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In this paper we shall give definitions of generalizations of the 
symmetric continuity of a function f: R ■* R. We shall prove several 
properties of these generalizations.

1. Throughout the paper, B will denote the family of all 
subsets of R (the real line) having the Baire property; I will 
denote the a-ideal of sets of the first category. For a e R and 
A c R, we denote a • A = {a • x: x e A} and A - a  = {x - a: xeA}. 
Recall [7] that 0 is an I-density point of a set A e B  if and

only if X r 1 n  “► 1 » i.e. if and only if, for each in- n* AUL-i, J-j
creasing sequence natural numbers, there exists a
subsequence {n } such that X .ACl[-l, 1] -► 1 except on 

mp peN mp p
a set belonging to I (abbr. I - a.e.). A point xQ e R is an
I-density point of A e B  if and only if 0 is an I-density point
of A - xQ. A point xQ 6 R is an I-dispersion point of A e B if
and only if x is an I-density point of R\A. The set of allo
I-density points of A will be denoted by <|> (A ). In the obvious 
manner we can define a right-hand I-density point. The set of all 
right-hand I-density points of A will be denoted by <J>+(A) -

Further, the family Tj = {A e B: A c  4> (A)} is a topology on 
the real line which we call the I-density topology (see [7]). Real 
functions continuous with respect to the Tj-topology are called 
I-approximately continuous functions.



DEFINITION [5]. Let f: R ■+ R have the Baire property in a 
neighbourhood of xQ . The upper I-approximate limit of f at xQ
(I-lim sup f(x)) is the greatest lower bound of the set 

x-xo
{y: {x: f(x) > y} has xQ as an I-dispersion point}.

The lower I-approximate limit, right-hand and left-hand upper and 
lower I-approximate limits are defined similarly. If

I-lim sup f(x) = I-lim inf f(x),
x+x„ x*-x„o o

their common value is called the I-approximate limit of f at xQ
and denoted by I-lim f(x).

x+xo
We shall say that f is I-approximately continuous at xQ if 

and only if f has the Baire property in a neighbourhood of x q

and I-lim f(x) = f(x ). It is known that f is I-approximately
x-x„o

continuous if and only if, for each x e R, f is I-approximately 
continuous at x [7].

The family of all I-approximately continuous functions will 
be denoted by Jap" c » and the family of all I-approximately
continuous functions except on a set belonging to I by I__-ap
-CI-a.e.•

In the paper we shall need the following lemmas:
LEMMA [7]. If 0 is an I-density point of A e B, then, for

each natural number n, there exists 6 > 0  such that, for eachn
0 < h < and for each integer k s [-n, n - 1] , we have

A n [^h, - * ~h3 *  0 -

LEMMA [4]. Let G c R be an open set. A point 0 is an I-dis
persion point of G if and only if, for each natural number n, 
there exist a natural number k and a real number 6 > 0 such 
that, for any 0 < h < 6 and i e {l, ..., n}, there exist j , e 
e {1, ..., k} such that

(i - l)k + j - 1 (i - l)k + j 
G n (------------ ------  h, ---------- --- £ h) = 0



and
(1 - 1 )k + j. (i - l)k + j. - 1

G n (---------- --- ± h , ------------ — ^---- h) = 0.n • k n • k
Throughout the paper, cl(A), int(A) will denote the closure 

and the interior of the set A with respect to the natural topo
logy. Except where a topology is specifically mentioned, all to
pological notations are considered with respect to the natural 
topology.

For any x g  R, we denote by P(x) the collection of all in
tervals [a, b] such that x e (a, b) and of all sets of the form

CD CO

E = U [an' bJ  U U [cnr dn] u (x} where, for every n, 
n=l n=l

an < bn < an+l < x < dn+l < cn < dn and x e *(E)'
In [5], there was introduced a topology t which consists of 

all sets U g Tj such that if x g U, then there exists a set 
P g P(x) included in {x} U int U. It was proved that t is the 
coarsest topology for which all I-approximately continuous func
tions are continuous.

2. In the paper we shall consider real functions of a real 
variable and denote:

C - the family of all continuous functions,
C - the family of all continuous functions except on a1 • G •

set belonging to I (abbr. I-almost everywhere),
SC - the family of all symmetrically continuous functions,
SC, - the family of all symmetrically continuous func-I-a.e.

tions I-almost everywhere.
DEFINITION 1. Let XQ g R. We shall say that a function 

f: R -*■ R is symmetrically I-continuous at xQ if and only if f has 
the Baire property in a neighbourhood of xQ and

I-lim (f(x + h) - f(x - h)) = 0 . 
h->0+

DEFINITION 2. We shall say that a function f: R ■* R is sym
metrically I-continuous if and only if, it is so at each point of 
its domain.

