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A b s t r a c t . The incoherent scattering of electrons by a layer adsorbed at a single crystal surface is 
determined by the topological correlations o f elements forming the adsorbed layer. The model for the 
description of atoms or molecules adsorbed on the surface is formulated in terms of occupation  
operators which are expressed in terms of pseudospin operators with a given spin value. The 
correlations can be determ Med by the fluctuation dissipation theorem in connection with the 
susceptibility or given directly by means of the Green functions properly chosen. An example of the 
topological or chemical disorder o f two components is considered in detail. The calculations of the 
topological correlations allow us to find the incoherent scattering amplitude as a function of the 
surface coverage which can be experimentally detected.

1. IN TRO DUC TIO N

A knowledge of the surface electronic and ionic topography is one of the most 
important inputs to the understanding of a surface properties. The main 
technique used to investigate the geometrical structure of a surface is the low 
energy electron diffraction (LEED). This technique has established as one of the 
foremost surface structural techniques for ordered surface [1-4]. In the absence 
of a long range order at the surface the electrons are scattered out of the discrete 
beams which characterize the diffraction from an ordered surface, a situation 
which cannot be described in the framework of the LEED theory. At the same 
time experimental diffuse LEED intensities contain the structural informations. 
In a recent paper Pendry and al [5] have shown a non conventional use of LEED 
technique for the investigations of geometrical arrangement of chemisorbed 
atoms. Neglecting multiple scattering inside the overlayer, these authors show
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that the spatial distribution of the electrons elastically scattered outside the 
diffraction channels depends on the statistical arrangement of the adatoms and 
on the geometry of chemisorption sites. A disordered adsorbate on near perfect 
substrate warfexamined by K. Heinz et al. [6]; each electron contributing to the 
diffuse intensities has scattered at least once from an adsorbate atom and 
therefore these intensities have concentrated information within them about local 
environment of the adsorbate. It has been noticed that an acurate measurement 
of critical exponents by LEED peak intensity analysis requires a detailed 
knowledge of the multiple scattering processes occuring when a partial order in 
overlayers exists. Le Bosse et al. [7] introduced a theory of the elastic 
backscattering of electrons at a disordered surface including multiple scattering 
processes. 'Ibis theory is based upon the introduction of field-like operators 
which define the occupancy of any chemisorption site of the substrate. The wave 
scattered at a disordered surface is decomposed into the average of the wave 
performed over a statistical ensemble of overlayer configurations (the coherent 
wave) and a term corresponding to the deviation from this average (the 
incoherent wave). It means the backscattered intensities are the sum of a coherent 
intensity (LEED intensity) and an incoherent intensity (diffuse LEED intensity). 
It is assumed that the incoherent part of the wave scattered at the adsorbate plus 
substrate complex depends linearly on the incoherent part of the wave scatered at 
the disordered overlayer. Furthermore, the coherent part of the wave scattered at 
the adsorbat plus substrate complex is evaluated by using a mean field like 
approximation which amounts to do the average transition matrix approximation 
currently used in energy band alloy theory. So it is possible to preserve the usual 
theoretical framework of LEED theory and to avoid a time consuming cluster­
like tratment of the problem. The expression of the coherent part of the backscattered 
intensities depends on the occupation number of a site and. the incoherent part of 
the backscattered intensities depends on the pair correlation functions.

In respect of the information about the local environment of the adsorbate, 
there is an analogy with SEXAFS experiments [5,8-11]. For this technique 
X-rays are used to ionize an adatom by exciting one of its core level. The wave 
function of the electron emitted after the ionization process can be roughly 
considered as the superposition of a primary spherical wave centered at the 
ionized adatom and waves scattered at its neighbours. Interferences between 
these waves give rise to oscillations in the transition probability amplitude from 
the core state to the final state. In SEXAFS, these oscillations which are observed 
through the adsorption rate of X-rays, are a feature of the local surrounding of 
the ionized adatoms. A SEXAFS experiment has at the most three datasets 
corresponding to the polarizations.of the X-ray beam. In fact the diffuse LEED 
has some advantages over SEXAFS because by varying the incident angle of the 
detections many independent datasets can be gathered and hence a richer mass of 
structural data is available for analysis.



The aim of this paper is to determine the correlation functions expected for 
the calculations of the incoherent intensity. For this purpose we should calculate 
all correlation functions between the sites j  and j '  (independently of site j)  for the 
occupation operators defined respectively in the states p and p'.

