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Abstract: 

We estimate a dynamic stochastic general equilibrium model that allows for re-

gimes Markov switching (MS-DSGE). Existing MS-DSGE papers for the United States 

focus on changes in monetary policy or shocks volatility, contributing the debate on 

the Great Moderation and/or Volcker disinflation. However, Poland which here 

serves as an example of a transition country, faced a wider range of structural chang-

es, including long disinflation, EU accession or tax changes. 

The model identifies high and low rigidity regimes, with the timing consistent 

with menu cost explanation of nominal rigidities. Estimated timing of the regimes 

captures the European Union accession and indirect tax changes. The Bayesian model 

comparison results suggest that model with switching in both analyzed rigidities is 

strongly favored by the data in comparison with switching only in prices or in wages. 

Moreover, we find significant evidence in support of independent Markov chains.  
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Introduction 

Dynamic stochastic general equilibrium models (DSGE) are the cornerstone of 

modern macroeconomics. These models have traditionally been based on microeco-

nomic assumptions on the intertemporal optimizing behaviors of households and 

firms. Parameters that govern technology and preferences, macroeconomic policy or 

structural shocks are treated as time-invariant. This feature may limit constant-

parameters model capacities to explain certain episodes (e.g., Great Moderation or 

disinflation processes occurring during the Volcker chairmanship). As an alternative 

to the constant-parameters approach, several authors have proposed DSGE models 

that allow one to switch structural parameters based on the actual state of the econo-

my (MS-DSGE henceforth). Numerous studies have investigated monetary policy 

rules and/or shock parameters [see, among others: Schorfheide, 2005; Davig, Doh, 

2008; Bianchi, 2012; Baele et. al., 2015]. Less attention has been placed on explicit 

changes in nominal rigidities, which play a key role in mechanisms of shock propaga-

tion and which often ensure the real effects of monetary policy.  

As a transition economy, Poland experienced major structural changes during the 

early 1990s that resulted in high inflation rates and high levels of unemployment. 

Throughout its transition, the country experienced a long disinflation period that was 

accompanied by several abrupt structural changes (i.e., the adoption of inflation tar-

gets and a fully floating exchange rate regime, VAT changes, sectoral deregulation 

and EU accession). These factors exogenously change institutional frameworks or 

market conditions faced by firms, rendering questions concerning possible nominal 

rigidity changes even more appealing.  

In this paper, we estimate Erceg, Henderson and Levin’s [2000] sticky price and 

sticky wage  model with regime changes in the degree of nominal rigidities. The 

analysis is based on Bayesian model comparisons that involve monthly data on the 

Polish economy for 1996:8 to 2015:6. Like Rabanal and Rubio-Ramirez [2005, 2008] 

and Liu, Waggoner and Zha [2011], we use a modified harmonic mean estimator to 
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find marginal data densities that reveal the model’s fit with the data and performance 

in terms of one-step-ahead forecasting [An, Schorfheide, 2007].  

A number of recent papers have analyzed changes in the degree of nominal rigid-

ities based on micro data [e.g., Berradi et al., 2015; Chakraborty et al., 2015; for Po-

land: Macias, Makarski, 2013]. To our knowledge, only few papers have addressed 

switching degrees of nominal rigidities based on aggregate data [Eo, 2009; Liu, Mum-

taz, 2011; Lhuisser, Zabelina, 2015]. However, none of these studies take wage rigidi-

ties into account. Hence, the present study is novel in that it allows for (and tests) 

both price and wage rigidity regime switches. Second, the paper compares independ-

ent regime changes in price and wage rigidity parameters to changes following com-

mon Markov process for both parameters. As nominal rigidities determine the slope 

of the Phillips curve, our work also contributes to the debate on the variations of this 

slope [e.g., Chortareas, Magonis, Panagiotidis, 2012; Vavra, 2014] and to the monetary 

policy transmission mechanism. 

Using our proposed model, we identify two regimes even though we apply iden-

tical prior distributions across the regimes. The data strongly favor regime switching 

degree specifications of both price and wage rigidity and support the case of inde-

pendent regime switching relative to common regime for both nominal rigidities. The 

timing of these regimes appears to be intuitive, e.g., low levels of price rigidity occur 

during higher inflation, which is consistent with menu cost explanation. Moreover, 

we find that reactions to monetary policy and technological shocks vary considerably 

across the regimes. 

The paper proceeds as follows: next section presents MS-DSGE model and details 

of Markov-switching specifications, third section describes the particular model used 

in investigation, fourth section presents methodology and data, fifth section shows 

our main results and the last section concludes. 
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DSGE model 

This section presents the New Keynesian DSGE model. The model applied here is 

largely based on a work by Erceg, Henderson and Levin [2000] (EHL henceforth) that 

includes Calvo [1983] sticky prices and wages. The EHL model is theoretically appeal-

ing, as it implies that strict inflation targeting may not be an optimal strategy. On the 

other hand, it can be considered empirically plausible as it allows one to explain infla-

tion persistence owing to the sluggish responses of real marginal costs [see Rabanal, 

Rubio-Ramirez, 2005; 2008; Kuchta, 2014].  

The economy includes a perfectly competitive final goods producer, a continuum 

of monopolistically competitive intermediate goods producers that are indexed by 

𝑗 ∈ [0; 1], and continuum of households that are indexed by 𝑖 ∈ [0; 1] and a perfectly 

competitive labor agency. We assume that final goods producing firms combine in-

termediate goods using a constant elasticity of substitution technology [see Dixit, 

Stiglitz, 1977]: 

𝑌𝑡 = [∫(𝑌𝑡
𝑗
)

1

1+𝜏𝑝𝑑𝑗

1

0

]

1+𝜏𝑝

 

where 𝑌𝑡 represents the final product, 𝑌𝑡
𝑗
 is a quantity of intermediate goods and 

𝜏𝑃 > 0 represents the monopolistic mark-up on the goods market. Each final goods 

producer tends to maximize profits while taking prices of final and intermediate 

goods, 𝑃𝑡
𝑗
, as a given. As a result, the optimal demand for intermediate goods is given 

by: 

𝑌𝑡
𝑗

= (
𝑃𝑡

𝑗

𝑃𝑡
)

−(
1+𝜏𝑝

𝜏𝑝
)

