Andrzej Piątkowski

ON THE *-HOLONOMY OF THE INVERSE IMAGE OF A STEFAN FOLIATION

Let \mathcal{F}' be a Stefan foliation ([3]) of a manifold M' and let f: $M \to M'$ be a smooth mapping transverse to $\mathcal{F}'([4])$. We show that there exists a natural homomorphism of the *-holonomy groupoid ([2]) of $f^{-1}(\mathcal{F}')$ into the *-holonomy groupoid of \mathcal{F} .

1. INTRODUCTION

The notion of a Stefan foliation was introduced in ([3]). In 1986 Ver Eecke [4] showed that if $f: M \to M'$ is a smooth mapping transverse to a Stefan foliation \mathcal{F}' on M', then the decomposition $f^{-1}(\mathcal{F}')$ of M is a Stefan foliation. In section 2 of the present paper we prove this fact in terms of distinguished charts.

By the *-holonomy we mean the same object which was defined in [2] as holonomy. This new designation is introduced in order to distinguish it from the Ehresmann holonomy ([1], [4]). In section 2 we recall the definition of a *-holonomy.

The main theorem of our paper, given in section 4, is the following:

There exists a natural homomorphism of the *-holonomy groupoid of $f^{-1}(\mathcal{F}')$ into the *-holonomy groupoid of \mathcal{F}' .

The analogous result for the Ehresmann holonomy was proved in [4].

[157]

have a spirit to be a start of the second second start of the second start and the second second second second

2. STEFAN FOLIATIONS AND A *-HOLONOMY

Let M be a paracompact and connected manifold of class C^{∞} . Let m = dim M. In [3], Stefan gave the following definition:

(2.1) A decomposition \mathcal{F} of M into connected immersed submanifolds is called a foliation if, for each $x \in M$, there exists a chart φ of M which satisfies the conditions:

(i) $\varphi: D_{\varphi} \to U_{\varphi} \times W_{\varphi}$ is a diffeomorphism onto $U_{\varphi} \times W_{\varphi}$ where U_{φ} and W_{φ} are connected neighbourhoods of 0 in \mathbb{R}^{k} and \mathbb{R}^{m-k} , respectively (k being the dimension of that element of \mathcal{F} , denoted by L_{φ} , which contains x);

(ii) $\varphi(x) = (0,0);$

(iii) for each $L \in \mathcal{F}$, the equality $\varphi(D_{\varphi} \cap L) = U_{\varphi} \times \mathcal{L}$ with $\mathcal{L} = \{ w \in W_{\varphi}; \varphi^{-1}(0, w) \in L \}$ holds.

The chart φ satisfying the above conditions is called a distinguished chart of \mathcal{F} around x. The elements of \mathcal{F} are said to be leaves of the foliation \mathcal{F} . If $L \in \mathcal{F}$ then each connected component of $L \cap D_{\varphi}$ is called a plaque of φ in L. In particular, $P_{\varphi} := \varphi^{-1}(U_{\varphi} \times \{0\})$ is a plaque which is said to be central.

(2.2) Let φ be a distinguished chart around x and let G be an open neighbourhood of 0 in W $_{\varphi}$. It is easy to check that the mapping

 $\varphi_{\rm G} := \varphi \mid \varphi^{-1} (\mathbf{U}_{\varphi} \times \mathbf{G})$

is a distinguished chart of $\mathcal F$ around x, too.

Let G be an arbitrary neighbourhood of 0 in W_{φ} . Define in G the equivalence relation $\sim \varphi_{\rm G}$ in the following way: w $\sim \varphi_{\rm G}$ w' if and only if $\varphi^{-1}(0, w)$ and $\varphi^{-1}(0, w')$ are contained in the same plaque of $\varphi_{\rm G}$. In particular, we write \sim_{φ} if G = W $_{\varphi}$.

(2.3) Let x and y be points of the same leaf $L \in \mathcal{F}$ and let φ and ψ be distinguished charts of \mathcal{F} around x and y, respectively. As in [2], denote by $\mathcal{A}_{\varphi, \psi}$ the set of all diffeomorphisms f of an open neighourhood G of 0 in W_{φ} into W_{ψ} , such that f(0) = 0 and f, f⁻¹ are compatible with the relations $\sim \varphi_{G}$ and $\sim \psi_{f(G)}$.