2. STATISTICAL DESCRIPTION O F THE DISO RDERED ADLAYER

The chemisorption sites of atoms or molecules are assumed to be located at 
a two dimentional lattice whose translational symetry is the same as the surface 
substrate one. A site occupancy operator is associated with any chemisorption 
site of the surface. The hamiltonian of the overlayer is expressed in terms of these 
site occupancy operators and all statistical overages, are performed by using the 
grand canonical ensemble.

2.1. Model of the adsorbate layer

In general case, the model describing properties of an absorbate layer is 
definite for the occupation operators aJ(p) which characterize state p of a site 
occupancy j  of the surface lattice. In our case, one site can be occupied at most by 
one atom or one molecule. Thus the surface coverage, Le. the ration of atoms or 
molecules number to chemisorption site number N  is necessarily less or equal 
one. The hamiltonian Ж  contains a quadtaric term describing an interaction 
between site j  in state p and site j '  in state p' with energy Ujr(p, p’) and a linear term 
describing adsorbate substrate coupling with the adsorption energy Е“а*(р). 
The form of the hamiltonian is [7] :

Ртах N
* = -  I  I  Е ^(р )а /р )

p = i  j = i  

Ртах N
+ i  £  £  Vj,jip,p')Oj(p)oj,(pr) (1)

p.p' = i j . / = i

where N  is a number of all elements of the adsorbate layer, however pmax+ 1 is 
a number of all occupied states of elements.

2.2 Correlation function of an adsorbate layer

The correlation functions are defined as:

yj.rip. P') = <aj(p) <V(P')> -  <^-(P')> (2)
where the brackets <...> denote the statistic^ average in the usual sense i.e. 
<Л )=Т г (pA) for the statistical operator ol the grand canonical ensemble p :



exp {-/J [J f-lA * (p )W (p )]}

P = Trexp { - ß [ j e - l , i i ( p ) N < p ) } }  (3)
P

N

where /?=1/кв 7Г Moreover N ( p ) = Y ,ajip) anc* ß(p) denotes the chemical
j=i

potential for the state p.'The trace Tr is carried out over the set of configuration 
states defined further. The correlation function (2) allows us to determine 
incoherent intensity, which is of the form [7] :

ATJ^V pmax m̂ax 
1 ь с н (к }~ к + )= -—  £  £ Г ( р , р ' , к } * - к + ) ^  ( p . k j ^ k f )

1  P =  1 p '  =  x

* K (°)(p', kj*-k+)  (4)
where k j  is the above vector in the detector direction, k f i s  an initial wave vector 
in the electron gun direction. K[0>(p) describes the effective transition matrix of 
the p  adscatterer located at the references site j = 0  in the presence of the other 
adscatterers and of the substrate surface, and function Г(р, p', k j* -k f )  is the 
Fourier transform of the correlation function yjjip, p'), i.e.:

Г(р, p \  k }* -k f )=  £  bj.jiP. P') exp [ -  i ( k j  -  k f)  (7} -  T0)] (5)
r =i

The relation (4) has been estoblished by assuming that all sites j  are statisticaly 
equivalent.

2.3. Configurations o f  an adsorbate layer

2.3.1. Topological order

In this case overlayer contains one kind of adsorbate. So, any site can be 
occupied or unoccupied. Let us define a configuration state |pA, in which 
site i is in the occupation state p t and site N  is in the occupation state pN. For any 
site j, pj can take the value 0 for a vacancy or 1 when an adsorbate is present. The 
operator о (̂р) acts on the configuration state \pl ...Pj...pN> in the following way:

°j(p ) IPi -  Pj ••• Pn> = öPjP Ip , ... Pj... pN} (6)
We can notice that <хД1)= 1 — Oj{0) because occupation and vacancy at site 
j  represent all possibilities. This particular chemisorption problem can be 
formally written as a problem of magnetism for the spin S = For this purpose let 
us define the pseudospin operator:

Sj = Oj( 1)—- § = i  —ffy(O) (7)

Instead of describing the configuration state by |px .../>*> we use the notation 
|S j...SN} in which Sj=(2pj—1)/2. Now (6) is replaced with:



S/ISj... S j ... S*>= Sj\S , ... ... SNy (8)
In the quantum theory of angular momentum we usually introduce the operator:

S f= S ]± iS 4  (9)

and we have:

S f  IS L... S j ... SNy =  y/S(S + l ) -S j(S j± Y )  I S j ... Sj +1... S*> (10)
Operators S* and SJ which have a clear meaning in angular momentum theory 
cannot be easily interpreted in chemisorption theory. On the other hand, S f  has 
a clear meaning in both theories. Let us assume that the different spin states of site 
j  are represented by the steps of a ladder. So, (10) indicates that the action of S f  
amounts to climb up the ladder and at the uper step the action of S f  yields zero. 
Similarly, the action of SJ  amounts to climb down the ladder and the action on 
the lower step is zero. In our case, the two ladder steps are associated with the 
unocuppied and occupied states of chemisorption site j. As a matter of fact, all 
commutation relations and algebra related to Sj, S f  and SJ" which are established 
in angular momentum theory can be fully applied to our chemisorption problem. 
Moreover, they can be extended to the cases where pmax+ 1 =  25 is equal to 3,4 etc.

2.3.2. Stoichiometrical order

The adsorbate layer contains two kinds of atoms and the degree of surface 
coverage by adatoms is equal 1, 0=1. So, we have the relation:

ffj ( l )+ ff/ 2)=  1 (11) 
in which 1 denotes the presence of atom A  at site j  and 2 denotes the presence of 
atom B. Relation (6) is still valid except that now we consider configuration states 
l? i... pN} in which all pj are different from zero. We put

S;=<x/ l ) - i = i - < r J(2) (12)

and change |px... Pjv) with |b \ ... SN> in which Sj=(2pj — 3)/2 (p^=l for atom 
A  corresponds to spin — -5 and Pj=2 for atom В corresponds to spin -j). Let us 
notice that the simple cases of topological order (2.3.1) and stoichiometrical order 
(2.3.2) can be described in tłje sartie magnetism case S=-j.

2.3.3. Mixed order

The adsorbate contains two kinds of atoms, however, the surface coverage by 
adatoms 0<  1. It means that one site can be occupied by atom A  (with the surface 
coverage 0A) or atom В (with the surface coverage 0B) or it can stay unoccupied 
(with the surface coverage 0V), so that 0A + 0B + 0V— 1; (for 0A + 0B=0  we have 
0K=1 — 0. If 0A = 0', then we can put 0B= 0 —0'. In the particular case dA = 0B, 
we have O'=0/2).



Operators
vacancy

States 
atom A atom В

aj(p= 0) 1 0 0

°j(P=  1) 0 1 0

<Tj(p=2) 0 0 1

Si 0 1 - 1

Relation (6) is still valid except 
that pj can take the value 0, 1 and 
2 instead of 1 and 2 as in the previous 
case. Now, Sj has three possible 
eigenvalues which are —1, 0, 1 as 
shown in the table (left). Now  
|p...pw> is replaced with |S j ... SN> in 
which Sj=(pj(5 — 3pj))/2. The above 

properties can be described by using the operators Sj in the following way: 

<Tj(p=0)=t-(Sj)2

aj(P =  1) =  Sj(S j+1)/2 for Sj= ±1,0 (13)

aj(P=2) =  Sj(Sj—1)/2

for the pseudospin S = l .

2.3.4. Mixed order with interstitial positions

We assume that each lattice site of the substrate can be occupied by an atom 
A  or В  in two positions a or ß, and it can be also unoccupied (it means the 
vacation of both positions). The position a is a usual position in lattice site of 
adlayer, while the position ß means that an atom A  or В  is located in the 
interstitial position i.e. the lattice site of adlayer is shifted with respect to the 
corresponding lattice site of the substrate. In Fig. 1 we show the positions a and 
ß for the b.c.c. lattice

Fig. 1. Positions of adatoms for the b.c.c. lattice; position a is a usual position in this lattice; position
ß  is the interstitial position.



For the description of the situation presented above we introduce the 
following occupation operators :aj(p—0) (vacancy operator), aj(p= 1) (occupation 
operator for an atom A  in the position a), aj(p = 2) (occupation operator for an 
atom В in the position a), cTj(p=3) (occupation operator for an atom A  in the 
position ß) and Oj(p=4) (occupation operator for an atom В in the position ß).

Operators vacancy atom A-a
States 

atom B-a atom A -ß atom B-ß

<r/p=0) 1 0 0 0 0
cx,(p=l) 0 1 0 0 0
Oj(p =  2) 0 0 1 0 0
er/p =  3) 0 0 0 1 0

a j ( p  — 4) 0 0 0 0 1

Sj 0 1 - 1 2 - 2

The table contains the values of states of the occupation operators, in which, at 
the same time the values of z-component of pseudospin operator S —2 are given. 
The following representation of the operators ег̂ (р)

ff.(p =  0) =  l - | ( S ^ 2+ i ( S ^

< o ( p = i ) = 4 s ; ( s ; + i ) [ i - W ]
ffj(p= 2)= -§s ; ( s ; - 1) [ i —ł (s;)2] for s;=o, ± i ,  ± 2

tf>=3)=^SJ(S;+2)[(Sj)2- l ]
Ф = 4 )= ^ S ; (S /-  2) [(Sj)2 - 1 ]  (14)

by the operators Sj assure the properties required for the eigenvalues of the 
operators ал(р) in the case of the pseudospin S= 2.