𝑌𝑡 

for all 𝑗 ∈ [0; 1] and where:  

𝑃𝑡 = [∫(𝑃𝑡
𝑗
)

−
1

𝜏𝑝𝑑𝑗

1

0

]

−𝜏𝑝

 

is a final good price. 
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Each intermediate good 𝑗 is produced by a firm 𝑗 using the following constant re-

turn-to-scale technology: 

𝑌𝑡
𝑗

= 𝜀𝑡
𝑎𝐿𝑡

𝑗
 

where 𝐿𝑡
𝑗
 is labor input, 𝜀𝑡

𝑎 is a technology shock which evolves according to a sta-

tionary first-order autoregressive process: 

ln𝜀𝑡
𝑎 = 𝜌𝑎ln𝜀𝑡−1

𝑎 + 𝜂𝑡
𝑎; 𝜂𝑡

𝑎~𝑖𝑖𝑑𝑁(0; 𝜎𝑎
2) 

and 𝜌𝑎 ∈ (0; 1) is an autoregressive parameter. Each firm has access to a perfectly 

competitive labor market and pays the real wage 𝑤𝑡 for a labor unit. The introduction 

of linear production technology implies that real marginal cost does not depend on 

the amount of produced goods and it is identical among firms: 

𝑅𝑀𝐶𝑡
𝑗

=
𝑤𝑡

𝜀𝑡
𝑎  

We assume that prices are sticky according to Calvo [1983] and Yun [1996]; how-

ever the parameter of price stickiness follows a first-order discrete Markov process 

with two states and the transition matrix given by: 

𝑃𝑝 = [
𝑝11

𝑝 1 − 𝑝11
𝑝

1 − 𝑝22
𝑝 𝑝22

𝑝 ] 

where 𝑝𝑖𝑖
𝑝 = Pr(𝑠𝑡

𝑝 = 𝑖|𝑠𝑡−1
𝑝 = 𝑖). The transition probabilities are constant over time, as 

there are many possible factors influencing degree of nominal rigidities and we do 

not want limit ourselves to a few of them.  

More specifically, we assume that during each period 𝑡, a portion of randomly 

chosen prices 1 − 𝜃𝑝(𝑠𝑡
𝑝) ∈ (0; 1), 𝑠𝑡

𝑝 = {1, 2} can be set optimally in order to maximize 

the expected value of future discounted firm real profits, which are expressed by: 

𝐸𝑡 {∑ 𝜃𝑝(𝑠𝑡
𝑝)

𝜏
𝛽𝜏

∞

𝜏=0

𝜆𝑡+𝜏

𝜆𝑡
(

𝑃𝑡
∗

𝑃𝑡+𝜏
𝑌𝑡

𝑗
− 𝑅𝑇𝐶𝑡+𝜏(𝑌𝑗))} 

under the constraint given by final producer demand, where: 𝑃𝑡
∗ is an optimal price 

level, 𝛽𝜏 𝜆𝑡+𝜏

𝜆𝑡
 is a stochastic discount factor, 𝜃𝑝(𝑠𝑡

𝑝)
𝜏
 measures the probability that price 

set in period 𝑡 will not be reoptimized up until period 𝑡 + 𝜏, 𝐸𝑡 is a rational expecta-
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tions operator and 𝑅𝑇𝐶𝑡(𝑌𝑗) represents the real total cost depending on the quantity 

of goods produced. The first order condition for a firm that can set price optimally 

is given by: 

𝐸𝑡 {∑[𝛽𝜃𝑝(𝑠𝑡
𝑝)]

𝜏
∞

𝜏=0

𝜆𝑡+𝜏

𝜆𝑡
𝑌𝑡

∗ [(1 + 𝜏𝑝)𝑅𝑀𝐶𝑡+𝜏 −
𝑃𝑡

∗

𝑃𝑡+𝜏
]} = 0 

This implies that each firm sets price in order to equate expected average future mar-

ginal revenues to average future expected mark-ups over real marginal costs with 

weights dependent on the probability of non-reoptimizing price and stochastic dis-

count factor. The other prices, namely 𝜃𝑝(𝑠𝑡
𝑝), remain unchanged. The real marginal 

cost is constant with respect to produced goods and is identical among firms, and all 

firms face the same demand constraints. Hence, all firms that can optimally choose 

price during period 𝑡 set it at the same level (𝑃𝑡
∗). As a result, we can rewrite the final 

goods price as: 

𝑃𝑡 = [(1 − 𝜃𝑝(𝑠𝑡
𝑝

)) (𝑃𝑡
∗)

−
1

𝜏𝑝 + 𝜃𝑝(𝑠𝑡
𝑝

)𝑃𝑡−1

−
1

𝜏𝑝]

−𝜏𝑝

 

We assume that all households maximize utility obtained through consumption, 

𝐶𝑡
𝑖, and labor effort. Each household supplies differentiated and imperfect substitu-

tive labor services, 𝐿𝑡
𝑖 , to labor agency which combine them into homogeneous labor 

inputs and sells them to firms. Labor agency aggregates household labor services us-

ing following formula: 

𝐿𝑡 = [∫(𝐿𝑡
𝑖 )

1

1+𝜏𝑤

1

0

𝑑𝑖]

1+𝜏𝑤

 

where 𝜏𝑤 > 0 represents a monopolistic household’s mark-up. Labor agency maxim-

izes profits based on the nominal wage of each household, 𝑊𝑡
𝑖, and market nominal 

wage are taken as a given. As a result, the optimal demand for labor is given by: 

𝐿𝑡
𝑖 = (

𝑊𝑡
𝑖

𝑊𝑡
)

−
1+𝜏𝑤

𝜏𝑤

𝐿𝑡 

for all 𝑖 ∈ [0; 1] and where: 
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𝑊𝑡 = [∫(𝑊𝑡
𝑖)

−
1

𝜏𝑤

1

0

𝑑𝑖]

−𝜏𝑤

 

is a nominal wage in the economy. Finally, a household’s lifetime utility function is 

given by: 

𝐸𝑡 {∑ 𝛽𝜏

∞

𝜏=0

𝜀𝑡+𝜏
𝑏 [

(𝐶𝑡+𝜏
𝑖 )