Define in $\mathcal{A}_{\varphi, \psi}$ the relation \equiv in the following way: if $f_i: G_i \rightarrow H_i$ (i = 0, 1) are elements of $\mathcal{A}_{\varphi, \psi}$ then $f_0 \equiv f_1$ if

and only if there exists a family $\{\hat{f}_t: t \in \langle 0, 1 \rangle\}$ of mappings satisfying the conditions:

(i) there exists a neighbourhood \hat{G} of 0 in $G_0 \cap G_1$ such that, for each $t \in \langle 0, 1 \rangle$, \hat{f}_t is an immersion of \hat{G} into $H_0 \cap H_1$;

(ii) the mapping <0, 1> × $\hat{G} \ni$ (t, w) $\mapsto \hat{f}_t(w) \in H_0 \cap H_1$ is continuous;

(iii) $\hat{f}_0 = f_0 |\hat{G}, \hat{f}_1 = f_1 |\hat{G};$

(iv) for each t ϵ <0, 1>, the mapping \hat{f}_{t} is compatible with the relations $\sim_{\varphi_{R}^{+}}$ and \sim_{W} ;

(v) for each $w \in \hat{G}$, the curve $\langle 0, 1 \rangle \ni t \mapsto \hat{f}_t(x) \in H_0 \cap H_1$ takes its values in an equivalence class of \sim_W .

It was shown in [2] that ≡ is an equivalence relation.

(2.4) In [2], the following fact was proved:

PROPOSITION. If $f_i \in \mathcal{A}_{\varphi, \psi}$, $g_i \in \mathcal{A}_{\psi, \chi}$ (i = 0, 1) and $f_0 \equiv f_1$, $g_0 \equiv g_1$, then $g_0 \circ f_0 \equiv g_1 \circ f_1$ in $\mathcal{A}_{\varphi, \chi}$.

(2.5) Let φ be a distinguished chart of \mathcal{F} around x and let $\gamma: \langle 0, 1 \rangle \rightarrow L_x$ be a continuous curve. For $t \in \langle 0, 1 \rangle$, a pair (φ, t) is called a link on γ if $\gamma(t) \in P_{\varphi}$.

If (φ, t) , (ψ, v) are two links on γ , then they are said to overlap if

 $\gamma^{-1}(D_{\varphi})_{t} \cap \gamma^{-1}(D_{\psi})_{v} \neq \emptyset$

where, for an open set $V \subset M$, $\gamma^{-1}(V)_t$ denotes the connected component of $\gamma^{-1}(V)$ containing t.

A finite sequence $\zeta = (\varphi_0, t_0; \varphi_1, t_1; \dots; \varphi_r, t_r; \psi, t_{r+1})$ $(t_0 = 0, t_{r+1} = 1)$ of links on γ is said to be a chain of charts along γ if, for each $i \in \{0, 1, \dots, r\}$, (φ_i, t_i) , (φ_{i+1}, t_{i+1}) are overlapping links $(\varphi_{r+1} = \psi)$.

(2.6) Let (φ, t) , (ψ, v) be a pair of overlapping links on γ . Choose a point x belonging to that connected component of $P_{\varphi} \cap P_{\psi}$ which contains a connected set $\gamma(\gamma^{-1}(D_{\varphi})_t \cap \gamma^{-1}(D_{\psi})_v)$. Then there exists ([2]) an open neighbourhood G of 0 in W_{φ} such that the mapping

$$f_{\varphi,\psi;x} (w) = pr_2 \psi \varphi^{-1}(pr_1 \varphi(x), w)$$

is defined in G and is an element of $\mathcal{A}_{arphi, \psi}$.

