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ANALYSIS OF THE TIME EVOLUTION OF NON-LINEAR 

FINANCIAL NETWORKS 
 

Abstract. We treat financial markets as complex networks. It is commonplace to create 
a filtered graph (usually a Minimally Spanning Tree) based on an empirical correlation matrix. In 
our previous studies we have extended this standard methodology by exchanging Pearson’s 
correlation coefficient with information – theoretic measures of mutual information and mutual 
information rate, which allow for the inclusion of non-linear relationships. In this study we 
investigate the time evolution of financial networks, by applying a running window approach. 
Since information–theoretical measures are slow to converge, we base our analysis on the 
Hirschfeld-Gebelein-Rényi Maximum Correlation Coefficient, estimated by the Randomized 
Dependence Coefficient (RDC). It is defined in terms of canonical correlation analysis of random 
non-linear copula projections. On this basis we create Minimally Spanning Trees for each window 
moving along the studied time series, and analyse the time evolution of various network 
characteristics, and their market significance. We apply this procedure to a dataset describing 
logarithmic stock returns from the Warsaw Stock Exchange for the years between 2006 and 2013, 
and comment on the findings, their applicability and significance.  

Keywords: financial networks, non-linear dependence, maximum correlation coefficient, 
canonical-correlation analysis. 

 
 

1. INTRODUCTION 
 
Financial markets are not only complex systems, but also complex adaptive 

systems. Network theory is one of the methods to analyse their complexity, 
particularly for financial instruments traded on stock markets (Mandelbrot 1963, 
Mantegna 1991). These studies are useful for both phenomenological advances, 
and for practical risk and investment assessments. Econophysicists developed a 
method of network analysis based on single linkage clustering analysis, which is 
commonly based on the empirical Pearson's correlation coefficient matrix. Such 
correlation structures have been analysed for time series describing stock returns 
(Plerou et al. 1999, Mantegna 1999, Laloux et al. 2000), market index returns 
(Bonanno et al. 2000, Sandoval & Franca 2012) and currency exchange rates 

 
* Ph.D., Cracow University of Economics, Rakowicka 27, 31-510 Kraków. E-mail: 

Pawel.F.Fiedor@ieee.org 



Paweł Fiedor 70 

(McDonald et al. 2005). Due to strong evidence of non-linear behaviour of 
financial markets (Brock et al. 1991, Qi 1999, Sornette & Andersen 2002, Chen 
1996, Ammermann & Patterson 2003, Hsieh 1989, Brock et al. 1991, Brooks 
1996, Abhyankar et al. 1995, Abhyankar et al. 1997), we have proposed using 
mutual information and mutual information rate as measures of similarity in 
financial networks (Fiedor 2014a, Fiedor 2014b, Fiedor 2014c). 

Most analyses concentrate on the static structure of the network, measuring 
the similarities between subjects for the whole available time series. For long 
analyses these may not contain economically homogeneous data, and averaging 
over these leaves no interesting insight for market participants interested in the 
current state of the market. Relatively few inquiries look at networks estimated 
for short time series, and their time evolutions. All of these analyses are based 
on linear similarity measure (Albert & Barabasi 2000, Dorogovtsev et al. 2008, 
Fenn et al. 2011, Sienkiewicz et al. 2013, Fiedor 2014d). In this study we 
concentrate on the time evolution of the Warsaw Stock Exchange in the last few 
years, including non-linear relationships in the methodology. Using a relatively 
short running window makes it hard to use mutual information due to it being 
slow to converge (Cover & Thomas 1991, Paninski 2003). To include non-
linearity we use Hirschfeld-Gebelein-Rényi Maximum Correlation Coefficient 
instead of Pearson’s correlation. It is a theoretical postulate, thus we use the 
Randomized Dependence Coefficient (RDC), which measures the dependence 
between random samples as the largest canonical correlation between k 
randomly chosen non-linear projections of their copula transformations, as its 
estimator. 

This paper is organised as follows. In Section 2 we present the methods used 
in the analysis. In Section 3 we present the dataset used, obtained results, and the 
discussion of these. In Section 4 we conclude the study and propose further 
research.  