1−𝛿𝑐

1 − 𝛿𝑐
− 𝜀𝑡+𝜏

𝑙
(𝐿𝑡+𝜏

𝑖 )
1+𝛿𝑙

1 + 𝛿𝑙
]} 

where 𝛽 ∈ (0; 1) is a discount factor, 𝛿𝑐 > 0 is a relative risk averse parameter and 

𝛿𝑙 > 0 denotes inverse Frisch elasticity. The utility function is affected by two disturb-

ances, a preference shock, 𝜀𝑡
𝑏, and a labor supply shock, 𝜀𝑡

𝑙. We assume that these 

shocks follow a first-order autoregressive process: 

ln𝜀𝑡
𝑏 = 𝜌𝑏ln𝜀𝑡−1

𝑏 + 𝜂𝑡
𝑏;  𝜂𝑡

𝑏~𝑖𝑖𝑑𝑁(0; 𝜎𝑏
2) 

ln𝜀𝑡
𝑙 = 𝜌𝑙ln𝜀𝑡−1

𝑙 + 𝜂𝑡
𝑙 ;  𝜂𝑡

𝑙 ~𝑖𝑖𝑑𝑁(0; 𝜎𝑙
2) 

where 𝜌𝑏 ∈ (0; 1) and 𝜌𝑙 ∈ (0; 1) are autoregressive parameters. 

Households receive income from labor; from financial investments, 𝐵𝑡−1
𝑖 , repre-

sented by one-period riskless nominal bonds; and from shares from firms that pro-

duce intermediate goods, 𝑑𝑡, assuming equal shares among particular households. 

Moreover, each household participates in state-contingent securities, 𝐷𝑡
𝑖, which pro-

tect them from risk related to staggered wage settings. Hence, budget constraint in 

real terms can be expressed as: 

𝐵𝑡
𝑖

𝑅𝑡𝑃𝑡
+ 𝐶𝑡

𝑖 =
𝐵𝑡−1

𝑖

𝑃𝑡
+

𝑊𝑡
𝑖

𝑃𝑡
𝐿𝑡

𝑖 + 𝐷𝑡
𝑖 + 𝑑𝑡 

where 𝑅𝑡 is the short-term gross nominal interest rate. 

Each household chooses consumption and the quantity of bonds. The house-

hold’s first order condition is given by a standard Euler equation with respect to con-

sumption: 

𝜀𝑡
𝑏(𝐶𝑡

𝑖)
−𝛿𝑐

= 𝛽𝐸𝑡 {𝜀𝑡+1
𝑏 (𝐶𝑡+1

𝑖 )
−𝛿𝑐 𝑅𝑡

𝜋𝑡+1
} 

Moreover, the standard transversality condition should hold in each period: 

lim
𝑡→∞

𝛽𝑡𝜀𝑡
𝑏(𝐶𝑡

𝑖)
−𝛿𝑐

𝐵𝑡
𝑖 = 0 
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We assume that each household can choose nominal wage conditionally accord-

ing to the Calvo scheme. Similarly to firm optimization problem, we assume that dur-

ing every period, a randomly chosen set of households of measure 1 − 𝜃𝑤(𝑠𝑡
𝑤), 

𝑠𝑡
𝑤 = {1, 2} can reoptimize wage while tending to maximize the lifetime utility func-

tion:  

max
𝑊𝑡

∗
𝐸𝑡 {∑(𝛽𝜃𝑤(𝑠𝑡

𝑤))
𝑠

∞

𝑠=0

𝜀𝑡+𝑠
𝑏 [

(𝐶𝑡+𝑠
𝑖 )

1−𝛿𝑐

1 − 𝛿𝑐
− 𝜀𝑡+𝑠

𝑙
(𝐿𝑡+𝑠

𝑖 )
1+𝛿𝑙

1 + 𝛿𝑙
]} 

under budget constraint:  

𝐵𝑡+𝑠
𝑖

𝑅𝑡+𝑠𝑃𝑡+𝑠 
+ 𝐶𝑡+𝑠

𝑖 =
𝐵𝑡+𝑠−1

𝑖

𝑃𝑡+𝑠
+

𝑊𝑡
∗

𝑃𝑡+𝑠
𝐿𝑡+𝑠

𝑖 + 𝐷𝑡+𝑠
𝑖 + 𝑑𝑡+𝑠 

and labor agency demand function: 

𝐿𝑡+𝑠
∗ = (

𝑊𝑡
∗

𝑊𝑡+𝑠
)

−
1+𝜏𝑤

𝜏𝑤

𝐿𝑡+𝑠 

where 𝑊𝑡
∗ represents the optimal nominal wage. The rest of the wages, of measure 

𝜃𝑤(𝑠𝑡
𝑤), remain unchanged. Like price stickiness, for wages, we allow for parameter 

switching by assuming that parameter 𝜃𝑤(𝑠𝑡
𝑤) is governed by a first-order discrete 

Markov process with two states and the transition matrix given by: 

𝑃𝑤 = [
𝑝11

𝑤 1 − 𝑝11
𝑤

1 − 𝑝22
𝑤 𝑝22

𝑤 ] 

where 𝑝𝑖𝑖
𝑤 = Pr(𝑠𝑡

𝑤 = 𝑖|𝑠𝑡−1
𝑤 = 𝑖). The first order condition for wage choice is given by: 

∑(𝛽𝜃𝑤(𝑠𝑡
𝑤))

𝑠
∞

𝑠=0

𝐸𝑡 {𝐿𝑡+𝑠
∗ [(1 + 𝜏𝑤)𝑀𝑈𝐿𝑡+𝑠

∗ − 𝜆𝑡+𝑠
𝑖

𝑊𝑡
∗

𝑃𝑡+𝑠
]} = 0 

According to this condition, wages are chosen in order to ensure that the ex-

pected stream of future marginal revenues is equal to the expected stream of future 

mark-ups over marginal costs, which are represented in this case by the marginal 

disutility of labor (𝑀𝑈𝐿𝑡), where both are weighed by the future expected labor de-

mand.  