Let $L \in \mathcal{F}$ and let $\gamma : \langle 0, 1 \rangle \rightarrow L$ be a continuous curve. Take arbitrary distinguished charts φ and ψ around $\gamma(0)$ and $\gamma(1)$, respectively. Let $\mathcal{C} = (\varphi, t_0; \varphi_1, t_1; \ldots; \varphi_r, t_r; \psi, t_{r+1}) (t_0 = 0, t_{r+1} = 1)$ be an arbitrary chain of charts along γ . Choose a point x_i (i = 0, 1, ..., r) belonging to the connected component of $P_{\varphi_i} \cap P_{\varphi_{i+1}} (\varphi_{r+1} = \psi)$ containing

$$\gamma(\gamma^{-1}(\mathsf{D}_{\varphi_{i}})_{\mathsf{t}_{i}} \cap \gamma^{-1}(\mathsf{D}_{\varphi_{i+1}})_{\mathsf{t}_{i+1}}).$$

Define a mapping

 $\mathbf{f}_{\boldsymbol{\varphi}} := \mathbf{f}_{\boldsymbol{\varphi}_{\mathbf{r}}}, \quad \boldsymbol{\varphi}_{\mathbf{r}+1}; \quad \mathbf{x}_{\mathbf{r}} \stackrel{\circ}{\ldots} \stackrel{\circ}{=} \mathbf{f}_{\boldsymbol{\varphi}_{1}}, \quad \boldsymbol{\varphi}_{2}; \quad \mathbf{x}_{1} \stackrel{\circ}{=} \mathbf{f}_{\boldsymbol{\varphi}_{0}}, \quad \boldsymbol{\varphi}_{1}; \quad \mathbf{x}_{0}.$

It was shown in [2] that $f_{\varphi} \in A_{\varphi, \psi}$ and its equivalence class $[f_{\varphi}]$ relative to the relation \equiv depends only on the homotopy class of the curve γ . The equivalence class $[f_{\varphi}]$ denoted also by $[f_{\gamma, \varphi, \psi}]$ is called a *-holonomy of L along γ .

(2.7) Let Λ be the family of all triplets (x, γ, y) where x, y are points of the same leaf L and $\gamma: \langle 0, 1 \rangle \rightarrow L$ is a curve joining x to y. The elements (x, γ, y) and (x', γ', γ') of Λ are identified (this relation is denoted by \sim) if and only if x = x', y = y' and $[f_{\gamma}, \varphi, \psi] = [f_{\gamma'}; \varphi, \psi]$ for arbitrary distinguished charts φ and ψ around x and y, respectively. A class of (x, γ, y) of this equivalence relation is denoted by $[(x, \gamma, y)]$. Define the mappings $\alpha: \Lambda/\sim \ni [(x, \gamma, y)] \mapsto x \in M, \ \beta: \Lambda/\sim \ni [(x, \gamma, y)]$ $\mapsto y \in M.$ If $\beta([(x, \gamma, y)]) = \alpha([(x', \gamma', y')])$, then define the multiplication

 $[(x', \gamma', \gamma')] \cdot [(x, \gamma, \gamma)] = [(x, \gamma \cdot \gamma', \gamma')].$ The definition is correct by (2.4).

It is easy to see that the set Λ/\sim with α , β and the multiplication is a groupoid over M which is called a *-holonomy groupoid of \mathcal{F} and denoted by *-Hol(\mathcal{F}).

(2.8) Let M_{α} be a topological space on M whose base consists

of all plaques. Let $\pi_1(M_{\mathcal{F}})$ be the fundamental groupoid of this space. It is obvious that there exists a natural groupoid homomorphism

$$\mathrm{H}_{\varphi}: \pi_{1}(\mathrm{M}_{\varphi}) \ni [\gamma] \mapsto [(\gamma(0), \gamma, \gamma(1))] \in *-\mathrm{Hol}(\mathcal{F}).$$

3. THE INVERSE IMAGE OF A STEFAN FOLIATION

Let \mathcal{F}' be a Stefan foliation of an m'-dimensional manifold M', let M be an m-dimensional manifold and g: $M \to M'$ a smooth mapping. We denote leaves of \mathcal{F}' by L', $L'_{g(x)}$, $L'_{x'}$ etc.