We shall denote:



I-SC - the family of all symmetrically I-continuous functions,
I-SCT - the family of all symmetrically I-continuous func-x ”ci • e •

tions I-almost everywhere.
COROLLARY 1. If a function f: R + R is a symmetrically I-con-

tinuous function I-almost everywhere, then f has the Baire pro
perty.

COROLLARY 2. If a function f: R ■* R is symmetrically I-conti
nuous at xQ e R, then, for each e > 0,

0 e *+({h > 0 : |f(xQ + h) - f(xQ - h) | < e})

(or, for each e > 0 , xQ e $+({x > xQ: |f(x) - f(x')| < e where
x' = xQ - (x - XQ )})).

THEOREM 1. If a function f is I-approximately continuous at 
xQ e R, then f is symmetrically I-continuous at xQ.

P r o o f .  By the assumption, we infer that

and
sup {a: xQ e <<> ({x: f(x) £ a})} = f(xQ)

inf {a: xQ e <M{x: f(x) S a})} = f(xQ),

and therefore, for each e > 0 , there exist > f(xQ) - e and 
a 2 < f(x0) + e such that

xQ e <t>({x: f (x) £ o^})
and

xQ e <t> ({x: f (x) £ a2}) •
Thus, for each e > 0,
(1 ) there exists > f(xQ) - e such that 0 e <J>+(A^) fl <(>+(a£) 

where a'̂ = {h > 0 : f(xQ + h) £ o^},
A" = {h > Or f(xQ - h) 2 c^},

and
(2 ) there exists <*2 < f(xQ) + e such that 0 e <|> + (A^) fl + (A^) 

where A'2 = {h > 0 : f(xQ + h) £ a2),
A" = {h > 0: f(xQ - h) S a2}.



Therefore, we have,
(3) 0 g <t,+ (B') n <|>+(B"), where B^ = {h>0: f(xQ + h)> f(xQ) -e} 

B^'= {h > 0 : f(xo - h) > f(xQ) - e}, for each e > 0 ,
and
(4) 0 e $+(B') 0 (t>+<B") where B '2 - {h> 0: f(xQ + h) < f(xQ) + e } 

B '2 = {h > 0 : f(xQ - h) < f(xQ) + e}, for each e > 0 .
Now, we shall show that
(5) inf {a: 0 e <(i+({h > 0 : f(xQ + h) - f(xQ - h) £ a})} = 0 .

Let a e R and a < 0. For e = - ̂ , by (3) and (4), we have that 

0 g *+(Bj n B") = <l>+( (h > 0: f(xQ + h) - f(xQ - h) > a}), and the
refore, 0 is a right-hand I-dispersion point of a set 
{h > 0: f(xQ + h) - f(xQ - h) £ a}. Thus
(6 ) if 0 e 4>+( {h > 0 : f(xQ + h) - f(xQ - h) Sa}, then a 2 0 .

Let n e R and n > 0. By (1) and (2), for e - ̂  and a3 = a2 -
we have < n and

0 e $+( Aj n A") = <(i+( {h > 0: f(xQ + h) - f(xQ - h) £ a3>).

Then, by the above and by (6 ), we have (5).
In a similar way we can show

(7) sup {a: 0 g <|>+({h > 0: f(xQ + h) - f(xQ - h) i a})} = 0. 
Then, by (5) and (7), we have
(8 ) I-lim (f(x + h) - f(x - h)) = 0 ,

h->0+
and the proof of Theorem 1 is completed.

PROPOSITION 1. If a function f is symmetrically continuous 
at xQ g  R, then f is symmetrically I-continuous at x q .

P r o o f .  Let f be a symmetrically continuous function at 
xQ e R. We shall show that
(9) I-lim sup (f(xQ + h) - f(xQ - h)) S 0.

h->0+
Let a e R and a > 0. By the symmetric continuity of f at x q , we 
have that there exists hQ > 0 such that (0 , hQ) c Aa, where Aa =



= {h > 0: f(xQ + h) - f(xQ - h) £ a}. Since 0 e <(>+((0, hQ)), the
refore 0 6 <(i+(Aa). Thus inf {a: 0 e <|)+ ( ) }  £ 0 and condition
(9) is true.