The introduction of state-contingent securities causes each household to be ho-

mogenous with respect to income regardless of the results of the Calvo lottery. More-

over, the utility function is separable with respect to consumption and labor efforts, 
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and labor demand depends only on wages that are chosen by a household. Hence, we 

can limit ourselves to an investigation of symmetric equilibrium whereby all house-

holds that are able to set the wage optimally will select it at the same level.2 This 

property allows us to rewrite the aggregate nominal wage in the economy as: 

𝑊𝑡 = [𝜃𝑤(𝑠𝑡
𝑤)𝑊𝑡−1

−
1

𝜏𝑤 + (1 − 𝜃𝑤(𝑠𝑡
𝑤))(𝑊𝑡

∗)
−

1

𝜏𝑤]

−𝜏𝑤

 

In the remainder of this paper, we consider the equilibrium on labor and goods 

markets. In particular, we assume that the following conditions hold in every period: 

1

∆𝑝
∫ 𝑌𝑡

𝑗

1

0

𝑑𝑗 = 𝑌𝑡 

1

∆𝑤
∫ 𝐿𝑡

𝑖

1

0

𝑑𝑖 = 𝐿𝑡 

where ∆𝑝≡ ∫ (
𝑃𝑡

𝑗

𝑃𝑡
)

−
1+𝜏𝑝

𝜏𝑝1

0
𝑑𝑗 ≥ 1 and ∆𝑤≡ ∫ (

𝑊𝑡
𝑖

𝑊𝑡
)

−
1+𝜏𝑤

𝜏𝑤1

0
𝑑𝑖 ≥ 1 measure the price and 

wage dispersion, respectively, which in both cases are directly related to staggered 

wage and price mechanisms [see e.g., Yun, 1996, p. 355]. As we are interested in a 

closed economy model without capital accumulation, the aggregate demand equation 

is given by: 

𝑌𝑡 = 𝐶𝑡 

The model is closed by a monetary policy rule according to Taylor [1993] with in-

terest rate smoothing of the following form: 

𝑅𝑡

𝑅
= (

𝑅𝑡−1

𝑅
)

𝜌

((
𝜋𝑡

𝜋
)

𝜙𝜋

(
𝑌𝑡

𝑌
)

𝜙𝑌

)

1−𝜌

exp(𝜂𝑡
𝑅) ;                𝜂𝑡

𝑅~𝑖𝑖𝑑 𝑁(0; 𝜎𝑅
2)     

where 𝜌 ∈ (0; 1) is a smoothing parameter and where 𝜙𝜋 > 0 and 𝜙𝑌 > 0 measure 

interest rate reactions with respect to inflation and the output gap, respectively. While 

the Taylor principle holds in our model with time-invariant parameters, we do not 

assume that central bank reactions to inflation must be always greater than one, as we 

                                                      
2 State-contingent securities also ensure symmetric equilibrium. 
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are also interested in parameter vectors that allow for indeterminacy in one regime 

even when the linear rational expectations model solution exists and is unique. 

Estimated models 

The presented model allows us to consider five different specifications. In the first 

specification (CONSTANT), we assume that all parameters are time-invariant. This 

model is treated throughout our analysis as a benchmark specification. In the second 

specification (PRICES), we allow for Markov switching in the Calvo probability for 

prices 𝜃𝑝(𝑠𝑡
𝑝), assuming that parameter 𝜃𝑤(𝑠𝑡

𝑤) is time-invariant while estimating 

1 − 𝑝11
𝑝  and 1 − 𝑝22

𝑝  probabilities. The third specification (WAGES) introduces the 

Markov switching mechanism for the Calvo wages parameter, 𝜃𝑤(𝑠𝑡
𝑤), while impos-

ing the price stickiness as time-invariant. As a consequence, we estimate 1 − 𝑝11
𝑤  and 

1 − 𝑝22
𝑤  probabilities. In the fourth specification (SYNCHRONISED), we assume that 

both Calvo probabilities, namely 𝜃𝑝(𝑠𝑡
𝑝), 𝜃𝑤(𝑠𝑡

𝑤), are time-dependent according to the 

discrete first order Markov process while also assuming that both are governed by 

the same Markov chain. In this specification, we also estimate the transition probabili-

ties for a common chain. In our last specification (INDEPENDENT), we relax the as-

sumption on synchronized changes in price and wage rigidity and consider a model 

wherein both Calvo probabilities are governed by two independent Markov chains. 

In this specification, we also estimate the 1 − 𝑝11
𝑝 , 1 − 𝑝22

𝑝 , 1 − 𝑝11
𝑤 , and 1 − 𝑝22

𝑤  transi-

tion probabilities.3  

Data and methods 

Bayesian techniques are widely used to estimate DSGE models. These methods 

allow one to incorporate prior knowledge into statistical inferences while performing 

reliable model comparisons. The popular approach is based on state-space represen-

                                                      
3 We also account for switching of: policy parameters, shocks’ variances, and parameters governing 

persistence (corresponding results are shown in Appendix C). 
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tation of linear rational expectation model (LRE) solutions; the Kalman filter, which is 

used to evaluate the likelihood function; and the MCMC algorithm, which is used to 

find posterior distribution draws [see, among others, An, Schorfheide, 2007; Fernan-

dez-Villaverde, 2010; Guerron-Quintana, Nason, 2012]. 

 Introducing Markov switching causes the estimation procedure to become much 

more complicated than it is in the constant parameter case. This issue is twofold. First, 

Markov-switching linear rational expectation system solutions are much more com-

plicated, as agents must consider that existing regime can change in the future. More-

over, a rational equilibrium can be indeterminate in certain regimes, even if the solu-

tion of an entire system is unique [see Farmer, Waggoner, Zha, 2005]. As a conse-

quence, popular methods of solving LRE that have been introduced, among others, 

by Blanchard and Kahn [1980], Klein [2000] and Sims [2001] cannot be used. Second, 

likelihood must account for the fact that regimes can change in a sample. Hence, like-

lihood is dependent on possible state histories, causing the number of possible paths 

to grow exponentially.4 As a result, the Kalman filter is difficult to apply [see Blagov, 

2013; Alstadheim, Bjørnland, Maih, 2013]. 