The examples mentioned above point out, that the real situations concerning 
the order in adsorbate layer can be described in the modelling way as a different 
configurations expressed with the help of the occupation operators Oj(p) for 
properly chosen numbers of states p. Simultaneously, these examples show that 
there is a possibility to represent the operators (Tj{p) by the pseudospin operators 
S/with the adequate values S. We can notice that: 5 = 4  corresponds to the system 
of two states (pmax=  2); S = 2 to the system of five states (pmax=  4) in the general case 
we can find that the pseudospin S = p max/2 corresponds to the system of (pmax+ 1) 
states.

2.4. Relation between the occupation operators 
and pseudospin operators

In Section 2.3 relation between occupation operators and pseudospin 
operators has been examined for the same particular cases. In this Section we 
provide a general treatment of this problem.



The relation between the operators а}{р) and the 2-components Sj of 
pseudospin S can be found using the following procedure.

Let us first remark that the set of configuration states {|px... pN}} is a complete 
orthonormal basis set, i.e.:

N Ртах

П  Z  IPi - P nX P i  -PnI =  1 (15)
i = l  p, = 0

Using relation (6) it can be straightforwardly shown that:
N Ртах

П  Z  IPi - Pj -  pN> <Pi -  Pj ... pn\=(Tj(Pj) (16)
i * j  p j  =  o

1=1
On the other hand, for any operator A  acting on vectors of the configuration 
vectorial space, we have the trivial relation:

N m̂ax
A = Yl  Z  \Pi - P n><Pi - P n\a  (17)

i=l p, = 0
In the particular case where A  has a diagonal matrix representation, (17) can be 
rewritten as:

m̂ax r̂aax
A = Z  П  Z  \P i-Pn><Pi-Pn\a (Pi~Pj~Pn) 

pj = 0 i * j  pt = 0

m̂ax
=  Z  ffj(P;)^(Pi-Pj-Pjv) (18)

pj=о
Let us now consider the cases where A =  1, A  =  S j , ..., A = (Sj)2S. We obtain 

a set of (2S + 1) linear equations which will have to be solved in order to get the 
expression of Cj{p) in terms of Sj. As an example of this method, let us come back 
to the case of mixed order with interstitial positions.

In that case pmax= 4  and thus S = 2. Five equations can be written:
m̂ax

(S;)"= I  oJ(pJ)LSj(p)']n (19)
P j =  0

for и =  0, 1 , 4 .  The values of Sj(pß results from an arbitrary choice of pj. For 
example:

(20)

P j =  0 -  S;(0 )= 0
P j = l -  S ;(l)= l

P j — 2 -  Sj(2)= — 1
Pj= 3 S;(3) =  2
Pj= 4 -  5 /( 4 )=  —2



We can easily verify that the solutions of the five linear equations (19) obtained for 
these values are given in (14). The equations (12) and (13) are particular solutions 
of the system (19) for S =  1/2 and S =  l, respectively.

3. ENERGY O F CO NFIG URATIO N INTERACTION

The possibility of expression of the occupation operators aj{p) by the 
operators (Sf)n allows us to use the well known technique applied to the 
calculations in Ising model in order to determine the correlation functions. For 
these purposes we should express the correlation functions, as well as the 
hamiltonian (1) by the operators (Sjf.  At the same time it is a basis for 
determining the statistical operator occuring in the definition of the correlation 
functions. Substituting the relation:

25
(21)

П
to the hamiltonian (1) and the expression (2), the hamiltonian (1) takes the form:

N 2S

•*=-1  I  W K S f f
j = 1 n=0

N I S  2S

+ i  Z  Z  Z  U t f i S f n S f f  (22)
j,J‘ = 1 я = 0 л' = 0

where
m̂ax
£  U f(p )aS  

p=o

and
pmax ^max

Щ :?'= Z  Z  V j j p . p ' ) « :  
p= 0 p ' — 0

play the role of external fields of the power (n) and effective interactions of the 
power (n + ri) with respect to the operator Sj, respectively. The coefficients a% are 
determined by the system of equations (19); in the particular cases they are given 
by the formulas (12), (13) and (14). We would like to remark that these cases 
represent the most interesting physical configurations.

