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THE OSCILLATORY BEHAVIOUR
OF %-APPROXIMATE DERIVATIVES

The derivatives considered are the ”-approximate derivatives. We
shall prove that if f5~ap exists everywhere on [a, b] and is bounded
above or below on (a, b), then fb‘«i) « " on [a, b] (one-sided at a
and b).

Since the 7-approximate derivative possesses the Darboux property,

the above forces to attain every value indeed infinitely often
on any interval where T is not f*. Thus ¥ must oscillate
7-ap v-ap

between positive and negative values whose absolute value may be as
large as desired.

On the other hand, since 7-approximate derivative is a function of
Baire class one, the above implies the existence of an open dense
subset V of I0 on which fB—ap is . So the question arises whether
the oscillation mentioned in the above paragraph occurs on the com-
ponent intervals of this set V. In what follows, an affirmative ans-

wer is furnished to this question.

Let R be the real line, N the set of all natural numbers, IS
the a-algebra of subsets of R having the Baire property, V the
a-ideal of sets of the first category. If Ac R and xQ e R, de-
note xQ <« A = {XQ *x: xe A} and A - xQ = {X - xQ: x 6 A}; XA
will mean the characteristic function of the set A.

Recall that O is an I-density point of a set Ae$ if and
only if, for every increasing sequence of natural numbers,

there exists a subsequence {n } such that xn A n [-1,
P peN mP

I1 — » i except on a set belonging toV . Further, x is an 7-

-density point of Ae £ (denoted by d™A, xQ) = 1) if and only



if 0 is an 7-density point of A - xQ < A point xQ is an "“dis-
persion point of Aes (denoted by du (A, Xo) = 0 if and only if
d*R\A, xQ) =1 (see [4D-

Throughout this paper, all functions are real-valued functions

of one variable. The notations cl(E) and int(E) will denote, res-
pectively, the closure and the interior of E 1in the natural to-

pology .-
DEFINITION 1. Let f be any function defined in some neigh-

bourhood of xQ and having there the Baire property.

S7-lim Inf fX) = sup {a: d,({x: f(xX) <a}, x )=o0}

x—*xU

tr-lim sup f(X) = inf {a: d"{x: f(X) > a}, xQ) = o}
We shall say that f is 7-approximately continuous at xQ if and
only if

?-1im inf f&X) = 3-1im sup f(xX) = f(X ).

x—*xd x—>x0

DEFINITION 2. Let f be any function defined 1in some neigh-
bourhood of xQ and having there the Baire property, and let

&) - f&x )

c(X®™ X0> = ————————=— for Xx * xo-

We shall define the "-approximate upper derivative as

f(X) - f(XQ)
fj_ﬁ](x") - x+XOSUP X - XO

The ~-approximate lower derivative f(;"a’.‘p'(x‘o) is defined similarly.
If fW’ap(XO) = fv‘éﬁjxo)’ their common value is called the t/-ap-

proximate derivative of f at x_, ¥ x.)-
0’ 'v-ap Yo

To prove the above-mentioned results, we need a preliminary
lemmas and some theorems:

THEOREM 1 [1]. Let G be an open subset of R. A point O is
an 17-dispersion point of G if and only if, for each n e N, there
exist ke N and a real number 6 > O such that, for each he (O,
6) and for each i1e {1, ..., n}, there exist jr, j7e {r ,- ,K
such that



and

We shall use the above theorem for x e R by translating the
set, if necessary. It is easily seen that if G in theorem 1 is
replaced by an arbitrary set A e &, then in the above conditions
we should write

and

THEOREM 2 [2]. Let +F: [0, 1] » R have a finite V-approximate
derivative T~ _ap<x) for ai1 xe [** *]= Then:

(@ the function T 1is a function of Baire class one;

() the function f has the Darboux property;

(©) the function f~_ap has the Darboux property.

THEOREM 3 [1]- If f: [0, 1] R has a finite M-approximate
derivativef® ap<x> at a11 xe tO° " then ftf-ap 1is of Baire
class one.