(3.1) We say that g is transverse to \mathcal{F}' if, for each $x \in M$, the equality

 $g_{*}T_{x}M + T_{g(x)}L'_{g(x)} = T_{g(x)}M'$

holds. This is denoted by $g \pitchfork \mathcal{F}'$.

(3.2) It is well known that connected components of $g^{-1}(L')$ for L' $\in \mathcal{F}$ ' give a decomposition of M into connected immersed submanifolds. Moreover, the codimension of $g^{-1}(L')$ equals the codimension of L'. Denote this decomposition by $g^{-1}(\mathcal{F}')$ or simply by \mathcal{F} .

PROPOSITION. F is a Stefan foliation.

(3.3) Ver Eecke proved this proposition in [4] but we prove it in a quite different way here.

Proof. The only fact which has to be proved is the existence of distinguished charts of \mathcal{F} .

Let $x \in M$ be an arbitrary point. Let $\varphi': D_{\varphi}, \to U_{\varphi}, \times W_{\varphi}$, be a distinguished chart of \mathcal{F} around x = g(x). Denote by L the element of \mathcal{F} containing x (dim L = k) and by L' the leaf of \mathcal{F}' for which $g(L) \subset L'$ (dim L' = k'). Take a connected and relatively compact neighbourhood \tilde{P} of x in $g^{-1}(P_{\varphi'})$ such that there exists a chart ψ of the submanifold $g^{-1}(L')$, defined in \tilde{P} and satisfying $\psi(x) = 0$. It is easy to see that the mapping $h = pr_2 \circ \varphi' \circ g$ is a submersion in x, thus in an open neighbourhood \tilde{W} of x contained in $g^{-1}(D_{\varphi'})$. Let \mathcal{F}_1 be a regular foliation of \tilde{W} induced by h. Define P to be the connected component of $\widetilde{W} \cap \widetilde{P}$ containing x. Let $\xi = (W, p)$ be a tubular neighbourhood of P such that $W \subset \widetilde{W}$, and $p^{-1}(\widetilde{x})$ is connected and transverse to leaves of \mathcal{F}_1 for each $\widetilde{x} \in P$. The mapping

 $\tilde{\varphi} : \mathbb{W} \ni \mathbf{y} \mapsto (\psi p(\mathbf{y}), h(\mathbf{y})) \in \mathbb{R}^{k} \times \mathbb{R}^{m'-k'} = \mathbb{R}^{k'} \times \mathbb{R}^{m-k}$ is a diffeomorphism on some neighbourhood D_{φ} of x. One can suppose that $\tilde{\varphi}(D_{\varphi})$ is of the form $U_{\varphi} \times W_{\varphi}$ where U_{φ}, W_{φ} are connected neighbourhoods of 0 in \mathbb{R}^{k} and \mathbb{R}^{m-k} , respectively. Set $\varphi := \tilde{\varphi} \mid D_{\varphi}$. Note that (*) $pr_{2}\varphi = pr_{2}\varphi'g$

by the definition of φ .

We show that φ is a distinguished chart of \mathcal{F} around x. Conditions (i) and (ii) of definition (2.1) are obviously satisfied. Let $\widetilde{L} \in \mathcal{F}$. We prove that

 $\varphi(\widetilde{L} \cap D_{\varphi}) = U_{\varphi} \times \widetilde{\ell}$

where $\tilde{\ell} = \{ w \in W_{\varphi}; \varphi^{-1}(0, w) \in \tilde{L} \}$. Let $(u, w) \in \varphi(\tilde{L} \cap D_{\varphi})$. Then there exists $y \in \tilde{L} \cap D_{\varphi}$ such that $\varphi(y) = (u, w)$. Denote by $\tilde{L}' \in \mathfrak{F}$ 'the leaf for which $g(\tilde{L}) \subset \tilde{L}'$. Since $\operatorname{pr}_2 \varphi' g \varphi^{-1}(U_{\varphi} \times \{w\}) = \{w\}$ by (*) and $\operatorname{pr}_2 \varphi' g(y) = w$, we have $g \varphi^{-1}(U_{\varphi} \times \{w\}) \subset \varphi^{-1}(U_{\varphi}, \times \{w\}) \subset \tilde{L}'$. Thus $\varphi^{-1}(U_{\varphi} \times \{w\}) \subset g^{-1}g \varphi^{-1}(U_{\varphi} \times \{w\}) \subset g^{-1}(\tilde{L}')$. The set $\varphi^{-1}(U_{\varphi} \times \{w\})$ is contained in \tilde{L} since it is connected and contains y. In particular, $\varphi^{-1}(0, w) \in \tilde{L}$, so $w \in \tilde{\ell}$. We have $(u, w) \in U_{\varphi} \times \tilde{\ell}$.