4. PROPERTIES O F CORRELATION FUNC TIO NS

Taking into account the above consideration, we can write the correlations 
(2) in the following form:

y jj ip ,  P')= z < ^[<(s;)"(s;r'>  _  <(<?;)"> <(s-r* >] (23)



where the average values are calculated with respect to the hamiltonian (22). We 
can see, that in order to calculate the correlation function yj t f (p, p') we should 
know the correlation functions of higher orders, precisely of all the orders n, 
ri e (0,2S) for the pseudospin operators. It is convenient to introduce the functions :

f i r  =  < ( S W >  -  W >  <^"> (24)
then

y jj ip .  p0=  Z aX :r";": (25)
n,n'

The operator of grand canonical ensemble introduced in form (3) contains now 
the term:

E  E M ? K (p )= L  I ( s ^ = Z  l ^ K s j r  (26)
J  p  J  "  p  J  *

4.1. Fluctuation dissipation theorem

Let us now consider a small external field hj and calculate the change in some 
physical quantities such as <SJ> resulting from the infinitesimal change of hj. We 
assume that the adsorbate - field coupling hamiltonian has the form — X SJ and 
we now consider J

j P ^ j r - Z h j S j  (27)
J

instead of (22). Taking into account the definition of the statistical average:

T r [S ;e x p /} ( -^ +  2>;S;)]

<S;> =  Tr[exp/?(—J ? + I > ,s ; ) ]  (28)
j

where &  -  -  X  )"■ we have

^ щ - = рУ}Р1’Н'=1 (29)

and by the definition of the susceptibility 

we get

1 /ßXjj'=yjr (31)
As hj is an infinitesimal, the formula (30) is actually fulfilled for the system 
described by the hamiltonian in the case of the grand canonical ensemble, we 
can see, on the basis of the formula (28), that a derivative with respect to hj is 
entirely equivalent to a derivative with respect to the chemical potential ц(р  
of site j. Therefore we can write down:



(32)
treating Xj /  as the susceptibility at the point hj — 0. As a matter of fact, as it 
appears in (32) the distribution of chemical potentials is homogeneous and we will 
have to put at the end of calculations.

4.2 Susceptibility o f  higher order

The structure of the formula (29) shows that we can arbitrary choose powers 
of the z-component of the pseudospin operator.

All the correlation functions appearing in the formula (24) can be calculated 
on the basis of the susceptibility x'Jj-, which can be found from the equations 
obtained by the differentiation of suitable statistical averages <(Sp") with respect 
to and considered at the point j  = fiM). The statistical averages satisfy the 
conditions imposed for the occupation operators according the assumed degrees 
of the surface coverage.The formula (32) allows us to determine the corre- lation 
functions with a different level of the accuracy which is dependent on the methods 
used for the calculation of ((Sj)").

4.3. Green function technique

The application of Green function technique is another way to calculate the 
correlation functions. This technique is well known and wide applied in the 
statistical physics, but its particular application in order to calculate the 
correlation function of pseudospins described by the Ising model, requires still 
certain commentaries. In order to be able to present these commentaries we 
remind shortly the fundamental properties of Green functions.

The Green function for two operators determined in the Heisenberg 
representation is defined as:

G 5 , ( t - 0 = « ^ W I B O » =  - iO (t -o < C ^ (0 .-B(0 ]> (34)
or

G % ( t - f ) =  « 5 ( 0 1A ( 0 »  =  W(t-  f )  <[B(ij. .1 (0]>  (35)
where the function 0(z) denote heaveside function, and the average value of the 
commutator is defined for the statistical operator of equilibrium. The Green 
function « Л (t)B(t'))) satisfies the equation:

« e = - ä (t- 0 < w < l > +

+ i « W ( t ) , j n | B ( f ) »  (36)
where the hamiltonian J(? of the system is determined by the operators A  and B. 
The correlation function of the operators A  and В  is then expressed by the formula:



<B(t) <.«')> =  - i
7i J exp (coß)

— 00
where <<Л |B ) ) m is the Fourier transform of the function G^B(t — t'), i.e.