THEOREM 4 [2]. If F 1is "-approximately differentiable on
[o, 1] and fg ap(> " o at each x e [o, 1], then Ff 1is non-
decreasing on [Jo, 1]-

THEOREM 5 [2]. Let f be an increasing function defined on
[0, 1]- For each xQ e (0, 1), D+f(xQ) = D+y_apf(xQ). The cor-
responding equalities Tfor the other extrema derivates and extrema
N-approximate derivates are also valid.

THEOREM 6. If f~-ap exists everywhere on [a, Db] and is
bounded above or below on (a, b), then fg_ap — f on Ca» b] (one-
-sided at a and b).

Proof. We shall assume that there exists a real number M

such that, for each x e (a, b), f~rap(X) > M and let h(x) =



= f(xX) - M\x for each xe [a, bJ]. For each [c, d c (@, b) and
for each x e [c, d, h”apX) > °* Then, by Theorem 4, the

function h 1is nondecreasing on [c, d]. It 1is easy to see that
h is increasing on [c, dj. Then, by the Darboux property, the
function h 1is increasing on [a, b]. By Theorem 5, we have that
h*"(xX) = h™_ap(® at all x e (@, b). In the similar way as in
Theorem 5, we can prove that h"+@) = hjtap (@ and h* (b) =
= h™lap(b>* Therefore f = fg_ap on [a, b] (one-sided at a and
b), and the proof of Theorem s is completed.

LEMMA 1 ([3])- Let T be a function, X a point in the domain
of f, X a real number and K a positive number. If, for each t> 0,
there is a 6 >0 such that o < |Jy - x] <6 and y in the domain
of f imply there are numbers y* and y2 with yN <y <y2, sa-
tisfying:

@) If() - - Xy - x| <elyi -x| for i=1,2,

) lyr-y~rely-xl for i=1,2 and

@ a f(@ + Kz is increasing on [yl, y2] or

b) f(z) - Kz 1is decreasing on [y, y2] or
o |fyi) - T S K]yt -y] for i =1 or i1 =2,

then f"(X) exists and equals X

LEMMA 2. Let f be a function and x a point at which F has
an ~-approximate derivative f«_ap(x) = X. Let e >0 be given.
There is a 6 >0 such that 0 < |y - x] <6 implies there are
numbers yi1 and y2 with yi1 <y <y2, satisfying:

QO |fiyi) - F ) - X(yi - )] <el™ - x] for x = 1, 2 and

@) Ilyx -yl <ely - X for 1 =1, 2.

Proof. It suffices to consider just 0 <e < 1. Let A=
= {t: |f() - FX) - X - x)]| < e|t - x|} Then d*(A, X) = 1 and,
by Theorem 1, for ne N such that n Z 3 and n < e, there

exists a 6™ >0 such that, for each he (, 61> and for each

ie {1, --., n},
An X+ ih, X + ih) 4 v,

an (x-¢h, x——~—h)4v-



Now, let 6 = - 6] and y be fixed with 0 < |x -y] <5.
It may be assumed without loss of generality that y > x. Let

hzﬁ_i(y—x)_ Then h<6i and y = X + n g th. Therefore

X+n~2h,yynA/70 and (y, x + h) D A t 0, which implies the

existence of two points y» <y <y2 such that y®, y2 e A,

ly - Vil <eh <1P~Tly' x| <Ey ' x| and |y "y2! <nh <
< ely - x|, which completes the proof of the lemma.