In a similar way we can show
(1 0 ) I-lim inf (f(x + h) - f(x„ - h)) £ 0 .

h-0+ ° °
It is easy to see that
(1 1 ) I-lim inf (f(x + h) - f(x - h))

h+0+ ° °
£ I-lim sup (f(x + h) - f(x - h)) 

h->0+ ° °
and, by the above,

I-lim (f(x + h) - f(x - h)) =0. 
h->0+ ° °

Therefore, the function f is symmetrically I-continuous at xq.
THEOREM 2. If f is defined on an open interval I and f is 

symmetrically I-continuous and monotone on I, then f is symmetri
cally continuous on I.

P r o o f .  Now, we observe that, for each real function g of 
a real variable, we have
(12) lim inf g(h) £ I-lim inf g(h) 

h-*0+ h-»0+
and
(13) I-lim sup g(h) £ lim sup g(h).

h->0+ h-»0+

Let 6 > 0 and m, = inf g(h). Then (0, 6) c {h > 0: g(h) Z
0 0<h<5

2 mfi} and 0 e  i(i+({h > 0: g(h) 2 mfi}) . Thus m^ £ sup {a: 0 e

e  4i+({h > 0 : g(h) 2 a}) and sup m, £ sup {a: 0 e  <(>+({h > 0 : g(h) 2
6 0

2 a})}. Therefore
lim inf g(h) £ I-lim inf g(h). 
h-+0+ h-*0+

In a similar way we can prove condition (13).
Now, we shall prove that

(14) lim (f(x + h) - f(x - h)) = I-lim (f(x +h) - f(x - h)) 
h->0+ ° ° h--0+ ° °



Condition (14) will be followed from
(15) lim inf (f(xrt + h) - f(x„ - h)) 

h->0+ ° °
2 I-lim inf (f(x + h) - f(x„ - h)) 

h-0+ ° °
and
(16) I-lim sup (f(x + h) - f(x - h))

h-*-0+ ° °
2 lim sup (f(x + h) - f(x - h)). 
h->0+ ° °

We assume that f is nondecreasing and suppose that there 
exists xq e R such that (15) does not hold; let

k, = lim inf (f(x. + h) - f(x„ - h))
1 h->0+ ° °
< I-lim inf (f(x + h) - f(x - h)) = k,. h-»0+ o o z

Let 0 < e < -|(k2 - k.̂ ) and B = {h> 0: f(xQ + h) - f(xQ - h) 2

2 k0 - e). Since I-lim inf (f(x + h) - f(x - h)) = k_, there2 h->0+ o o 2

exists a > k 2 - e such that O e  i(i+({h>0 : f(xQ + h)-f(xQ - h) 2

2 a) and 0 e <(>+(B). Thus, by lemma [7], we have
(17) for each natural n, there exists > 0 such that,

for each natural 0 £ 1 S n - 1, [̂ h, ^h] n B f 0.

By lim inf (f(x + h) - f(x - h)) = k.. < k- - 2e , we infer 
h-0+ ° z

that there exists a sequence {hn)neN such that hR --- KO, and, for
n->«

each natural n, hn > 0 , xQ + hR e I and
(18) f(xQ + hn) - f(xQ - hn) < k2 - 2 e.

We consider intervals Jn = [°» hn]. Then

(19) for each n, B PI = 0.
Indeed, if h e  JR, then, by the assumption and by (18), we

have
f(xQ + h) S f(xQ + hn) < f(xQ - hn) + k2 - 2 e

£ f(xQ + h) + k2 - 2 e,
f(x + h) - f(x - h) < k, - 2e, so h 4 B.o o z



Let nQ be a natural number. By (17), we Infer that there 
exists ¿n > 0  such that, for hn e {hn)n6N and hR < ¿n ,

n„ - 1
T- 9----h , h ] n B 0L n_ n, ' n, J r vo 1 1

holds which gives a contradiction. Thus, for each xq e I, (15) 
holds.