 
 

2. METHODS 
 
In this section we briefly introduce the Randomized Dependence 

Coefficient, how we base full graphs on it, and how we then filter them into their 
minimally spanning trees. Measures of non-linear statistical dependence prove 
hard to derive and analyse. Commonly used measures of dependence such as 
Pearson's rho, Spearman's rank, or Kendall's tau, deal only with a limited class 
of association patterns. This is problematic in analysing complex systems with 
an array of intricate interdependencies. There are a few non-linear dependence 
measures, including the Alternating Conditional Expectations (Breiman & 
Friedman 1985), Kernel Canonical Correlation Analysis (Bach & Jordan 2002), 
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Copula Maximum Mean Discrepancy  (Gretton et al. 2005, Poczos et al. 2012), 
Brownian Correlation (Szekely et al. 2007) and the Maximal Information 
Coefficient (Reshef et al. 2011), all of which are computationally expensive, and 
show poor performance under presence of noise. In this study we use the 
recently proposed Randomized Dependence Coefficient (RDC) (Lopez-Paz et al. 
2013), an estimator of the Hirschfeld-Gebelein-Rényi Maximum Correlation 
Coefficient (Gebelein 1941, Rényi 1959). RDC measures dependence between 
two random variables as the largest canonical correlation (Hardoon & Shawe-
Taylor 2009) between random non-linear projections of their respective 
empirical copula-transformations. Thus it is invariant to monotonically 
increasing transformations, and has the computational cost of  with 

respect to the sample size. 
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The above expression means that RDC is calculated in three distinct phases: 

copula transformations of the empirical data, random non-linear projections on 
these copulas, and finally a canonical correlation analysis to find the maximal 
Pearon’s correlation coefficient between randomly chosen non-linear projections 
of the copula transformations of the empirical data. We present these phases 
briefly, step by step. RDC operates on the empirical copula transformation of the 
data (Nelsen 2006, Poczos et al. 2012), so that the results are invariant to any 
monotonically increasing transformations. Considering a random vector 

 with continuous marginal cumulative distribution functions 

 we may express the copula transformation of this random vector X 

as a vector 
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marginals. In the next step, such copula transformations are augmented with 
non-linear projections, so that we are able to use linear methods to capture non-
linear dependencies. It is a widely used approach (Rahimi & Recht 2008). The 
choice of the non-linear dependencies :  out of the infinite number of 

possibilities is the main, unavoidable, assumption. It is common to use sigmoids, 
parabolas, radial basis functions, complex sinusoids, sines and cosines. 
A further, more detailed study, of the types of non-linear behaviour found within 
financial data is to follow, but is outside the scope of this preliminary research. 
Thus, in this study we follow the authors of this method and use sine and cosine 
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projections:  Thus, shift-invariant 

kernels are approximated with these features when using the appropriate random 
parameter sampling distribution. The choice of  being Normal is 

equivalent to the use of the Gaussian kernel for MMD or KCCA, with s being the 
kernel width parameter (Rahimi & Recht 2008). We also choose
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Given a dataset we can write the the k-th order random non-linear 

projection from  to as: 
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The final step consists in finding the linear combinations of these augmented 

copula transformations which have maximal correlation. We use the Canonical 
Correlation Analysis (Haerdle & Simar 2007, Hardoon & Shawe-Taylor 2009) 

as the calculation of pairs of basis vectors   such that the projections  

and  of two random samples  and  are maximally 

correlated (Lopez-Paz et al. 2013). We follow the authors of the RDC with 
respect to the parameter selection (k = 10, s as the squared Euclidean distance). 
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We use standard financial data in our study, that is the logarithmic price 
changes. Let us denote the most recent price for stock e occurring at  the end of 
day t during the studied period by  Then for each stock the logarithmic 

returns are sampled: 
 
    (3) 

 
throughout the studied period. These time series constitute columns in a matrix 
R. From these matrices an empirical correlation matrix C is constructed using 
the Randomized Dependence Coefficient of columns of matrix R: 
 

 (4)    