CO

« Л | В » Ш =  J GjB ( t )  exp (ioix) dx (38)

and
00J « - 4 1 B>>mexp(— fear)t/cu (39)

— 00
The operators A  and В should fulfil the relations of the commutation or 
anticommutation rules, which are equivalent to the corresponding relations for 
the field operators •P (r, t), ¥*{г, t). namely

[ У М ) ,  t)] = 0

0 (40)
[!P(r, t), y*(r',t)] =  ^(r-r')

when the Grçen function is specified for the ensemble of these operators in the 
well known way:

G„( 1, 2,... n; 1', 2',... й ')= Г ("+я'><!Р0 |Г[!Р(1)...!Р(п)!Р*(Г)...’Р*(п,)] |5 1,о> (41)
and hence, for instance,

Gf(l, l ' ) = - f O ( t - 0 <[¥'(l), У*(1')]>
or

G [ ( j t , f f )=  - i O { t - n <[!P/t), V fl t ’m  (42)

so the Green function (34) is equivalent to the Green function (42) for certain 
operators Aj(t) and Bj(f), which fulfil the relations:

[Aj.Aj-l  = 0
IBj ,Bj.-]= 0 (43)
[ A j , Bj.'] = Sjj.

In particular, this can be easily satisfied in the case when Br — (A*).
For the correlation functions y"-"', interesting for the purpose of this paper, the 

system is described by the hamiltonian (22), which can be treated as a function of 
the operators Sj. The correlations refer to the same moment of time i.e. f  =  t or 
г = 0  and thay are determined for the operators (Sff. Regarding to the structure of 
the Green functions in connection with the properties of the commutation rules 
for the operators forming the Green function in question we cannot construct



directly the Green function <<(Sj.)"'(ï) |(Sj)"(0>> which corresponds to the 
correlations ({Sff,  (Sj.)"'. It is sufficient to remark that [Sj, Sj.] = 0 , what means 
that the third condition (43) is not satisfied for A j =(Sj)n and B; =(Sj.)".

In order to overcome this difficulty we can take advantage of the relation 
between the components of the pseudospin, namely:

s j S j +  4  ( s ; s ; +  s js f i = s  ( s + 1 )  ( 4 4 )

where
S f=  S j±  iSj (45)

and the components Sf, Sj fulfil the relations

C t f s f l - o
[ s ; s ; ] = 2 s ; v

We can see that фе operators Sf, S j  correspond to the field operators due to the 
relations (46), and now Sj(Sf)*. Thus the Green functions can be expressed by the 
operators A = S f  and By = S j ,  or by the operators:

Aj;. = S;(S j .y  and B]=(Sj)”S f  (47)
Next, in a more general case, we should find yet another relations between the 

correlation functions у ’J?', and the correlations (37) at f= t' for the operators (47). 
As an auxiliary formula we can use here the relation between Sj and S f  resulting 
from the formula (44). We can notice also that this formtila gives the possibility 
for determination of averages <(Sj)"-> appearing in yj'y by the averages of 
operators Sf.  The formula (44) with help of the commutational relations (46) can 
be rewritten as

•S jS j+ S j+ S ;S t= S (S + l)  (48)
Multiplaing the relation (48) by (Sj)"-1 and averaging with respect to the 
statistical operator we get:

<(Sjy+1> +  <(Sj)"> =  S (S + l)  <Sj)"-1> - ( (S jr ~ lS j S ; y  (49)
This formula represents a system of 2S equations for the average values of 
successive powers of the pseudospin z-component, i.e. variables <(Sj)"> for 
ne(l,2S +1). The missing 2S + 1 equation we obtain by averaging the following 
relation [13]:

< П  (S /-r )> = 0 (50)
r -  —s

The system of equations (49) and (50) allows us to calculate <(Sj)") on the 
assumption that we know the functions <(Sj)"- 1S jS /> . These functions can 
be found as a solution of the system of equations adequately chosen and arising 
from the general equation for the Green function, namely on the basis of (36) 
and (38) we have:



со « s ;  i b » œ= < [ s ; ,  B]>m+ « [ s ; ,  x \  в » ш (si)

where B = (S f f~ l S j , and is given by the formula (22). Then the functions 
<(Sj) Sj 'S j  > fulfil the equation (37). The character of equation (51) is determined 
by the commutator [ S | ,  independently of the values of operator B. Accu­
racy of a solution of the problem depends only, but substantially, on the 
possibility of expression of the Green function <<[S /, JÉ*] |B »  by the Green 
function <<Sj I B>>. This possibility is, of course, dependent on the hamiltonian 
Ж. For example, if the hamiltonian j f = - ^ / T rS; then [Sj", JtT\ = fïjSj, or

Г

<<[S /, I B ))  =  b ^ «S / |B>> and the exact solution ofthe problem has a form

<(szy~  *s~ s +> -  fS2>
<{SJ> SJ SJ > ~  exp (dj ß) (52)

Unfortunately, the form of the hamiltonian (22) is more complicated, an^ 
contains the products SjSj, and their higher powers. The values of these powers 
depend on the value of spin (for example S = 4 -> n = l;S  =  l->n =  2;S =  -§->n =  3;
S =  2-* n = 4 ... nmax =  2S).