Through our Bayesian estimations of MS-DSGE, we are interested in the vector of 

structural parameters, 𝛚, in the vector of transition probabilities, 𝛗, and in states of 

the system, 𝐒𝐓. These vectors are jointly estimated using the following Bayes theorem 

[see Schorfheide, 2005, p. 401]: 

p(𝛚, 𝛗, 𝐒𝐓|𝐘𝐓, Mi) =
p(𝐘𝐓|𝛚, 𝛗, 𝐒𝐓, Mi)p(𝐒𝐓|𝛗, Mi)p(𝛗, 𝛚, Mi)

p(𝐘𝐓, Mi)
 

where p(𝐘𝐓|𝛚, 𝛗, 𝐒𝐓, Mi) is the likelihood function of model Mi, p(𝐒𝐓|𝛗, Mi) denotes 

the prior distribution of the state, p(𝛗, 𝛚, Mi) is the prior for vectors of the structural 

parameters 𝛚, and state probabilities 𝛗 and p(𝐘𝐓, Mi) denotes the marginal data den-

sity, which is given by: 

                                                      
4 For example, if we consider a model with two possible states and evaluate likelihood function using 

10 observations, the number of possible paths is equal to 210. 
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p(𝐘𝐓, Mi) = ∫ p(𝐘𝐓|𝛚, 𝛗, 𝐒𝐓, Mi)p(𝐒𝐓|𝛗, Mi)p(𝛗, 𝛚, Mi) 𝑑(𝛚, 𝛗, 𝐒𝐓) 

Marginal data density measures the model fit to the data and one-step-ahead fore-

casting performance [An, Schorfheide, 2007, p. 144-147] and is used in our Bayesian 

model comparisons. It is defined as an integral over whole parameters and state spac-

es, and it averages particular likelihoods treating priors for state probabilities and 

structural parameters as weights. It is thus sensitive to the dimensionality of the pa-

rameter and state spaces, and it punishes the model with more parameters when pa-

rameters are empirically irrelevant. As a consequence, a more complex model should 

not necessary be evaluated as better than a simpler model [see Rabanal, 2007, p. 924-

925]. 

We estimate the models examined over several steps. In the first step, we log-

linearize equilibrium conditions around the deterministic steady state with a zero 

inflation rate.5 We consider the non-inflationary long-run equilibrium, as it ensures 

that steady state in our model is time- and state-independent even when Calvo prob-

abilities switch between particular regimes.6 As a consequence, the steady state does 

not depend on particular system states.7 In the second step, we apply perturbation 

method with first-order approximation in order to find the solution to the Markov-

switching linear rational expectation system. This solution allows us to find the tran-

sition equation for state space representation of the DSGE model. Next, we apply Kim 

and Nelson [1999] filter in order to evaluate the likelihood function. Finally, the 

MCMC algorithm with adaptation and delayed rejection is used to find draws from 

posterior distribution. Obtained draws are then used in order to obtain moments of 

marginal posterior distributions and to evaluate marginal data densities using the 

Modified Harmonic Mean Estimator (MHM) proposed by Geweke [1998].  

                                                      
5 The log-linear form of the EHL model is presented in Appendix A. 
6 It is worth noting that this approach excludes the possibility to analyze changes in inflation targeting 

and determines data filtering methods. 
7 It is theoretically interesting to consider a model with steady state depending on a particular system 

state. We omit this possibility, as the considered model is time-consuming to compute, even when we 

only consider a Markov chain with two states. 
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Bayesian estimation allows us to compare different model specifications. It is 

worth noting that the comparison results are consistent, even when the models com-

pared are misspecified or nonnested. Performed comparisons are based on the Poste-

rior Odds Ratio given by: 

𝑃𝑂𝑅𝑖,𝑗 =
p(Mi)

p(Mj)

p(𝐘𝐓, Mi)

p(𝐘𝐓, Mj)
 

where 
p(Mi)

p(Mj)
 is a prior odds ratio and where 

p(𝐘𝐓,Mi)

p(𝐘𝐓,Mj)
 is a Bayes factor. In evaluating a 

particular model, we apply Jeffreys’ rules [see Kass, Raftery, 1995]. Accordingly, we 

treat model Mi as favored by the data when the posterior odds ratio is greater than 

100. Moreover, a posterior odds ratio of less than 3 is interpreted as an insignificant 

difference between compared models. 

The models presented in the previous section are estimated using monthly data 

for the Polish economy for 1996:8 to 2015:6. Although most of the DSGE models are 

estimated using quarterly data, we prefer to use more frequently recorded data for 

two reasons. First, such data allow us to capture not only long- and medium-term 

regime changes but also short-term regime changes that cannot be found using quar-

terly data. Second, monthly data allow us to increase the number of observations, as 

DSGE model estimations for the Polish economy seem to suffer from a limited num-

ber of observations relative to similar studies on the U.S. economy or euro area. Our 

data set includes8 (i) monthly HICP inflation rate, (ii) industrial production volumes, 

(iii) money market interest rates (WIBOR 1M) and (iv) real wages. Before estimation, 

all of the series were filtered.  

All variables in the theoretical model are expressed as a percentage deviation 

from the steady state. Moreover, the theoretical model does not exhibit a balanced 

growth path or inflation in the long run equilibrium. As a consequence, all series 

                                                      
8 All data were collected from the Reuters DataStream database, 
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should be transformed prior to estimation.9 Our approach was conducted as follows. 

First, all series (with the exception of interest rates) were seasonally adjusted using 

TRAMO/SEATS. Second, we removed trends from the logs of real variables using a 

Hodrick-Prescott (HP) filter.10 Rather than excluding deterministic trends, the HP fil-

ter does not require explicit assumptions on the growth path of potential output. We 

also exclude the first order difference filter, as it causes observables to be much more 

volatile, thus potentially generating very frequent and biased estimates of regime 

changes (especially when using monthly data). Moreover, we decided to remove de-

terministic trends of nominal variables for 1996:8 to 2003:12. During this period, Po-

land underwent a disinflation process, and the inflation target gradually declined. 

These processes appear difficult to explain using a model with constant long-run in-

flation rate11, causing regime changes rare and biased. Finally, we demeaned all of the 

series.  