Now, we suppose that condition (16) does not hold. Let x e Ro
be such that

k1 = I-lim sup (f(x + h) - f(x - h))
1 h->0+ ° °

< lim sup (f(x + h) - f(x„ - h)) = k0.
h->0+ o o *

Let 0 < e < |(k2 - k1) and C = {h > 0: f(xQ + h) - f(xQ - h) S

Si k. + e ). since I-lim sup (f(x_ + h) - f(x_ - h) ) = k. therefore A h-*-0+ o o l
0 e i)>+(C). By lemma [7], we have
(2 0 ) for each natural n, there exists 6n > 0 such that, 

for each 0 < h < <5n and for each natural 0 S 1 £ n - 1 ,

[̂ h, --h] 0 0 * 0  holds.

By lim sup (f(x. + h) - f(x^ - h)) = k, > k. + 2e, we have that 
h-*-0+ ° ° 1 1

there exists a sequence {hn)neN such that hR--- ►O and, for each
n-»“>

natural n, h > 0, x. + h_ g I and (f(x^ + h ) - f(x„ - h „) > n o n  o n o n
> kj + 2e . Thus, for each h > hn, if xQ + h e I and xQ - h g I,
then f(xQ + h) à f(xQ + hR) > f(xQ - hn) + k1 + 2 e > f(xQ - h) +
+ k1 + 2e. Therefore f(xQ + h) - f(xQ - h) > kx + 2e and
(2 1 ) for each natural n and for each h > hn, we hace h f C. 

Let nQ be a natural number. By (20), we have that there
n - 1

exists in > 0 such that, for each h < 6 , [— ----h, h] fl C # 0,
o o o

which gives a contradiction since, by (2 1 ), for each h' > h
nl

h - 1
where hn g {hn)neN and hn < ---h, h' i C. Thus, for each

1 1 o



xQ e I, condition (16) holds. Now, it is easy to see that; by
(12), (13), (15) and (16), we have (14).

PROPOSITION -2. I-SC\SC t 0 and I-SC\I -C / 0.ap
00

P r o o f .  Let P = I J Ta , b 1 be such that, for each na-L n nJn=l
tural n, 0 < bn+1 < an < bn and 0 e  <<>+ ( P ) .  Let f be a continuous 

function at all x # 0 such that f(0)-l, f(x) = 0 at xePU(-P), 

and for each natural n, f(i(an + bn-1)) = 1 and f( - an + bn+1)) = 

= -1. It is easy to see that f e I-SC and f  ̂ SC U Iap“C.
H. F r i e d  showed in [2] that every symmetrically conti

nuous I-almost everywhere function is continuous I-almost every
where. Therefore, by the above and by the theorem of R. D. M a- 
u 1 d i n [6], we have the following

THEOREM 3. CT a „ = SCT _ o . Further, f e C, if and
1 ~ a • e • I " a . c .  X a . c .

only if, for each a e R, there exist open sets A, A^ and B, B.̂ e 
e I such that {x e R: f(x) < a} = A U B and {x e R: f(x) > a} = 
= AŁ U Bĵ .

COROLLARY 3. There exists a function f nonmeasurable in the 
sense of Lebesgue, such that f e SCj_ae> ( S i e r p i ń s k i  [9],

f e CI-a.e.)'
It is known that if a function f e sc, then f is a Lebesgue 

measurable function (P r e i s s [8]).
THEOREM 4. A function f 6 I-SCT _ if and only if, forl“d*6 •

each a e R, there exist A, A^ e Tj and B, B^ e I such that 
{x e R: f (x) > a} = A U B and {x e R: f(x) < a} = AŁ U B ^

P r o o f .  Let a e R and put A = Tj-int ({x 6 R: f(x) > a}), 
Ax = Tj-int ({x e R: f(x) < a}), B = Tj - Fr({x e R: f(x) > a}) n 
n {x e R: f(x) > a} and B1 = Tj - Fr({x e R: f(x) < a}) n {x e R: 
f(x) < a}). Thus A, Ax, B, BŁ 6 I fulfil the required conditions.

Now, we assume that, for each a g  R, there exist A, A^ e Tj 
and B, B1 e  I such that {x e R: f(x) > a} = A U B and {x e R: 
f(x) < a} = Ax U B^. Therefore, for each asR, {xeR: f(x) > a} e



6 B and { xeR:  f(x) < a } e B .  Thus the function f has the
Baire property and, by [71, f e I._CT . Then, by Theorem 1,dp 1"d•6•
we have that f e I-SCT _ _ .I-a.e.