5. CORRELATION FUNC TIO N A N D  ITS FOURIER TRANSFORM  FOR S =  4

It seems to be more convenient to present the computational methods of 
solving the system of equations (49) and (50) for the individual values of spin, 
which correspond to the concrete physical situations described in Chapter 2. 
Moreover, we have to remember that the correlations f j" '  should be expressed by 
the correlations (37) and it requires the consideration of particular cases with 
given values of spin.

5.1. Molecular field approximation 

According to the formula (28) the average value <S;> takes the form

h j+ Z U j j - V }>
<s;>= i t h  r  2/ß (53)

in the molecular field approximation. Next, the formula (31) on the basis of the 
relation (29) can be rewritten as:

yjr = 0 ( l - 0 ) l ö jr + l ß U jryrj.-] (54)
Г

where the mean value of (Sj) is expressed in terms of the degree of the surface 
coverage 0, namely

<S;> =  0 - i  (55)

because of <<тД-|)> =  0



The solution of the equation (54) can be obtained by substituting

Уя-=Т,Т<иУ*ТчГ (56)

where the coefficients TqJ satisfy the relation

I  Цг Т<й= Ut (57)
Г

with the orthogonality condition

I  \ j \ y = h y  (58)
4

Then the Fourier transform becomes

0 (1 -0 )
yq~ l - 0 ( l - 0 ) ß U q (59)

and its correlation function is given by

In the particular case, when we take into account only the nearest neighbours 
interactions and we assume that they are isotropic, we can put

Г4/ = ^ ехР (~iqj)  (61)

where N  denotes the number of elements in the layer. The equation (57) leads to

Ut = X  U exP (~  Щ (J' - j )) =  2 U [cos qx a 4-cos qy à] (62)
f e j

for Ujj. = U if j '= j+ a .  In the approximation usually applied to the critical 
scattering process description, i.e. the incoherent diffusion, we can confine our 
calculations to the formula

Uq = 4U — Ua2q2 (63)
which is sufficient for small values of the scattering vector.

Substituting (59) for Uq given by (62) into the formula (4) for the incoherent 
intensity, we obtain

Pm&x p m&x

I  I  & P (p ,k7< -k ï)*K $H lt .k}< -k ï)
p= i p'=i

I r  17exp [ - i (k} - k?)(Tt -  TJ)] (64)

where

yiJ 0(1 ^ ^  1 — 0(1 — 0)4Î/+0(1  — 0) Ua2q2 (65)



We can see from (65) that the maximum of the incoherent intensity is for 
kTc = 4U0(l  — 0), i.e. it depends on the interaction U as well as the degree of 
surface coverage 0. It is worth noting that the quantity U refers to the interaction 
between nearest neighbours, so when there is no nearest neighbours inter­
actions, the intensity (4) reduces to 0(1 — 0)3 .̂. which corresponds to the case 
considered in [7] for the same physical conditions.

5.2. Green function method on the Tiablikov decoupling level 

For S = j w e  have the Green function:

« S rzS / |B » ,  which usually are an infinite chain of equations for function 
<<(S/)mS||B>>. Jh e  solutions with a given accuracy we obtain by cutting this 
chain for a certain value of m. We can also get the solutions of type (52) by the 
linearization of hamiltonian or by the fission of Green function « S ; S t |B » ,  
which is equivalent to the mean field approximation (molecular field approximation, 
Hartree-Fock field approximation, Tiablikov decoupling). Taking into account 
the appearing correlations, on the basis of the de Dominicis theorem, we have:

If we neglect the correlations <Sr S j  )  appearing in equations (66), we obtain 
from formula (67)

+ i l  u lj { « s ; s ; i b » + « s / s ?  |b » } (66a)

In order to solve the problem we must find the equations for Green function

« s ; s ;  |b » = < s;> « s ;  i s »  -  <sr- s ;>  « s ;  | в »

« s ;  S; |B »  =  <S;> « S ;+ |B »  -  <S+ Sr"> « S r+ |B » (66b)

It allows us to calculate the correlation in the form:

(67)

(68)
Г Г

however

Q ,= Z ^ < [ s ; s j : ] >

0 « =  2 Z l^ . |2<S;> (69)
j

< s - s » = ________ _______________
i j ' j }  exp ((hj + YjU jr  (Sj}) ß)—l

(70)



It means that we have only the autocorrelations which is in accordance with the 
assumption made above. Putting the autocorrelation (70) in equation (49), we can 
find that:

S j = i - S j S ;  (71)
and

where
< S ’ > ” T + 2 p 5«  ( 7 2 >

for
and <(Sj)2> = ^  on the basis of equation (50).