Conversely, let $(u, w) \in U_{\varphi} \times \tilde{\mathcal{U}}$. It is obvious that $\varphi^{-1}(u, w) \in \mathbb{C}$ $\in D_{\varphi}$. We show that $\varphi^{-1}(u, w) \in \tilde{L}$. Since $w \in \tilde{\mathcal{U}}$, therefore $\varphi^{-1}(0, w) \in \tilde{L}$. Analogously as above we prove that $g\varphi^{-1}(U_{\varphi} \times \{w\}) \subset \tilde{L}$. Then the connected set $\varphi^{-1}(U_{\varphi} \times \{w\})$ containing $\varphi^{-1}(u, w)$ has to be contained in \tilde{L} . In particular, $\varphi^{-1}(u, w) \in \tilde{L}$, so $U_{\varphi} \times \tilde{\mathcal{U}} \subset \varphi(\tilde{L} \cap D_{\varphi})$. \Box

(3.4) Let $\varphi: D_{\varphi} \rightarrow U_{\varphi} \times W_{\varphi}$ be a distinguished chart of \mathcal{F} constructed as above by using the distinguished chart $\varphi': D_{\varphi}$, $\rightarrow U_{\varphi}$, $\times W_{\varphi}$, of \mathcal{F} . We have

162

PROPOSITION. $W_{\varphi} \subset W_{\varphi}$. Equivalence classes of \sim_{φ} are equal to connected components of intersections of W_{φ} with equivalence classes of \sim_{φ} , in W_{φ} , .

(3.5) Proof. The first part of the proposition follows directly from the definition of φ . We show that the second part holds. Let $\tilde{\ell}^{(0)}$ be an equivalence class of \sim_{φ} . Then $\varphi^{-1}(U_{\varphi} \times \tilde{\ell}^{(0)}) \subset \tilde{L}$, so $g\varphi^{-1}(U_{\varphi} \times \tilde{\ell}^{(0)}) \subset L' \cap D_{\varphi}$. Since the set $g\varphi^{-1}(U_{\varphi} \times \tilde{\ell}^{(0)})$ is connected, it is contained in a plaque of φ . Consequently, $\tilde{\ell}^{(0)} = \operatorname{pr}_2 \varphi' g \varphi^{-1}(U_{\varphi} \times \tilde{\ell}^{(0)}) \subset \tilde{\ell}'^{(0)}$ by (*), where $\tilde{\ell}'^{(0)}$ is a connected component of $\tilde{\ell}' = \{ w \in W_{\varphi'}; \varphi^{-1}(0, w) \in \tilde{L}' \}$. Thus $\tilde{\ell}^{(0)}$, being connected, is contained in a connected component of $W_{\varphi} \cap \tilde{\ell}'^{(0)}$.

Conversely, let ℓ ' be a connected component of the set $W_{\varphi} \cap \ell^{\prime(0)}$ where $\ell^{\prime(0)}$ is an equivalence class of $\sim \varphi$. Consider the set $A := \varphi^{-1}(U_{\varphi} \times \ell')$. It is connected. Therefore g(A) is connected and $\operatorname{pr}_{2} \varphi' g(A) = \operatorname{pr}_{2} \varphi' g \varphi^{-1}(U_{\varphi} \times \ell') = \ell' \subset \ell^{\prime(0)} \subset \ell'$ by (*). Thus $g(A) \subset L'$, so $A \subset g^{-1}(L')$. Consequently, A is contained in a leaf of \mathcal{F} since A is connected. Obviously, $A \subset D_{\varphi}$, so it is contained in a plaque of φ . Then we have $\ell' \subset \ell^{\prime(0)}$. \Box