PROPOSITION 3. There exist functions f and g such that f e 
e I-SCVSC. „ „ and g e SCT , \I-SC.A “ â • G • A â • 6 •

P r o o f .  Let f be the Dirichlet function. Then, for each
x e R, {h > 0: f(x + h) - f(x - h) = 1} c W, where W is a set of
all rational numbers.

Thus 0 e *+({h > 0: f(x + h) - f(x - h) =0}) and f e I-SC.
By Theorem 3, we know that f 4 SCT _ _ = CT „ _ . Let g be ai-a.e. i“d •c •
function such that g(x) = 0  at x e (-», 0 > and g(x) = 1  at
x e (0, »). Then g e SCT _ _ \I-SC.l“d •6•

By Theorems 3, 4 and by Proposition 1, we have
SCT , o = CT-= o CI  “■ â  » G • X â  • G • I  A • 6  •

= {f: f has the Baire property}.
DEFINITION 3. We shall say that fs R + R is a symmetrically 

t-continuous function at xQ if and only if, for each e > 0 , there 
exists a set P e P(0) such that

P fl (0, +») c  int (h > 0: | f ( xQ + h) - f ( xQ - h)| < e}.
We shall say that f: R ■* R is symmetrically t-continuous if and 
only if it is symmetrically T-continuous at all x e R.

We shall denote:
t -SC - the family of all symmetrically T-continuous functions, 
t-SC. - the family of all symmetrically T-continuous func-laA«C«

tions I-almost everywhere.
LEMMA 1. Let f e t-SCw . _ . Then, for each x„ e R suchI-a.e. o

that xQ is a point of the symmetric t-continuity of f and, for
00

any y > 0, 6 > 0, there exists a set F = [an , bn] such that,
n=l

for each natural n, the set
{x e xQ + [an, bR] : int ({t: |f(t + (x - xQ))

- f(t - (x - xQ)| < y}) n (xQ, xQ + 6 ) 
is a residual subset of xQ + [an, bR] > and 0 e <|>+(F)



P r o o f .  First assume that xQ fulfils conditions int({t >
> 0 : |f(xQ + t) - f(xQ - t)| < ^}) * 0 and (c, d) c int ({t > 0 :

|f(xQ + t) - f(xQ - t)| < ^}). Let Xj e (xQ + c, xQ + d) be a
point of the symmetric t-continuity of the function f, and let
6 > 0. We shall choose a > 0 such that a < min(6 , x^ - xQ) and 
(x^ - A, Xĵ + a) c (xQ + c, xQ + d). By our assumption about the 
point x^, we know that

int ({t > 0 : IfiXĵ  + t) - f(xx - t)| < -̂}) 
fl (0 , a) / 0 .

Let (c^ dx) c int {t > 0: |f (Xj + t) - f (Xj - t) | < ̂ }) fl (0, a) 
and (a, b) = xQ + (c^ dx). Then, for each y e (a, b), we have 
y - xQ e (Cj, dx) and x1 - y e (c, d). Therefore

|f(xx + (y - xQ)) - f(xx - (y - xQ))| <

|f(xG + (Xx - y)) - f(xD - (Xx - y))| < \

and, by the above,
|f(y + (xx - xQ)) - f(y - (xx - xQ)| < y.

Now, let xQ be a point of the symmetric x-continuity of the 
function f, and let & > 0, y > 0. Then there exists a set

F = I J Ta , b "I such that 0 e (F) and Feint ({t > 0: | f (x_ + L n' nJ on—I
+ t) - f(xQ - t)| < ). By the assumption, we know that, for

each n e N, the set {x e xQ + [aR, bR] : f is symmetrically x-con- 
tinuous at x} is a residual subset of xQ + [an, bR] and, the
refore, the proof of the lemma is completed.

LEMMA 2. Let f: R -*• R, a e R, a > 0  and
B = {x e R: if F = cl (F) and o e *+(F) then 

int F {t > 0: |f(x + t) - f (X) | < a}}.
If (a, b) is an interval such that cl (B) => [a, b], then for 

any sets F and A such that A <=■ F and:



2 ) 0 6 4>+(F),
3) for each n e N, [an, bJ\A 6 I,

and, for each (c, d)c(a, b) there exist two points x ^  x2 e (c, d)
such that x 2 - x^ e A and |f(x^) - f(x2)| 2

P r o o f .  Let £ (c, d) n B and C = { t > 0 :  Iffy^+t) -

- f(y1)| £ We assume that nQ is a natural number such that
C n (aR , bn ) is a subset of the second category of (a , b ). 