LEMMA 3. Suppose of 1is M-approximately continuous on an
interval 1 . Let K > 0 be given and let A(X) = {y: [f(yY) - TFOX)|
i

<KlJ]y - X|}- Letn,m pe N and = {x: for each h e (O, -),

there exist I"X), ipXx)e {1, ..., n} such that

in i,x) -1
(x---——h, X ———————= - — NAG) e V
and
i) -1 ireo
X+ -S— -——h, x + MNA) e 7,

and, for each 1e {1, ..., n}, there exist Ji(x 1), Jrx i)

e {1, ..., m} such that

h - BIX™ —=-)h)\A(X)67?
G-i'n 1 o ONeX + 31( YMNACO)
and
J &, - i gr,in
x + + r——-—>)h, x- F e YMNA(X)esr.
" n r™ nm
Then:
@ if x, ye cllH*) and |x - y|]< §, then
IfF) - fFYI * KIx = y|~*
@ if xe ollHMp) and h < |, then for each ie {l,...,n},
£x+1nih,x+ﬁh)1l{y: ITy) - FCO 1S Kly - x|}tV
and

X -, x -"~h) n {y: Ify) - T&>1 * Kly - xX|}#7.



Proof. Let x, y e cllH™p) and |[x -y|] <J- It may be

assumed without loss of generality that y > x. Since T 1is an
7-approximately continuous function at x and y, thus, by Theorem
1, for each s e N, there exists 6 >0 such that, for each
he (@, e6)and for each j e {1, ..., n},

x+J-~h, x+I)n {t: [F® - FI <D 1V,
x -Jh, x +~=“ hyn {t: |F® - fix)] <JI} 4 7,

/+i—Jj"h, y+¢h>n itz IF®) - FO | <=4V,

(y “ nh"y " j“TJLh) n {t: If(t) " f(y,l <s}*
Let 6 > 0 be such that 6 < min(=", 6)and |x -y] + 26 <
o o Six o] o o]
We choose x1e (X -6, X +6q) D H~Ap and yie (y ~6q, Yy +

+P 1 H’nmp We may assume that x, <Xx <y. <y. Then X - X4 <6

1
and, for each je {1, -.., n},

X - I(X = XX), X=-"~" (x-xx)n {t: |F() - FX)| <

and there exists Ix") e (1, -.-., n} such that

()
g+ - X - , N+ B~ (X - xMINAIx"e V.
Thus there exists x* n X*, X) 0 A(x1>n {t: |f(® - fX)] <"}
Analogously, we can choose y™ e (¥, y) n Afy®) H {t: |f(D) -
- fF(yH y Since xx, yxe Hnmp and |yx - X1\ £ Jyx -vy| +

+Ix - yl+[x - X}J < 26g+|x - y|] < ™ there exists ij-IxX» e (@, ---, n)
such that

ir(xt) -1 *
(XX + === (Y1 - XX), Xx + — —-— (yX - X1 ))VA()e 7,

and, for each je {1, -.., n},

Gl “n I “xD)" ybI "1 n™ (yl “xi))o A(yl}* 3-
So, there exists xQ e (X1# y™) n AN n A(yl> and |f(X) - f(y) £



£ |TX) - TCE)| + ITXD - f(xD)] + [Ff(X1) - £xQ)| + [F(xQ)
-Fyx)| + IFGD - FEIL + IFQYD - E] <5 + KKx( - xil +

+ K|J*1 - xQ] + K|Jxg - yt] + K|]YI - y"] + £ < Ff + KIxi " Yil *

£E1 + K]xx = x* + K[x» - x] + K|x -y] + K]y =y "] + KJ]y" - yx]| <

<N+ KX -yl- Thus |[fQ) - Fly)] S Llim (F + K|x - y]) = KIx - y]|-
S S+

Now, let x e ckfrp)Y B <R <l ad 1 e {17 Let

0 <6 <4Hfe > h and {Xs}seN ¢ Hhmp such that X = HZ Xs and®

for each s e N, xse X -6, X + 6). Then, for each se N, there

exists j(xg, i) e {1, ..., m) such that
@G-poDm+ jx,n -1 G-Dm + j&x , D

KC + ————mmm o e e E h® xs + ———————- iH - h)
\A(xs)e 7 .

