(x^* + (x_1 - x_0)) - f(x^* - (x_1 - x_0))| < \frac{1}{6n}$

Thus

$$\begin{split} |f(x_2) - f(x_3)| &\leq |f(x^{-} + (x_2 - x^{-})) - f(x^{-} - (x_2 - x^{-}))| \\ &+ |f(x^{-} - (x_2 - x^{-})) - f(x^{-} - (x_3 - x^{-}))| \\ &+ |f(x^{-} - (x_3 - x^{-})) - f(x^{-} + (x_3 - x^{-}))| < \frac{1}{2n}, \end{split}$$

which gives a contradiction because $|f(x_2) - f(x_3)| \ge \frac{1}{2n}$. Therefore the proof of the theorem is completed.

PROPOSITION 4. If a function f is symmetrically continuous at $x \in R$, then f is symmetrically τ -continuous at x. There exists a function $f \in \tau$ -SC\SC.

Proof. The Dirichlet function satisfies the required condition.

By Theorems 5 and 3 and by the above proposition, we have $\tau - sc_{I-a.e.} \subset \tau - sc_{I-a.e.} \subset c_{I-a.e.} = sc_{I-a.e.} \subset \tau - sc_{I-a.e.}$ and therefore, $\tau - sc_{I-a.e.} = sc_{I-a.e.} = c_{I-a.e.}$.

Thus, we have:

COROLLARY 4. There exists a function f nonmeasurable in the sense of Lebesgue, such that f \in $\tau\text{-}SC_{I-a.e.}$

By [1] and by the above, we have:

COROLLARY 5. There exists a function f nonmeasurable in the sense of Borel such that $f \in \tau$ -SC.

REFERENCES

- Chlebik M., On symmetrically continuous functions, Real Analysis Exchange, 13(1), (1987-1988).
 - [2] Fried H., Uber die symmetrische Stetigkeit von Funktionen, Fundamenta Math., XXIX (1937).
 - [3] Kuratowski K., Topologie, Warszawa 1958.
 - [4] Łazarow E., On the Baire class of I-approximate derivatives, PAMS, 100(4), (1987).
 - [5] Łazarow E., The coarsest topology for I-approximately continuous functions, CMUC, 27(4), (1986).
 - [6] Mauldin R.D., σ-ideals and related Baire systems, Fund. Math., LXXI (1971).
 - [7] Poreda W., Wagner-Bojakowska E., Wilczyński W., A category analogue of the density topology, Fund. Math., CXXV (1985).
 - [8] Preiss D., A note on symmetrically continuous functions, Cas. pro pestovani matematiky, 96(1), (1971).
 - [9] Sierpiński W., Funkcje przedstawialne analitycznie, Lwów-Warszawa-Kraków 1925.

Institute of Mathematics University of Łódź

Inga Libicka, Ewa Łazarow, Bożena Szkopińska

O PEWNYCH UOGÓLNIENIACH SYMETRYCZNEJ CIĄGŁOŚCI

W pracach [7] i [5] zostały wprowadzone pojęcia I-ciągłości i τ -ciągłości W tej pracy podane są definicje uogólnień symetrycznej ciągłości funkcji f: R \rightarrow R, a mianowicie symetrycznej I-ciągłości oraz symetrycznej τ -ciągłości. Udowodnione są również pewne własności tych uogólnień oraz inkluzje zachodzące pomiędzy klasami funkcji ciągłych, symetrycznie ciągłych, symetrycznie I-ciągłych oraz symetrycznie τ -ciągłych.