Priors 

Before carrying out estimations, it is necessary to specify prior distributions for 

estimated parameters. Smets and Wouters [2003] proposed to divide a vector of pa-

rameters into two groups. The first group includes these parameters, which are cali-

brated and treated as a constant in the estimation. The second group includes param-

eters that are estimated. We follow this approach and calibrate12 the discount factor, 

𝛽; the inverse of the labor supply elasticity, 𝛿𝑙; and household and firm monopolistic 

mark-ups denoted by 𝜏𝑤 and 𝜏𝑝, respectively. We use a value of 0.997 for the parame-

ter 𝛽, implying that the annual steady-state real interest rate is equal to 4%. This value 

appears to be consistent with previous quarterly DSGE model estimations for the 

                                                      
9 Means of transforming data are always a source of controversy. Interesting discussions on this issue 

are provided in Canova [2009] and Chiaie [2009], among others. 
10 When we apply the HP filter, we use 𝜆 = 129600 as proposed by Ravn and Uhlig [2002]. 
11 As noted above, we decided to analyze the model without considering steady state inflation rate as 

this allowed us to assume that long-run equilibrium is independent of regime switching mechanisms. 
12 Chosen parameters are the least important in the transmission mechanism on one hand and difficult 

to identify empirically in the DSGE model on the other. 
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Polish economy. For the 𝛿𝑙 parameter, we select a value of 1.25, which lies between 

micro- and macro-evidence [see Peterman, 2016]. The steady-state firm mark-up 𝜏𝑃 is 

set as 0.1, which is slightly above Hagemejer and Popowski’s [2014] estimated value. 

The same value was selected for the 𝜏𝑤 parameter. Both imply that the elasticities of 

labor and good demand are equal to 11.  

The rest of the parameters were estimated. Our prior distribution selections are 

presented in Table 1. It is worth noting that chosen priors are the same for both re-

gimes. Hence, we do not impose any ex ante restrictions, allowing us to identify two 

different regimes. Moreover, chosen priors seem to be rather diffuse in comparison to 

priors used in previous studies. 

 
Table 1. Prior distributions.  

Parameter Symbol Support Distribution Mean S.D. 

Calvo probability for prices 𝜃𝑃(𝑠𝑡
𝑝

) [0; 1] Beta 0.5 0.2 

Calvo probability for wages 𝜃𝑤(𝑠𝑡
𝑤) [0; 1] Beta 0.5 0.2 

Relative risk aversion 𝛿𝐶 ℝ+ Normal 4 1.5 

Monetary policy reaction to inflation 𝜙𝜋 ℝ+ Normal 1.5 0.25 

Monetary policy reaction to output 𝜙𝑌 ℝ+ Normal 0.042 0.02 

Interest rate smoothing 𝜌 [0; 1] Beta 0.5 0.254 

Technological shock persistence 𝜌𝑎 [0; 1] Beta 0.5 0.254 

Preference shock persistence 𝜌𝑏 [0; 1] Beta 0.5 0.254 

Labor supply shock persistence 𝜌𝑙 [0; 1] Beta 0.5 0.254 

Technological shock variance σa
2 ℝ+ Inverse Gamma 0.0174* − 

Preference shock variance σb
2  ℝ+ Inverse Gamma 0.0174* − 

Labor supply shock variance σl
2 ℝ+ Inverse Gamma 0.0174* − 

Monetary policy shock variance σR
2  ℝ+ Inverse Gamma 0.0174* − 

Transition probability for prices 1 − 𝑝11
𝑝  [0; 1] Beta 0.0452 0.0285 

Transition probability for prices 1 − 𝑝22
𝑝  [0; 1] Beta 0.0452 0.0285 

Transition probability for wages 1 − 𝑝11
𝑤  [0; 1] Beta 0.0452 0.0285 

Transition probability for wages 1 − 𝑝22
𝑤  [0; 1] Beta 0.0452 0.0285 

* - distribution modes. 
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To reflect the theoretical restrictions, we impose a beta distribution for all param-

eters contained in the interval [0; 1]. For price and wage stickiness parameters, we set 

the mean value to 0.5 and the standard deviation to 0.2. For the other structural pa-

rameters (𝜌, 𝜌𝑎, 𝜌𝑏 and 𝜌𝑙), we use a slightly looser prior, as we are using more fre-

quently recorded data than are typically used. The priors of the transition probabili-

ties imply an average duration (90% HPD) of between 10 and 100 months. For the 

monetary policy reaction parameters, we choose a normal distribution with means 

comparable to Taylor’s [1993] initial calibration. Chosen priors do not restrict the pa-

rameter space to those values that ensure equilibrium determinacy. We do this to re-

flect the fact that for the MS-DSGE model, indeterminacy can be achieved in some 

regimes, even when a system is unique overall. For all of the shock variances, we use 

an inverse gamma distribution in line with the existing literature.  

Results 

This section presents the results of the Bayesian estimation models considered. 

We begin with a short description of the posterior estimates with an emphasis on dif-

ferences between the particular regimes. We then identify regimes using smoothed 

probabilities and perform Bayesian model comparisons to determine the empirical 

importance of Markov-switching for the Polish economy. Finally, we analyze the dif-

ferences between impulse response functions that can occur when we assume that 

parameters governing nominal rigidities are time-dependent. 

All of the results presented in this section are based on an MCMC algorithm with 

2 chains with 400,000 draws each and where the last 200,000 draws are used to find 

posterior distributions for each model. We use the RISE package for this task. 

Marginal posteriors for the estimated parameters are presented in Table 2.13 We 

focus on the posterior mean and on a 90% HPD. Overall, the posteriors are far more 

                                                      
13 A graphical comparison between the priors and posteriors is presented in Appendix B. 
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concentrated than the priors, confirming that most of the parameters were strongly 

affected by the data during the estimation. The exceptions were parameters 𝛿𝑐, 𝜙𝜋 

and 𝜙𝑌. However, the posteriors obtained for these parameters seem to be compara-

ble to those of previous results for the Polish economy [see, among others: Kolasa, 

2008; Kuchta, 2014], especially considering the fact that we used more frequently rec-

orded data than are typically used. Moreover, most of “non-switching” parameters 

do not vary considerably across particular models, even if we assume that the param-

eters governing nominal rigidities were time-dependent. This implies a substantial 

degree of interest rate smoothing, moderate monetary policy reaction to output gap 

and limited reaction to inflation.  
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Table 2. Posterior statistics across the models (means and 90% HPD in parentheses)  

  
INDEPEND-

ENT 

SYNCHRO-

NISED 
PRICES WAGES CONSTANT 

𝜃𝑃(𝑠𝑡
𝑝

= 1) 
0.904 

[0.884  0.923]   

0.903 

[0.881  0.923] 

0.912 

[0.894  0.929] 0.936 

[0.924  0.947] 