Let {x } c {xs)seN such that, for all re N, j(xs , D is
r reN r

cammon (for example, for each se N, 3(xg »D - e Then, for

r

each reN,

G-pDm+ jQ -1
@ P) = X+6 + ————————r _

@-nm+j
X -5+ ————- Hi h)
G-pDm+ jnml (G- Dm + j
Effs_* o ff-27T N XE  mmm oy h)

and (@, P)\A(x Y€ 3. Thus (a, P)\Pk A(xg )e 7 and, moreover,
sr re r

(@ pc x+ =nh, x + Hh)- Let y e Pi A(Xxs )n (@, P). Then,
n reN r
for each re N,
Ife) - f(YWI S [f(x> - f<xs H + If(xsp> - F(y)l

< K|x - xs | + K|xs -]

and



1T - fOI S Him (Kly - x|+ Klx - x]) = K|x -yl.
= r r
Thus we have shown that
x + g-"™h, x +¢h)y n {£: IF@® - FGQ I £ K11 - xII V.

The proof of the second condition is analogous.

By the above lemmas, we shall prove the main result of this
paper. Its proof is similar to that of [3, Theorem 4.1]. We shall
denote by I and IQ arbitrary intervals.

THEOREM 7. Suppose f has a finite 7-approximate derivative
7 ap(x) at each xe IQ and let M 2 0. If  _ap attains both M

and -M on IO, then there is a subinterval 1 of IO on which
= = {" and f" attains both M and -M on 1.
J—ap {

Proof . Suppose no such interval | exists. Then, for each

interval 1 c I0 on which f§fv"dp = ", we have f*(y) > -M for all
yel or F*"(y)<M for all y e I, for otherwise the Darboux
property of fi1 would imply that f1 attains M and -M on 1. Let
V = {x e IQ: there is an open interval 1 c iq such that x e 1 and
f\i/—ap &) = f*(y) for all yel}. By Theorems 2 and 6,V is an
open dense subset of IQ. Since f°" > -M or f <M on each com-

ponent (a, b) of V, it follows from Theorem & that f has a right-
-sided derivative at b and f has a left-sided derivative at a.

Thus the set |1 \V = P 1is a perfect nowhere dense set.
Since the function f]:—ap is Baire 1, P contains points at
which fg_ap 1is continuous relative to P. At any such point xQ,

|~ _ap(xOH * M" Suppose that T~ ap(X0) >M- <A similar argument

holds if f’&—ap < -M. Then there is an open interval 1 containing
X0 for which f\7—ap ) >M for x e in P. For any component (a, b)

of Vwith (@, b)c I, a is iIn in P, and thus, f* ap@ > M.
Hence f<(/_€p(x) >-M for x e (a b). By combining these two
facts, it follows that " ap > -M on I|. Therefore, by Theorem 6,
lev, which contradicts xQ e P.

Now, by selecting any point xQ of P at which _ap is con-

tinuous at x relative to P, we can choose an open interval (c,



d withcand d iInV, ¢ <xQ <d and IFtFap™>xH < M + 1 on

(c, d nP. Then, for K = M + 1, the sets H™"p defined as in Lemma

o @ o
3 have the property that u n = P" where P =P n [q],
n=1 m=1 p=I

d~ and [c™ dj n (¢, d). Indeed, let xePj. Then |~ ap()] <
<K and d~-{{t: |f(®) - FO)| < K]t - x|}, X = 1. Therefore, by

Theorem 1, there exist g, ne N such that, for each 0 < h <*,

there exist ir(), iNx) = {1, n} such that

UL VL, [FCD) - FOO < Kt - x])es
and

o - TN TN e I Foo [<KIE x]3e v

Again by Theorem 1, there exist m, re N for n, such that, for
each o <h <1 and for each 1e {1, ..., n}, there exist j™x,!),
Jr&, ) e {1, ..., m} such that

J &, -1 i_1 Jgr, D
<+ (Hrl + nm dh"™ X+ «Sri1+ ———-

\{t: Jf(®) - f)] < K|t - x]|}e 7.

and
- J-, D i ., J,x 1 -1
X - "Hrl + nm~ Jh> x " (n + - - >h >
\{t: f() - T | < K|t - X|}e &
Now, let p £ max {g, s}. Then x e and Px = jj» n
n p - The Baire category theorem quarantees the existence of in-

tegers n0 mo, pO and an open interval Jc (c, d) with JDP # 0

and Jn Pc Jn cl(Hnh , mQ, pQ). It may be assumed that nQ > 1,
o]

p(tp < _A, and that the endpoints of J are in V. However, as

will bepghown below, under these conditions Ff is differentiable
on J, which contradicts JH P # O.