o o o o
Then A O  (an , bn ) fl C # 0. Let tQ e A n (an , b ) fl C. Then

o o o o
I f (y^ + tQ) - f (yx) I 2 | and y-ĵ + tQ - yx e A. Thus, we put

X1 = yl' x2 = yl + V
Now, we assume that, for each n e N, C D  [afi, bj is a subset 

of the first category of [an, b j . We denote, for each n e N,

Dn = {t  6 f>n' bJ : l f ( y l  + t ] '  f  (yl> I < f } * Then Can' bJ \ Dn eI>  
Let Fj = |F (1 (0, d - y^) U {0}. Then 0 e 4>+( ) .  We know that 
Yj e B and, therefore, int (F1)i {t > 0: | f (y1 + t) - f (ŷ )̂ | < a}. 
Let t^ be a point such that

tj_ e int F1 D {t > 0 : | f (y-ĵ + t) - f (yx) | 2 a} f 0 .
Let k be a natural number such that t^ e (a^, b^). Then, for 

each t e D^, we have

|f(yl + tj_) - f (y1 + t) |
2 ! f (ŷ  ̂+ t1) - f (yj) | - Ifiy^ - ffyj + t)|
 ̂ a a 
* a “ 2 " 2 ‘

Let y > 0 be such that ^  + y < min (b^, d - y.̂ ). The set 
A D (0, y) is a subset of the second category of (0 , y) and, the
refore, t1 + (A fl (0, y)) is a subset of the second category of 
<tl' fcl + c âk' bk*' Thus there exists a point t2 e (t^ + 
+ (A n (0, y)) n D^, and t2 > t^.

Then



C < y l < yl + t 2 < Y 1 + Y < yl + d ” Y1 = d '
and

|f(yx + tx) - £(Yl + t2)| i f.

Now, we put x i = Yi + x2 = yl + t2 Then X2 " X1 = t2 "  fcl e A 
and the proof of the lemma is completed.

LEMMA 3. If (x e R: f is right-hand continuous at x with 
respect to the topology t ) is a dense subset of R, then f e c j_a e

P r o o f .  Suppose that there exist a natural number n and an 
open interval (a, b) such that, for each (c, d) c (a, b) there 
exist xlf x2 e (c, d) such that |f(xx) - f(x2)| £ .̂ Let xQ 6
e (a, b) be a point of right-hand continuity with respect to the 
topology t of the function f. Then int {x > xQ: |f(x) - f(xQ) <
< - 1 ) 0  (xQ, b) t 0. Therefore, there exists an interval (c, d) 
such that (c, d) c int {x > xQ: |f(x) - f(xQ)| < n (a, b).
Then, for any Xj_, x2 e (c, d), |f(x1) - f (x2) | < ¿, which gives 
a contradiction with our assumption. Thus f e Cj_a>e#*

THEOREM 5. Let f: R -*■ R and f e T_scx_a.e.' then f 6 Ci-a.e.’ 
P r o o f .  By Lemma 3, we may reduce our consideration to the 

case if {x e R: f is right-hand continuous with respect to the 
topology t at x} is not a dense subset of R. Thus, if

00 ,
A = U  {x e R: if F = cl (F) and 0 e <f> (F), then 

n=l
CO

int F <£ {t > 0: |f(x + t) - f (x) | < -} = [J An,

there exist an open interval (a, b) and a natural number n such 
that cl (An H (a, b)) = [a, b].

Let, for any natural k, p, for each- h < - and for each

i e {1, ..., n},

Bkphi = {x e (a' b): r 6 C H r 1“'
==>-|f(x + r) - f(x - r) | < g^}.

By our assumption, we have



{x e (a, b): f is symmetrically T-continuous at x)

(see lemma [4] ). Therefore, there exist natural numbers k, p such

that S = f ) II Bfcphi a subset of the second category of 
h<p 1-1

(a, b). Let a.̂  = a, b^ < b be such that S is a subset of the
second category of (a^ bx ) and let h<i be such that bx + h < b.
Then there exist i e {1, k} and an open interval (a2 , b2 )c
c <al» bĵ ) such that is a dense subset of (a^, bj), We
may assume that b2 - a2 < ^  • h. Then |h + a2 - 1 ~ 1 h - b2 > 0.