4. THE MAIN THEOREM

Let g: $M \rightarrow M'$ be a smooth mapping transverse to a Stefan foliation \mathcal{F}' of M'. Then it is well known that there exists a natural groupoid homomorphism

G: $\pi_1(M_{\mathcal{F}}) \ni [\gamma] \mapsto [g \circ \gamma] \in \pi_1(M'_{\mathcal{F}})$ where $\mathcal{F} = g^{-1}(\mathcal{F}')$.

(4.1) THEOREM. There exists a natural groupoid homomorphism \widetilde{G} : *-Hol(\mathcal{F}) \rightarrow *-Hol(\mathcal{F} ') such that the diagram

Deners for the to and for the day of the

$$(**) \begin{array}{c} \pi_{1}(M_{\mathcal{G}}) \xrightarrow{G} \pi_{1}(M'_{\mathcal{F}}) \\ \downarrow^{H}_{\mathcal{F}} \xrightarrow{G} \downarrow^{H}_{\mathcal{F}}, \\ *-\text{Hol}(\mathcal{F}) \xrightarrow{K} *-\text{Hol}(\mathcal{F}') \end{array}$$

commutes.

(4.2) Proof. It is easily seen that if we want diagram (**) to commute, the mapping \tilde{G} has to be defined by the formula:

 $\widetilde{G}([(x, \gamma, y)]) = [(g(x), g \circ \gamma, g(y))].$ We show that this definition is correct. Let (x, γ_0, y) , (x, γ_1, y) be triplets from Λ such that $f_{\gamma_0; \varphi, \psi} \equiv f_{\gamma_1; \varphi, \psi}$ in $\mathcal{A}_{\varphi, \psi}$, where φ , Ψ are arbitrarily chosen distinguished charts around x and y, respectively. Note that, for an arbitrary curve γ in L, it is possible to choose a chain $\mathcal{E}' = (\varphi', 0; \varphi'_1, t_1; \ldots; \varphi'_r, t_r;$ ψ' , 1) along $g \circ \gamma$ such that the charts $\varphi, \varphi_1, \ldots, \varphi_r, \psi$ (defined as in (3.3) from the charts of \mathcal{C} ') form a chain $\mathcal{C} = (\varphi, 0;$ φ_1 , t_1 ; ...; φ_r , t_r ; ψ , 1) along γ . This can be obtained in the following way: for each $s \in \langle 0, 1 \rangle$, there exists a distinguished chart $\varphi'_{(s)}$ of \mathcal{F}' around $g\gamma(s)$. For every chart $\varphi'_{(s)}$, define the distinguished chart $\varphi_{(s)}$ of \mathcal{F} around $\gamma(s)$ as in (3.3). There exists a finite subfamily $\{\varphi, \varphi_1, \ldots, \varphi_r, \psi\}$ of $\{\varphi_{(s)}\}$ $s \in \langle 0, 1 \rangle$ with $\varphi = \varphi_{(0)}$, $\varphi_1 = \varphi_{(s_1)}$, $\psi = \varphi_{(1)}$, such that $\mathcal{C} = (\varphi, 0; \varphi_1, t_1; \ldots; \varphi_r, t_r; \psi, 1)$ is a chain along γ , where t1, ..., tr are suitably chosen parameters from <0, 1>. It is obvious that $(\varphi'_{(0)}, 0; \varphi'_{(s_1)}, t_1; \dots; \varphi'_{(s_r)}, t_r; \varphi'_{(1)}, 1) =$ = $(\varphi_{1}^{2}, 0; \varphi_{1}^{2}, t_{1}; ...; \varphi_{r}^{2}, t_{r}; \psi^{2}, 1)$ is a chain along $g \circ \gamma$.

It is clear that the ranges of charts of this chain can be assumed to be convex.