 
From the correlation matrix R we create a matrix of Euclidean distances 

between the studied currencies D in the following way (Mantegna 1999): 
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Finally, we describe the algorithm used for the construction of the minimally 
spanning trees. Hierarchical networks based on adjacency or distance matrices 
may be constructed in two ways. The first is to force topological restraints (a 
threshold) on the similarity measure. Threshold networks are robust with regards 
to the statistical uncertainty in the estimation of similarity measures, but it is 
difficult to find a single threshold to appropriately display the nested structure of 
the similarity matrix. The other method is to force topological restraints, which 
creates intrinsically hierarchical networks (but less stable with respect to the 
statistical uncertainty in the data). To create a minimally spanning tree (MST) 
we use the distance matrix D (Aste et al. 2010) connecting N financial 
instruments. We transform the distance matrix D into an ordered list S, which 
contains the distances listed in decreasing order. Then we go through the list 
sequentially, and add the corresponding link to the network if and only if the 
resulting graph is still a forest or a tree (Tumminello et al. 2005). After all 
appropriate links are added the graph is guaranteed to reduce to a tree. For 
detailed description of these methods (see presented references: Tumminello et 
al. 2005, Tumminello et al. 2007a, Tumminello et al. 2007b). 

 
 

3. RESULTS AND  DISCUSSION 
 
We use a dataset containing end of day prices for 125 securities listed on the 

Warsaw Stock Exchange between August of 2006 and July of 2013. We wish to 
include the same set of securities in every constructed network, thus we are not 
able to construct either a very large set of securities or a very long time horizon, 
due to the securities entering, leaving and merging on the stock market. We 
believe that the above choice is optimal for this analysis. These prices are then 
transformed into logarithmic returns. We create minimally spanning trees based 
on running window approach with width of 100, 200, and 400 days. Since the 
differences are not huge we report the results obtained with the running window 
of width of 200 days. In the results we always report the network as belonging to 
the last day of the used window, so that we do not include any information not 
available on this day. For each of the graphs we calculate its characteristics, such 
as degree distribution or radius. We mostly analyse the degree distribution as it 
is thought to be the most important feature of a network, and particularly 
important to the analysis and controllability of socio-economic networks. 

First, we show whether MST based on RDC preserves the important 
characteristics of the trees based on Pearson’s correlation. The main 
consideration is the much larger concentration of links between companies from 
the same sector (intrasector links) than in a random or full graph. These results 
are important as they cannot be reproduced by simulating a market. We have 
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many trees created for both measures, so we compare them using kernel density, 
as shown in Figure 1. The dashed line represents the percentage of intrasector 
links in all links within the MST based on correlation, while the solid line 
represents the same for RDC-based MST. We can see that (save for a brief 
period in 2007) the two methods give comparable results, which are around 
15%. This is satisfactory given 125 companies divided into 26 sectors (~6% in 
fully connected graph). 

 

 
Figure 1. Percentage of intrasector links in all links within constructed MST over time 

Source: author’s calculations 

 

We turn to presenting  the changes in topology of the MST based on RDC 
over time. In Figure 2 we show how the diameter of the tree changes over time, 
and compare it with how average log return (averaged over the window and over 
all studied companies) changes over the same period. We can see that the 
diameter of the network tends to be lower in times of crisis (seen as the times 
when average log returns are negative around 2009–2009 and 2011–2012). This 
means that the Warsaw Stock Exchange is characterised by a much more 
concentrated topology in bad times, which makes it more vulnerable due to the 
relatively larger influence of a few important stocks on the whole market at that 
time. In times of better economic prosperity, the networks are more spread 
around, and the risks are lower. 

To complete this picture we also present the correlation between MST 
diameter and the average log returns (Figure 3), and between MST diameter and 
the standard deviation of the log returns (Figure 4). The Pearson’s correlation 
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between the diameter and the average log returns is equal to 0.42, while the 
correlation between the diameter and the standard deviation of the log returns is 
equal to –0.16. The former confirms our analysis above, the latter hints that it’s 
further true that the more diverse times are associated with more concentrated 
networks as well. 

 

 
Figure 2. Changes in MST diameter and average log returns over time 

Source: author’s calculations. 

 

 
Figure 3. Scatterplot of average log returns vs MST diameter 

Source: author’s calculations. 
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Figure 4. Scatterplot of MST diameter vs st. dev. of log returns 

Source: author’s calculations. 