The formula (71) is found exactly but the formula (72) determines <Sj> in 
a Green function decoupling approximation on the molecular field level, and is 
well known in that approximation.

The consideration of correlations in the decoupling (68) allows us to find the 
magnetization <Sj> in the following form:

Е |г „ |г<да

<S; > - ^ p J ! e ^ ) T Î  (73)
and so for l / N £ <£/> =  <SZ>, we obtain:

Г

<s‘> - u W >  <74>
where

-------------- 1--------------  ( 7 5 )
„ ехр(ш„й) —14

for \Tąr\2 independent of j; this is so, for example, for the coefficients

TtJ= A  exp (—iqj) (76)
which are the solutions of equation (68) for the homogeneous correlations 
<S,T S j  ), Le. for the correlations of near neighbours.

The formula (67) allows us, at the same time, to find the correlations which 
are our objects of interest in this paper, namely yjj. for S=-§-

6. CONCLUSIONS

The presented description of the topological or stoichiometrical disorder in 
a layer adsorbed on the crystalline surface opens a large research area for the 
considerations of two-dimensional systems which can be verified in experiments.



This feature of a natural disorder brings a new example of the system scattering in 
an incoherent way. For this reason the model of a two-dimensional disordered 
layer is of a great importance for this new branch of investigations giving 
contribution to the critical phenomena considered in the surface physics. The low 
energy electron diffraction finds its natural application in the study of this effect as 
the method of the incoherent back-scattering by the disordered medium where 
the incoherent amplitude of the scattered beam is related to the disorder reflected 
by the correlations between the elements forming an adsorbed layer.

From the point of view of the critical behaviour investigated in the system, the 
LEED intensities give some information concerning the shape of the correlation 
functions with respect to their symmetry and the temperature dependence. From 
the point of interest of the surface physics, the obtained information allows us to 
describe the properties of the adsorption, its energy, distribution and formation 
of the surface coverage.

The presented model is general in character. It describes various configurations 
of the adsorbed atoms, ions or molecules. For a given degree of coverage the 
spatial distributions and the transitions between different phases of the disordered 
states can be discussed. The main characteristics are determined by the 
topological correlations which play the role of an effective potential responsible 
for the incoherent back scattering as well as the local charge density at the surface. 
At the same time the influence of adatoms on the boundary conditions can be 
evaluated by the correlations and their dynamic behaviour. Then the transport 
properties, first of all the diffusion through the surface barrier may .be analysed.

The correlation functions can be calculated by means of different methods at 
different levels of accuracy. We can divide these methods into four groups, 
according to the methodological approaches based on (1) the fluctuation 
dissipation theorem, (2) the Green function technique, (3) the variational 
principle, and (4) the relations in the form for numerical calculations. In this paper 
we discuss the first two methods and exemplify them for the case of S = ^  at the 
level of the molecular field approximation, which is equivalent to the Tiablikov 
decoupling. Of course, in a more general case all these methods can be applied to 
various approximations for the statistical averages (e.g. the constant coupling or 
reaction field approximation), or the methodological approach can be combined 
with a different kind of approximation, e.g. we can use the fluctuation dissipation 
theorem for the average values calculated by the Green function technique. It 
is worth noting that the results in these two approaches are the same in the case 
of the statistical average of <Sj>. It means that the Tiablikov decoupling is 
equivalent to the mean field approximation. The decoupling which does not 
include the nearest neighbour correlations leads directly to the autocorrelations 
only, while the fluctuation theorem gives the spatial distribution of correlation.

The presented model is equivalent to the generalized Ising model from the 
formal point of view. Thus, the solutions can be found by means of simple



mathematical analogies. However, the system is now described by the great 
canonical ensemble. This fact allows us to determine the chemical potential in 
order to assure the average value of <S/> which is related to the coverage degree. 
This relation leads to the correlations dependent on the coverage and temperature.
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