Let \mathscr{C}_{i} , \mathscr{C}_{i} (i = 0, 1) be the chains along \mathscr{Y}_{i} and $g \circ \mathscr{Y}_{i}$, respectively, constructed as above. By the assumption, f $\mathscr{C}_{0} \equiv f \mathscr{C}_{1}$ in $\mathscr{A}_{\varphi', \psi}$. We have to prove that $f \mathscr{C}_{0} \equiv f \mathscr{C}_{1}$ in $\mathscr{A}_{\varphi', \psi}$. Note that, by proposition (3.4), the diffeomorphism $f \mathscr{C}_{i}$ can be considered as an element of $\mathscr{A}_{\varphi', \psi'}$. By the transitivity of \equiv , it suffices to show that $f_{\mathscr{C}_{i}} \equiv f_{\mathscr{C}_{1}}$ in $\mathscr{A}_{\varphi', \psi'}$. In view of proposition (2.4), it will be sufficient to prove this last equivalence in the case when the chains \mathscr{C}_{i} and \mathscr{C}_{i} consist of two links. In other words we have to show that

(***) $f_{\varphi,\psi;x} \equiv f_{\varphi',\psi';g(x)}$ in $\mathcal{A}_{\varphi',\psi'}$.

Denote $f_{\varphi, \psi; x}$ by f_0 and $f_{\varphi', \psi'; g(x)}$ by f_1 and recall that

$$f_0(w) = pr_2 \psi \varphi^{-1}(pr_1 \varphi(x), w)$$

for w in some open neighbourhood of 0 in $W_{(0)}$, and

$$f_1(w) = pr_2 \psi' \varphi'^{-1}(pr_1 \varphi' g(x), w)$$

for w in some open neighbourhood of 0 in $W_{(0)}$.

Define

$$\hat{f}_{t}(w) = pr_{2}\psi'\varphi'^{-1}((1 - t)\varphi'g\varphi^{-1}(pr_{1}\varphi(x), w) + t(pr_{1}\varphi'g(x), w)).$$

We show that there exists an open neighbourhood of 0 in W_{φ} on which all mappings \hat{f}_{+} are defined. Note that the mapping

$$\begin{aligned} \alpha: <0, 1 > \times W_{\varphi} \ni (t, w) \mapsto (1 - t) \varphi' g \varphi^{-1} (\mathrm{pr}_{1} \varphi(\mathbf{x}), w) \\ &+ t (\mathrm{pr}_{1} \varphi' g(\mathbf{x}), w) \in U_{\varphi'} \times W_{\varphi}, \end{aligned}$$

is continuous. For each $t \in \langle 0, 1 \rangle$, we have $\alpha(t, 0) = \varphi'g(x) \in \varphi'(D_{\psi})$ since $g(x) \in D_{\psi}$. The set $\varphi'(D_{\psi})$ is an open subset of U_{φ} , $\times W_{\varphi}$. By the continuity of α , for each $t \in \langle 0, 1 \rangle$, there exist a neighbourhood V_t of t in $\langle 0, 1 \rangle$ and a neighbourhood G_t of 0 in W_{φ} , such that $\alpha(V_t \times G_t) \subset \varphi'(D_{\psi})$. Let $\{V_{t_1}, \ldots, V_{t_s}\}$ form a covering of $\langle 0, 1 \rangle$. Set $G: = \bigcap_{j=1}^{\infty} G_{t_j}$. Then $\alpha(\langle 0, 1 \rangle \times G) \subset \varphi'(D_{\psi})$, which means that all mappings \hat{f}_t are defined in G.

We now prove that \hat{f}_t is the homotopy realizing equivalence (***). Every \hat{f}_t is an immersion at 0. Indeed, let $v \in T_0 W_{\varphi}$ and assume that $\hat{f}_{t*} v = 0$. Then $\alpha(t, \cdot)_* v \in T_{\varphi' g(x)}(U_{\varphi}, \times \{0\})$. Therefore $\operatorname{pr}_{2*} \alpha(t, \cdot)_* v = 0$ but, on the other hand, $\operatorname{pr}_2 \alpha(t, \cdot) =$ $= \operatorname{id}_{W_{\ell_0}}$ by (*).

