Marek Balcerzak

SOME BERNSTEIN-TYPE CONSTRUCTION AND ITS APPLICATIONS

Sierpiński in 1932 constructed a Bernstein-type set on the real line R, such that each of its translations differs from it by the set of power $< 2^{\aleph_0}$. In the paper, we generalize his result by considering, instead of translations, an arbitrary family of power $\leq 2^{\aleph_0}$ which consists of one-to-one functions from R onto R. Moreover, some corollaries concerning σ -ideals are obtained.

Let R denote the real line.

Recall (see [2], p. 422) that B ⊆ R is a Bernstein set if and only if both B and R \ B intersect each nonempty perfect set. Note that the following property holds:

Lemma. If a set $E \subseteq \mathbb{R}$ intersects each nonempty perfect set, then the intersection is of power 2^{\aleph_0} .

Proof. Let P be an arbitrary perfect set such that PnE $\neq \phi$. Choose a set C \subseteq P homeomorphic to the Cantor set (see [2], p. 355). There exists a homeomorphism h which maps C \times C onto C (see [2], p. 235). Let P_t = h (C \times {t}) for t \in C. The family {P_t : t \in C} consists of 2^{No} nonempty perfect sets, pairwise disjoint, included in P. Since P_t n E $\neq \phi$ for all t \in C, the assertion is clear.

It is known that a Bernstein set is not Lebesgue measurable and has not the Baire property (see [2], p. 423).

A set is called totally imperfect if and only if it does not contain any nonempty perfect set. Each Bernstein set is totally imperfect.

For $x \in \mathbb{R}$ and A, D, $E \subseteq \mathbb{R}$, denote

 $A + x = \{ y \in \mathbb{R} : y = a + x \text{ for some } a \in A \}$

 $D \land E = (D \land E) \cup (E \land D).$

Let $\mathfrak{P}(\mathbb{R})$ be the family of all subsets of \mathbb{R} and let $\mathcal{H} \subseteq \mathfrak{P}(\mathbb{R})$ be the family of all sets of power < 2^{\aleph_0} .

In [6] Sierpiński obtained the following result: <u>Theorem 0</u>. There is a Bernstein set B such that each set B A A (B + x), x ∈ R, belongs to X.

Using the same methods, we shall exend this construction to a more general case.

Throught the paper, it will be assumed that \mathcal{F} denotes a family of power $\leq 2^{\aleph_0}$ of one-to-one functions which map \mathbb{R} onto \mathbb{R} .

<u>Theorem 1</u>. There is a Bernstein set B such that each set B \triangle f(B), f \in \mathcal{F} belongs to \mathcal{X} .

 p r o o f. Let β be the first ordinal number of power 2 $^{\&o}$. Let

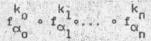
(1)

 $r_0, r_1, \ldots, r_{\alpha}, \ldots; \alpha < \beta$

 $P_{0}, P_{1}, \ldots, P_{\alpha}, \ldots; \alpha < \beta$

 $f_0, f_1, \ldots, f_{\alpha}, \ldots; \alpha < \beta$

denote the transfinite sequences: of all real numbers, of all nonempty perfect subsets of R, and of all functions belonging to F, respectively (if F is of power < 2^{∞_0} , we repeat one of the functions from F in the third of the above sequences sufficiently many times). Choose x_0 as the first term of (1) which belongs to P_0 , and y_0 as the first term of (1) which belongs to $P_0 \setminus \{x_0\}$. Assume that $0 < \alpha < \beta$ and the elements $x_{g'}$, $y_{g'}$, $g' < \alpha$, have been already defined. Denote by F_{α} the set of all functions of the form



where $n = 0, 1, 2, ...; \alpha_i < \alpha, \kappa_i = \frac{+1}{2}$ for i = 0, 1, ..., n. Observe that \mathcal{F}_{α} is of power $< 2^{\aleph_0}$. Let

4

$$S_{\alpha} = \{f(y_{\gamma}) : \gamma \leq \alpha, f \in \mathcal{F}_{\alpha}\}.$$

Choose x_{α} as the first term of (1) which belongs to $P_{\alpha} \setminus S_{\alpha}$. Let

$$\mathbf{T}_{\alpha} = \left\{ \mathbf{f}(\mathbf{x}_{\gamma}) : \gamma \leq \alpha, \ \mathbf{f} \in \mathcal{F}_{\alpha} \right\}.$$

Choose y_{α} as the first term of (I) which belongs to $P_{\alpha} \setminus T_{\alpha}$. Put

$$B = \bigcup_{\alpha < \beta} T_{\alpha}, \ Y = \{ y_{\alpha} : \alpha < \beta \}.$$

We shall prove that B r, Y $\neq \emptyset$. Suppose that $z \in B \cap Y$. Since $z \in E$, there are $\alpha < \beta$, $\gamma \leq \alpha$, $f \in \mathcal{F}_{\alpha}$ such that

$$z = f(x_{yy})$$

Since $z \in Y$, there is $\xi < \beta$ such that

$$(3) z = y_{y}.$$

(2)

If $\gamma < g$, then, in virtue of (2) and the definition of T_g , we have $z \in T_g$. Since $y_g \notin T_g$, therefore $z \neq y_g$. This contradicts (3). If $\gamma > g$, then, by the definition of x_{σ} , we have $x_{\sigma} \notin S_{\sigma}$. But $f^{-1}(y_g) \in S_{\sigma}$, so $x_{\sigma} \neq f^{-1}(y_g)$. This contradicts (2) and (3). Thus $B \cap Y = \emptyset$ and since $x_{\alpha} \in P_{\alpha} \cap B$, $y_{\alpha} \in P_{\alpha} \cap Y$ for each $\alpha < \beta$, therefore $P_{\alpha} \cap B \neq \emptyset \neq P_{\alpha} \setminus B$ for each $\alpha < \beta$. Hence B is a Bernstein set. Now, let $f_{\alpha}, \alpha < \beta$, be an arbitrary function of \mathcal{F} . It is easy to verify that, for all $\gamma, \alpha < \gamma < \beta$, we have $f_{\alpha} (T_{\alpha}) = T_{\alpha}$. Consequently

$$B \land f(B) \subseteq \bigcup (T_{\mathcal{Y}} \cup f_{\alpha}(T_{\mathcal{Y}}))$$

Observe that T_{3} , $f_{\alpha}(T_{3}) \in \mathcal{X}$ for $\mathcal{Y} < \alpha$. It is known that a union of $< 2^{\aleph_0}$ sets of power $< 2^{\aleph_0}$ is of power $< 2^{\aleph_0}$ (it is a consequence of the König theorem, see [3], pp. 198-199). Therefore the above inclusion implies B & f (B) $\in \mathcal{X}$. The proof has been completed.

<u>Remark</u>. The following stronger assertion results from the proof: $B \land f(B)$ belongs to \mathcal{X} for each f from the group generated by \mathcal{F} and the operation of superposition.

Marek Balcerzak

PEWNA KONSTRUKCJA TYPU BERNSTEINA I JEJ ZASTOSOWANIA

Uugólniono konstrukcję Sierpińskiego z 1932 r. podzbioru typu Bernsteina prostej rzeczywistej R, który różni się od swojego obrazu w dowolnej translacji o zbiór mocy < 2%. Zamiast ródziny translacji rozważa się dowolną rodzinę mocy < 2%, złożoną z funkcji przekształcających wzajemnie jednoznacznie R na R. Uzyskano kilka wniosków dotyczących 6-ideałów.