0.938 

[0.928  0.948] 
𝜃𝑃(𝑠𝑡

𝑝
= 2) 

0.942 

[0.933  0.952] 

0.940 

[0.929  0.950] 

0.946 

[0.937  0.955] 

𝜃𝑤(𝑠𝑡
𝑤 = 1) 

0.752 

[0.692  0.806] 

0.773 

[0.730  0.814] 0.860 

[0.841  0.877] 

0.773 

[0.724  0.816] 0.865 

[0.849  0.878] 
𝜃𝑤(𝑠𝑡

𝑤 = 2) 
0.872 

[0.849  0.894] 

0.873 

[0.850  0.895] 

0.880 

[0.859  0.900] 

𝛿𝐶 
6.267 

[4.862  7.736] 

6.184 

[4.769  7.648] 

5.975 

[4.596  7.394] 

6.286 

[4.860  7.762] 

6.085 

[4.676  7.544] 

𝜙𝜋 
1.421 

[1.141  1.709] 

1.418 

[1.128  1.718] 

1.394 

[1.119  1.678] 

1.382 

[1.112  1.664] 

1.375 

[1.095  1.666] 

𝜙𝑌 
0.069 

[0.045  0.093] 

0.068 

[0.045  0.092] 

0.071 

[0.047  0.095] 

0.067 

[0.044  0.091] 

0.069 

[0.046  0.093] 

𝜌 
0.971 

[0.964  0.977] 

0.971 

[0.964  0.977] 

0.970 

[0.963  0.977] 

0.970 

[0.963  0.976] 

0.969 

[0.962  0.975] 

𝜌𝑎 
0.569 

[0.485  0.650] 

0.516 

[0.431  0.601] 

0.555 

[0.472  0.637] 

0.437 

[0.354  0.522] 

0.434 

[0.356  0.511] 

𝜌𝑏 
0.841 

[0.800  0.880] 

0.836 

[0.795  0.875] 

0.830 

[0.789  0.870] 

0.862 

[0.819  0.903] 

0.846 

[0.803  0.888] 

𝜌𝑙 
0.015 

[0.003  0.032] 

0.016 

[0.003  0.032] 

0.016 

[0.003  0.033] 

0.017 

[0.003  0.036] 

0.016 

[0.003  0.034] 

𝜎𝑎
2 

0.215 

[0.141  0.300] 

0.240 

[0.153  0.348] 

0.250 

[0.166  0.346] 

0.350 

[0.224  0.505] 

0.373 

[0.255  0.505] 

𝜎𝑏
2 

0.138 

[0.109  0.169] 

0.136 

[0.106  0.167] 

0.131 

[0.103  0.161] 

0.139 

[0.110  0.170] 

0.134 

[0.105  0.164] 

𝜎𝑙
2 

5.652 

[3.805  7.797] 

5.389 

[3.628  7.460] 

7.541 

[5.643  9.357] 

6.317 

[4.335  8.514] 

7.991 

[6.303  9.571] 

100𝜎𝑅
2 

0.0885 

[0.088  0.089] 

0.0885 

[0.088  0.089] 

0.0885 

[0.088  0.089] 

0.0885 

[0.088  0.089] 

0.0885 

[0.088  0.089] 

1 − 𝑝11
𝑝  

0.073 

[0.034  0.119] 0.068 

[0.043  0.095] 

0.040 

[0.019  0.063] 
N.A. N.A. 

1 − 𝑝11
𝑤  

0.126 

 [0.077  0.179] 
N.A. 

0.124 

 [0.075 0.178] 
N.A. 

1 − 𝑝22
𝑝  

0.039 

[0.020  0.060] 0.158 

[0.104  0.215] 

0.068 

[0.031  0.112] 
N.A. N.A. 

1 − 𝑝22
𝑤  

0.043 

 [0.023  0.066] 
N.A. 

0.045 

[0.025  0.067] 
N.A. 
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We identify two different regimes: (i) one with high price and wage rigidities and 

(ii) one with low price and wage rigidities.14 For the high rigidity regime, the average 

price duration was evaluated for a period of between 15 and 21 months when two 

independent Markov chains were considered (INDEPENDENT) and for a period of 

between 14 and 20 months15 when only one Markov chain was introduced for both 

rigidities (SYNCHRONISED). For the low rigidity regime, these intervals were esti-

mated for values recorded within periods of 9 and 13 months and 8 and 13 months, 

respectively. Similar results were obtained when wage rigidity was assumed to be 

time-invariant.  

We found wage rigidities to be lower than price rigidities in all of the estimated 

models, even when we assumed price and/or wage stickiness to be time-dependent. 

However, this may be somewhat counterintuitive, similar result holds for a variety of 

DSGE models when constant returns to scale are considered [see Smets, Wouters, 

2003]. In the model with two independent Markov chains, wage rigidity was evaluat-

ed for a period of between 3 and 5 months for the low rigidity regime and for a peri-

od of between 7 and 9 months for the high rigidity regime. These results do not 

change substantially when we introduce only one Markov process that governs both 

rigidities and when we assume that price rigidity is time-invariant. 

In contrast to these results, the model with fixed parameters identifies only high 

levels of rigidity for both wage and price stickiness. Our estimates suggest that the 

average durations were evaluated for a period of between 14 and 19 months in the 

case of prices and for a period of between 7 and 8 months in the case of wages.  

By introducing switching between the regimes, we were able to identify low ri-

gidity regimes that cannot be observed in a constant-parameters model. Figure 1 pre-

                                                      
14 It is worth noting that we identify both regimes using the same priors which means that we do not 

impose any ex ante restrictions. 
15 It should be stressed that four different regimes were included in the INDEPENDENT model, as we 

used two independent Markov chains. 
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sents the smoothed probability of the Polish economy remaining in a higher price or 

wage rigidity regime from 1996:8 to 2015:8. The presented values were evaluated us-

ing two independent Markov chains, with one assigned to each form of rigidity.  