Now, we shall show that, for each xe V, if (a, b) is a com-
ponent of V such that (@, b)c J and x e (a, b), then



IFTCO - f@ 1 £ 3M + 1) |x - 4]
and

IFCO - F)] £ 3(M + 1) |x - b]-
It will suffice to prove only the first of these inequalities in
the case where T <M on (@, b). The other inequality and the
case where f" > -M on (a, b) have parallel proofs.

By the assumption that f”> <M on (@, b) and by the Darboux
property of f, we have that, for all x, ye [a b] auch that x S vy,
™ O - O £MY - x).

Therefore, it need only be established that f(Xx) - f(&) 2 -3(M +
+ 1) (X - a. First, let (@, b)/2 £x £b. Since a, be J n P,
it follows that
fb) 1 f@ - M+ 1) (b - a)
and, by (*), we have
fx) £ f(b) - M(b - x).
Thus
IfTx)2f@ - M+ 1D (b-3a -Mb-x =
=f@ - M+1D) b-x - M+ xXx-3a - M(Mb-x)
and O £Eb-xX£x-a. So, we have
f&x) 2 f(@ - 3(M +1) x - a).
b nQ - 1
let a<x <-—- ~ . lLet X, be such that x = a + — -—-—(x,é - a).
2 0 no
Then xq = x +~ (Q - a S x + - a and xq £ 2Xx - a < b.

Since a e cl(Hn , mo, pQ), it follows that
o)

{t: |f(t) - fFA] £ M+ 1) Jt - a]}n & xXQ) t o.
Thus there exists ye (X, xXQ) such that

Ifo) - f@1 £ M+ D |y - al,
and hence,

fy) 2 f(@ - M+ 1D ((y - a-
Again by (*), we have

fF&) 2 fO) - My - x)-

Finally, 0 <y - X <_l(*o - £—- ———CD - @ =x - a" and
o] o]

f&)2 f(@ - 3(M + 1) X - &)-



It is further shown that, for any two points X, y e J which
are not in the same component of V,

1T - fiy] sS3M + D Ix -yl-
This is clear if x and y both belong to P n J. Then x, y e
ecl(Hnh , mQ, pQ)n J and |f>) - fWI £ M+ 1) x - y] <3M +
+ 1) |x 9 y]- We assume that x e V and ye pn J. We may assume
that x <y and let (@ b) be a component of V such that a < x <
<b £y. Then, by the above.
IfFCO - T £ TGO - FO)] + If® - T(WI
£E3M+1) x—=Dbl + M+ D |b-y] <
<3M +1) |x -y]-
Now, we assume that x<y, xe (@, b), ye (, d, @, b n
n (€ d =0 and (@, b), (¢, d are components of V. Then, by
the above,

1T - fO) | < 1T - )] + [f() - F)] +
+ |f(©) - fly)] <3M + D |x -Yy]|-

Finally, we shall apply Lemma 1. Let xQe J, X = f*ap®X0),
L=3(M+ 1) and O <e< 1. Then, by Lemma 2, there is 6 >0
such that o < Jy - xQ| <s implies there are numbers yx and Yy2
with yx <y <y2, satisfying |fyL) - Ff(xQ) - Xi - xQ)] <
<elyi -x] for i=1,2and |yt -y] <ely - xQ] for i =1, 2.
Now, let 69 > 0 be such that (xXQ - 2&Q, xQ + 26Q)cj and 6Q < &
Then, by the above, for 0 < |Jy - xQ|] < &, there are y” y2 such
that yx <y <y2, ~ " *Q1<26Q for 1 =1,2 and y”™ y2 sa-
tisfy conditions (1), (@ of Lemma 1. We shall show that y”™ y2
satisfy condition (3) of Lemma 1. |If there exists (@, b) such
that it is a component of V, and yl# y2 e (@, b), then <M
on [yr y2] or ¥ > -M on [y® y2]. Therefore f(X) - Mx is

decreasing on ti» y2~ or + increasing on [y, y2]-

If yI" y2 are nOt in thS Same component of V*® then yl" y are
not on the same component of V or y, y2 are not 1in the same

component of V. Therefore, by the above,
IfQ) - f(y1)l s Lly - yx| or [f(y) - f(y2)| £ L]y - y2].