Consequently, $\operatorname{pr}_{2^*} \alpha(t, \cdot)_* v = v$. Hence v = 0. Now, similarly as above, using the continuity of the differential of α , we can assert that there exists a neighbourhood \hat{G} of 0 in G such that, for each $t \in \langle 0, 1 \rangle$, the mapping \hat{f}_t is an immersion in \hat{G} . Consequently, condition (i) of definition (2.3) holds.

Condition (ii) of (2,3) is guite obvious.

Note that

$$\hat{f}_0(w) = \operatorname{pr}_2 \psi' \varphi'^{-1}(\varphi' g \varphi^{-1}(\operatorname{pr}_1 \varphi(x), w))$$
$$= \operatorname{pr}_2 \psi \varphi^{-1}(\operatorname{pr}_1 \varphi(x), w) = f_0(w)$$

by (*), and

$$\hat{f}_1(w) = pr_2 \Psi' \varphi'^{-1}(pr_1 \varphi' g(x), w) = f_1(w).$$

Thus condition (iii) of (2.3) holds.

We now prove that, for each $t \in \langle 0, 1 \rangle$, the mapping \hat{f}_t is compatible with $\sim \varphi_{\hat{G}}$ and $\sim \psi$?. Indeed, let ℓ_0 be an equivalence class of $\sim \varphi_{\hat{G}}$. Note that $\alpha(\{t\} \times \ell_0) \subset U_{\varphi}, \times \ell_0$ because $\operatorname{pr}_2 \alpha(t, w)$ = w for each w $\in \hat{G}$. Therefore $\varphi'^{-1} \alpha(\{t\} \times \ell_0)$ is contained in some leaf L' $\in \mathcal{F}$ ' by (3.4). Hence $\hat{f}_t(\ell_0) \subset \ell$ ' where $\ell' =$ = $\{w' \in W_{\psi}, ; \psi'^{-1}(0, w') \in L'\}$. Since $\hat{f}_t(\ell_0)$ is connected, it is contained in a connected component of ℓ' , thus in an equivalence class of $\sim \psi$?. So, condition (iv) of (2.3) holds.

To prove condition (v) of (2.3), note that $\varphi^{-1}\alpha(<0, 1>x \{w\})$ is contained in some leaf of \mathcal{F}' because of the equality $\operatorname{pr}_2\alpha(t, w) = w$. Consequently, the image of the curve $<0, 1> \ni t \mapsto \hat{f}_t(w) \in W\psi'$ is contained in some set ℓ' and, since it is connected, in an equivalence class of $\sim \psi'$.

This completes the proof of the correctness of the definition of $\widetilde{\mathsf{G}}.$

It is easy to check that G is a groupoid homomorphism.

REFERENCES

- [1] Ehresmann C., Structures feuilletées, Proc. of the 5th Canad. Math. Cong., 1961 (Charles Ehresmann, Oeuvres complètes et commentées, Part II, 2, 563-626).
 - [2] Piątkowski A., A stability theorem for foliations with singularities, Dissertat. Math., 267 (1988), 1-49.
 - [3] Stefan P., Accesible sets, orbits and foliations with singularities, Proc. London Math. Soc., 29 (1974), 699-713.
 - [4] Ver Eecke P., Le groupoide fondamental d'un feuilletage de Stefan. Publicaciones del Seminario Matematico Garcia de Galdeano, Ser. II, 3(6), (1986).

Institute of Mathematics University of Łódź

166

Andrzej Piątkowski

O *-HOLONOMII PRZECIWOBRAZU FOLIACJI STEFANA

Niech \mathcal{F}' będzie foliacją Stefana ([3]) na rozmaitości M' i niech f: M \rightarrow M' będzie gładkim odwzorowaniem transwersalnym do \mathcal{F}' ([4]). W pracy tej pokazujemy, że istnieje naturalny homomorfizm grupoidu *-holonomii([2]) foliacji f⁻¹(\mathcal{F}') w grupoid *-holonomii foliacji \mathcal{F}' .