Let (c, d) c [•*• k 1 h + b2 , ^h + a2] be such that d - c <

< 2(b2 - a2 ) and let x e (a2 , b 2 ) n Bkphi and xx e (c, d). Then 

xx - x e [i-^-^h, |h] and |f(x + (Xj_ - x)) - f(x - (xx - x)) | <

< 6n* Now' we Put c” = 2 a 2 " c' d ” = 2 b 2 _ c' c" = 2 a 2 ’ d' 
d" = 2b2 - d. Then d* - c' > 0.

Let xQ e (c , d") be a point of -the symmetric t -continuityoo
of the function f. By Lemma 1, there exists a set F = I I la , b 1L n' nJn=l
such that 0 e 4> + {F) and, for any natural n and a positive real 6,

Dn = {x e xo + l>n' bJ : int ({t: lf(t + (x " xo M
- f(t - (x - xQ ))| < gi} n (xQ , xQ + 6) / 0}

00

is a residual subset of [an , bn] + xQ . Let D =[J Dn , F1 = 2 • F,
n=l

= 2(D - xQ ). Then F1 and satisfy the assumptions of Lemma
2. We may assume that F c (xQ , d") - xQ . Therefore, there exist 
x2, x3 e (c, d) such that x3 - x2 e Dx and | f (x2) - f (x3) | 2

Then |(x3 - x2 ) e D - xQ c F and xQ + |(x3 - x2 ) e D c F + xQ <= 
c (xQ , d"). we put x 1 = xQ + |(x3 - x2 ) < d". There exists an



open interval (c^f d1 ) c int {t e R: |f(t + ^  - xQ )) - f(t -

- (Xj - xQ))| < n (X , xx - x ), which means that, for each 

t e (Cj, d1), |f(t + (Xj - xQ)) - f(t - (xx - xQ))| < gi.

1 - ^1 + C 1 ^1 + dl 
Let ^  = 2 ^ x 3 + x2 *' x e * 2 ' 2  ̂n Bkphi c *a2'

b2) n Bkphi and x* = 2x' - ^  e (c^, dj). Then

|f(X' + (x2 - x' )) - f(x' - (x2 - x' ))| <

|f(X' + (x3 - x' )) - f(x' - (x3 - x' ))| < gi
and

X' - (X2 - X') = X* + (Xĵ  - xQ), 
X' - (X3 - X' ) = X* - (Xĵ  - xQ).

Since x* e (e^ dj) therefore

- (x2 - x' )) - f(
= |f(x* + (xx - xQ )) - f(x* - (x1 - xQ))| < gi.

If(x ' - (x2 - x' )) - f(x' - (x3 - x' ))

Thus '
|f(x2) - f(x3)I £ If(x' + (x2 - X )) - f(x' - (x2 - x'))|

+ If(x' - (x2 - x')) - f(x' - (x3 - x'))|
+ If(x' - (x3 - x')) - f(x' + (x3 - x'))I < 2^,

which gives a contradiction because |f(x2) - f(x3)| £ 2± There
fore the proof of the theorem is completed.

PROPOSITION 4. If a function f is symmetrically continuous 
at x e R, then f is symmetrically t-continuous at x. There 
exists a function f e r-SC\SC.

P r o o f .  The Dirichlet function satisfies the required con
dition.

By Theorems 5 and 3 and by the above proposition, we have 
t-SC c x-SCj_a e c Cj_a e = SCj.a.g. c T-SC,_a e and therefore,

T_SCI-a.e. = SCt-a.e. = CI-a.e.’
Thus, we have:



COROLLARY 4. There exists a function f nonmeasurable in the
sense of Lebesgue, such that f e t-SC,I-a.e.

By [1] and by the above, we have:

COROLLARY 5. There exists a function f nonmeasurable in the 
sense of Borel such that f e x-SC.
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0 PEWNYCH UOGÓLNIENIACH SYMETRYCZNEJ CIĄGŁOŚCI

W pracach [7] i [5] zostały wprowadzone pojęcia I-ciągłości i T-ciągłości 
W tej pracy podane są definicje uogólnień symetrycznej ciągłości funkcji 
f: R -» R, a mianowicie symetrycznej I-ciągłości oraz symetrycznej T-ciągłości. 
Udowodnione są również pewne własności tych uogólnień oraz inkluzje zachodzące 
pomiędzy klasami funkcji ciągłych, symetrycznie ciągłych, symetrycznie I-ciąg- 
łych oraz symetrycznie T-ciągłych.