So, all conditions of Lemma 1 are satisfied and f is differen-



tiable at xQ. Since xQ was an arbitrary point of J, we know
that ¥ is a differentiable function on J, which contradicts J fl P
t 0. Thus the proof of Theorem 7 is completed.

To Ffinish with, we shall give applications of Theorem 7.

THEOREM 8 . Let F have a TFinite —approximate derivative
fO-ap(X) for each xe Jo and let a be a real number. If
{x: fr-ap(X = a} * 0" then there is xQ e iInt ({x: F"(X) exists})
such that f"(xQ) = a-

Proof. It may be assumed that iInt ({x: F*(X) exists}) *
NV for otherwise the conclusion is obvious. Let M be any number
with M > |a&]. Theorem 7 guarantees the existence of a component
(@, b) of int ({x: f°(X) exists}) on which f takes the values
M and -M. Since f° has the Darboux property on (a, b),  also
attains a on (@, b).

COROLLARY 1. Let F have a finite if-approximate derivative
f7r-ap(®) for each x 1iIn V If {x f(xX) = 0y 1is dense in IQ,
then F is identically zero on 1Q.

COROLLARY 2. Let f and g have finite V-approximate deriva-
tives T ap(® and g™ _ap X, respectively, for each x in 1Q. |IF
{x: f) = g(x)} is dense on IO, then ¥ = g on Io.

COROLLARY 3. Let f have a finite "-approximate derivative
" ap(x) a°d g a finite derivative g’(k) for each x in 1Q. |IFf
< =g" on int ({x: f1(X) exists}), then f1 = g" on 1Q.

Proof. Let h =Ff - g. Then h has a finite "-approximate
derivative on 1Q and int ({x: h"(X) exists}) = int ({x: F*"(X) ex-
ists}). Moreover, h”> =0 on int ({x: hi(X) exists}). Theorem s
guarantees that =0 on 1Q and the conclusion follows.

THEOREM 9. Let i1 be a property of functions saying that any
function which is differentiable and possesses P on an interval
I is monotone on I. If F has a finite 7 -approximate derivative
fg_apix) at each x in 1Q and if f has property £ on 1Q, then f

is monotone on Io.

Proof. It suffices to show that fg_ap 1is unsigned on 1Q

(see Theorem 4). Suppose the contrary. It follows from Theorem 7

that there is a subinterval 1 of 1  on which ﬂj—ap =f and F



attains both positive and negative values. Then T is not monotone
on I, which contradicts the assumption.
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Ewa Lazarow

OSCYLACYJNE ZACHOWANIE ‘¢ 7-APROKSYMATYWNEJ POCHODNEJ

W pracy rozwazano 7-aproksymatywna pochodng. Udowodniono w niej dwa twier-
dzenia.

Twierdzenie. Jezeli J-aproksymatywna pochodna fg funkcji f istnieje w
kazdym punkcie przedziatu [a, b] 1 jest ograniczona z géry lub z dotu w
przedziale (a, b), to dla kazdego xe [a, b] fllap(X “ F (X).

Twierdzenie. Niech M 2 0 oraz niech f bedzie funkcja posiadajaca skonczo-
na 9-aproksymatywng pochodng F» w kazdym punkcie pewnego przedziatu Iq.
Jezeli f%ﬁ{p osigga M i -M na 1 , to istnieje podprzedziat I c j® na kto-

rﬁm féﬁ{p = f oraz T osigga M i -Mnal_.



