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M odulation doped microstructures such as heterostructures, quantum wells, 
wires, dots and superlattices attract much interest because o f their novel 
fundamental physical properties and the resulting potential device applications. 
Within these layered structures it is possible to produce a low-dimensional 
electron gas with an electron number density varying in a large range. The 
confinement o f the electron m otion perpendicular to the heterointerfaces leads to 
size quantization in one, two or three directions.

Electrons in the conduction band of a polar semiconductor strongly interact 
with longitudinal (LO) phonons. It is well known that the electron gas of a heavily 
doped semiconductor can support charge-density oscillations organized by 
long-range Coulomb fields. The polar of Frohlich-type o f electron-phonon 
interaction leads to a strong coupling between these charge-density oscillations, 
the plasmons, and the LO phonons if their frequencies are comparable, forming 
a polaron gas. In modulation-doped semiconductor microstructures this coupling 
also occurs. But there are two basic differences between a microstructure, which is 
a layered system, and an ordinary 3D  bulk crystal, that one must consider:
(i) Confinement of the electron motion and, hence, the electrons form 
a low-dimensional electron gas.
(ii) The spectrum o f the optical phonons interacting with the electrons of the 
low-dimensional electron gas is altered by the interfaces of the system. The 
ordinary dispersion-free LO phonons are changed to be modes confined in each 
individual layer. And further new states, interface phonons, occur in the spectrum 
of the optical phonons with electric fields mainly localized at the interfaces of the 
system and decaying exponentially from them.

For the investigation of the plasmon-phonon coupling in the presence of 
interfaces we use as an example the simple geometry of a double heterostructure 
(DHS, interfaces are assumed to be perpendicular to the z-axis). This structure



consists of a smaller-gap-semiconductor in a > z > 0, which is symmetrically 
embedded by a wider-gap-semiconductor.

According to the symmetry of the D H S the electron motion is quasi-free in the 
x-y  plane with the wave vector component £ |(. Using the simple infinite barrier 
model potential for the DH S and neglecting band-bending, the energy eigenvalues 
are
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The long-wave length optical phonons in the absence of quasi-free electrons 
in a D H S are given by M axwell’s equations and matching boundary conditions 
across the two interfaces. We describe both semiconductors by lattice dielectric 
functions of the form
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where v =  1 denotes the small-gap-semiconductor and v =  2 the wider-gap one. In 
a D H S with the dielectric functions according to Eq. (2) LO phonons with coL 
and interface phonons exist. For the single layer geometry there are two types of 
interface phonon modes [1 ]:  antisymmetric coA± and symmetric a)s±

To calculate the properties o f the Q 2D polaron gas o f a D H S we have derived 
the longitudinal dynamically screened interaction potential [2^4]. It reads 
within the electric quantum limit
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Herein W & i ^ . c o )  is the screened and WKK.(ąn,co) is the bare interaction 
potential given by
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This interaction potential signifies the scattering of an electron from the subband
0 to К  by another electron which becomes scattered from 0 to K ’. VK̂ . (q]{) 
represents the bare electron-eiectron and У £ , ( $ п,ш) the bare electron-phonon 
interaction potential. It is shown [1 ] that caused by the symmetry properties of 
the D H S the bare interaction potential has the following properties:
^ 1 1 * 0 , Wl 0 =  W ^j=0, W2: # 0 , W20=  W02 9^0 and W21 =  Wi2 =  0. Because of the 
large energetic separation between the 0-th and the 2-nd subband at the usual 
layer thicknesses of a D H S the contribution of W20 is very weak. Therefore, it is 
a good approximation to neglect the off-diagonal elements in (3). This means that 
intra- and intersubband processes are decoupled. The full RPA expression of the 
polarization function Х ^Й ц.ш ) of the quasi-two-dimensional electron gas is 
calculated in [2 ] .

The condition for the existence of collective excitations is that self-sustaining 
collective oscillations occur. This means that the dispersion relation represents



a resonance condition which defines the eigenfrequencies co=(Oj(Ą^) o f the 
collective excitation having an infinite life-time. In the regions of the co_4|| plane 
with ImXjJ'öii. <u)=0 the dispersion relation of the coupled excitations follows 
from (3) to

w k k  (<Jи. w) -  2**($II ■ ш) =  0 ■ (5)
Equation (5) describes: (i) coupled intrasubband plasmon-phonon modes if K = 0  
and (ii) coupled intersubband plasmon-phonon modes if K > 0 .  In the regions 
where Im ц, со) /  0 is valid single-particle intra- and intersubband excitations 
occur and hence, the collective excitations are Landau-damped [4 ] . Due to the 
symmetry properties of the D H S the intrasubband plasmons couple only to the 
LO phonons of the layer and to the symmetric interface phonons but not to the 
antisymmetric one. For the intersubband plasmons the situation is vice versa.

If a strong magnetic field (ha>c> k BT) is applied perpendicularly to the 
heterointerfaces, the physical situation is quite changed. The magnetic field 
causes a quantization of the electron motion in the x-y  plane in addition to the 
size quantization in z-direction. Hence, a completely quantized situation arises. 
The possible collective excitations of this magnetoplasma are intra- and 
intersubband principal m agnetoplasm ons and Bernstein m odes. These 
magnetoplasmons couple to the optical phonons of the system. We found the 
general result that all modes are free of Landau damping for all wave vectors and 
temperatures for ha>c $>kv T  because of the loss of the contin uum of extended states.

The developed theory of plasmon-phonon coupling can be applied also to 
other layered structures. For superlattices the electrons form mini-bands 
representing the dimensionality of such a system between three or two. D ue to the 
spatial periodicity the optical phonons form Bloch waves with dispersion curves 
forming two double bands [5 ] . The resulting coupled mode spectrum has a very 
rich resonance structure. The new development of submicron lithography 
(selective etching patterns into the top layer of a heterostructure and then 
deposition of a metal gate in nm dimensions) allows the investigation of one- and 
zero-dimensional electron systems due to strong electrostatic confinement. With 
the additional parameter, the gate voltage, it is possible to vary the dimensionality 
from 2D  to ID  or from 2D  to OD. One of the future directions is to apply the here 
developed theory of collective excitations to these new microstructures and to 
investigate their properties in dependence of the dimensionality. Further, it is 
necessary to look for the effects of a magnetic field in those cases where 
a hybridization of the Landau levels with the quantum confined states occurs.
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