 
 
Degree distribution is an important characteristic of a network, and 

particularly important to analysis and controllability of social and financial 
networks. In Figure 5 we present how the maximum degree within the MST has 
changed in the studied period, and also how the difference between the highest 
and the second highest degree changed within the MST over time. The latter is  
a quantile measure of how concentrated on one stock is the network in a given 
time. We see that the latter is mostly driven by the highest degree. There are 
times when these spike, which are of obvious interest to the analysts and the 
market practitioners. We will investigate the largest spike, which happened in 
2011. The largest degree at the time belongs to a company called IGROUP. 

To analyse the highest spike in Figure 5 we present the price and degree of 
IGROUP around the time of this spike, in Figure 6. It is interesting to see that 
the degree of the stock in the network has been rising before the large price 
fluctuations, hinting that this can constitute an early warning system for the 
market participants. 
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Figure 5. Changes in highest degree and difference between highest and second highest degree 

within the MST over time 

Source: author’s calculations. 

 

 
Figure 6. Changes in price and degree of IGROUP in the MST 

Source: author’s calculations. 
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To finish the analysis, in Figure 7 we show the degree distributions for two 
windows, together with power law and lognormal distributions fitted. The top 
distribution belongs to a tree with the largest difference between first and second 
degree (25, for 15/07/2011), while the bottom one belongs to the one where this 
difference is minimal (0, for 25/08/2006). With these we confirm that the 
presented networks show the desired and expected characteristic of preferential 
attachment, though they are not strictly scale free networks. 

 
 

Figure 7. Degree distributions for two specific MST with power law and log-normal  
distributions fitted 

Source: author’s calculations. 

 
 

4. CONCLUSIONS 
 
In this study we have analysed the time evolution of minimally spanning 

trees for securities traded on the Warsaw Stock Exchange between 2006 and 
2013, based on a methodology allowing us to use narrow running window and 
further allowing us to include non-linear behaviour in the analysis. We have 
shown that this methodology retains the useful characteristics of the standard 
methodology based on Pearson’s correlation, but at the same time, due to the 
general nature of the RDC, it  can capture more interdependencies. In particular, 
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we have shown that the topology of the market in Warsaw is much more 
concentrated in the times of crisis, further increasing the risks associated with it. 
We have also shown that the presented methodology may be a useful tool for 
early warnings of large fluctuations on the market. Further studies should look 
into the tuning of the RDC with respect to other non-linear maps, and also to the 
application of this methodology to other markets, both geographically and 
objectively. 
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ANALIZA EWOLUCJI NIELINIOWYCH SIECI FINANSOWYCH 
 
Streszczenie. W niniejszym artykule traktujemy rynki finansowe jako sieci złożone. 

Najczęściej wyznacza się minimalne drzewo rozpinające oparte o empiryczną macierz korelacji. 
W naszych wcześniejszych badaniach rozszerzyliśmy tę metodologię poprzez zamianę 
współczynnika korelacji liniowej Pearsona na miary oparte o teorię informacji: informację 
wzajemną i stopę informacji wzajemnej, co pozwala na uwzględnienie zależności nieliniowych.  
W niniejszym badaniu zajmujemy się ewolucją sieci finansowych w czasie, przy zastosowaniu 
mechanizmu przesuwnego okna. Jako że miary oparte o teorię informacji są znane z wolnej 
zbieżności, opieramy naszą analizę na współczynniku największej korelacji Hirschfelda-
Gebeleina-Rényiego, estymowanym przez randomizowany współczynnik zależności (RDC). Jest 
on definiowany w odniesieniu do analizy korelacji kanonicznych losowych nieliniowych 
odwzorowań przy pomocy kopuł. Na tej podstawie tworzymy minimalnego drzewa rozpinające 
dla każdego okna przesuwającego się wzdłuż badanych szeregów czasowych, analizujemy 
ewolucję różnych własności tych sieci w czasie, i ich znaczenie dla badanego rynku. Stosujemy tę 
procedurę w odniesieniu do zestawu danych opisującego logarytmiczne zwroty cen akcji z Giełdy 
Papierów Wartościowych w Warszawie z lat pomiędzy 2006 i 2013, komentujemy otrzymane 
wyniki, możliwości ich praktycznego zastosowania oraz ich znaczenie dla badaczy i analityków. 

Słowa kluczowe: sieci finansowe, zależności nieliniowe, współczynnik największej korelacji, 
korelacja kanoniczna. 

 