 
Figure 1. Estimated probability of higher nominal rigidity regimes (i.e., 𝑠𝑡

𝑤 = 2 and 𝑠𝑡
𝑝

= 2): 

 

 
 

The probabilities shown in Figure 1 allow us to highlight several results that seem 

to be fairly intuitive, especially for prices. First, lower price rigidity degree were 

found to be more probable at the beginning of the sample, when Poland experienced 

a high inflation period (before 2002). Second, throughout the historically low inflation 

period in Poland occurring after 2004 (and through deflation since the mid-2014), the 

high price rigidity regime has dominated. This result seems reasonable, as during 

high inflation periods, non-adjusting price is more costly, for example due to changes 

in relative prices. More frequent price adjustments (i.e. lower price rigidity) is also 

consistent with a wide variety of models based on the menu cost approach. Third, 

short-lived switching from higher to lower price rigidity degree occurred at almost 
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the same time as two significant institutional changes: May 2004, when Poland joined 

European Union, and January 2011, when VAT rates increased.16  

In contrast to the price stickiness results, the high wage rigidity regime seems to 

dominate the sample. Exceptions include the period of 1999 – 2000, when lower wage 

rigidities were more probable that higher wage rigidities. For the rest of the sample, 

only short-lived switches are observable. Smoothed probabilities seem to be less pre-

dictable than those of high price rigidity regime. One may expect that during high 

inflation periods, nominal wages change more often than they do during low infla-

tion periods, as real wages decrease faster. However, our results can be justified as 

follows. First, our estimates suggest that real wages in the regime of low wage rigidi-

ty are rather flexible, as the average duration is no longer than half a year. Second, 

during high inflation periods, unemployment rates were higher than 10%, potentially 

alleviating pressures to increase wages even when inflation rates were high.17  

 

Table 3. Bayesian model comparisons (MHM logarithm of marginal data density)18 

 log MDD Posterior Odds Ratio* Posterior Odds Ratio** 

INDEPENDENT  −558.30 1.025 ∗ 1023 102 

SYNCHRONISED −562.92 1.005 ∗ 1021 1 

PRICES −599.25 1.680 ∗ 105 1.672 ∗ 10−16 

WAGES −570.44 5.465 ∗ 1017 5.440 ∗ 10−4 

CONSTANT −611.28 1 9.953 ∗ 10−22 

*,** Posterior Odds Ratios were evaluated by treating model Mj as CONSTANT and SYNCHRONISED. 

 

Next, we evaluate the empirical importance of introducing Markov-switching for 

prices and wages by conducting Bayesian model comparisons.19 The results are pre-

sented in table 3. The posterior odds ratios strongly support models with Markov-

switching when they are compared to a model with time-invariant parameters. 

                                                      
16 Note that during Poland’s accession to the European Union, Polish VAT rates also changed substan-

tially. 
17 Similar explanations can be given for the entire period. For example, we do not find strong evidence 

of low wage rigidity regime from mid-2002 to the end of 2004. During this period, unemployment rates 

were higher than 18%. 
18 Applying Laplace approximations did not change the model’s rank. 
19 In Appendix C, we present the results of our Bayesian model comparisons, when taking into account 

regime changes in monetary policy rule, structural shock persistence and shock volatility. 
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Moreover, the models with Markov-switching for both rigidities are strongly favored 

by the data over model PRICES or WAGES. However, the empirical difference be-

tween the model with one chain (SYNCHRONISED) and that with two independent 

chains (INDEPENDENT) is small but sufficient, whereas the difference between 

PRICES and WAGES is extremely significant,20 and the model with wage switching is 

favored. 

Finally, we determine how the economy reacts to disturbances when we allow for 

price and wage rigidity switching. In particular, we compare impulse response func-

tions obtained from the model with time-invariant parameters (denoted in Figures 2 

and 3 as a solid black line with asterisks) with those that can be obtained from the 

INDEPENDENT model. Figure 2 presents the impulse response functions for observ-

ables in the case of technological shock. The dynamics of this model is determined by 

four different regimes: i) low price and wage rigidity regime denoted as solid gray 

lines, ii) low price and high wage rigidity regime denoted by dashed gray lines, iii) 

high price and low wage rigidity regime denoted by dashed black lines, and iv) high 

price and wage rigidity regime denoted by solid black lines. All of these impulse re-

sponse functions were computed from posterior distribution means, which are shown 

in Table 1. 

 

                                                      
20 The posterior odds ratio is equal to 3.25 ∗ 1012 and favors model WAGES with respect to PRICES. 
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Figure 2. Impulse response functions for observables – technological shock 

 

Solid gray lines denote low price and wage rigidity regime, dashed gray lines denote low price rigidity and high wage rigidity 

regime, black dashed lines denote high price rigidity and low wage rigidity regime, black solid lines denote high price and wage 

rigidity regime, and black lines with asterisks denote model with constant parameters. 

 

The appearance of positive technological shock increases output and marginal 

product of labor. Moreover, changes in technology and real wage affect real marginal 

cost and encourage a decline in prices. In turn, inflation rate declines. As interest rate 

is set according to the Taylor rule, it also falls. Marginal product of labor increase al-

lows for changes in real wages. However, reaction sign is regime-dependent and im-

plies that real wage may fall when prices are sticky and wages are relatively flexible.21  

Introducing time-dependent price and wage stickiness substantially increases 

response magnitudes. While high price rigidity regimes (denoted by black lines) ap-

pear to be comparable to constant-parameter models (denoted by a line with aster-

isks), accounting for low price rigidity regimes causes economy to react more strong-

ly to aggregate supply disturbances. Moreover, reaction magnitudes do not depend 

heavily on wage stickiness, though real wage reactions are an exception. 

                                                      
21 This result can be justified as follows. When prices are sticky, very few firms can reoptimize their 

prices while the rest remain unchanged, but all labor units become more productive. Hence, the de-

mand for goods produced by firms that cannot optimize declines and as a consequence, labor demand 

also falls, decreasing real wage, even when positive technological shock is observable in the economy.  
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Figure 3. Impulse response functions for observables – monetary policy shock 

 

Solid gray lines denote low price and wage rigidity regime, dashed gray lines denote low price rigidity and high wage rigidity 

regime, black dashed lines denote high price rigidity and low wage rigidity regime, black solid lines denote high price and wage 

rigidity regime, and black lines with asterisks denote model with constant parameters. 

 

Figure 3 presents impulse response functions for the observables in the case of 

monetary policy shock. The appearance of monetary policy shock increases interest 

rate and causes output and real wage to fall as a result of decreased aggregate de-

mand. In turn, inflation also falls. Interest rate and output responses are comparable 

between particular models, and notable differences are observed in the case of infla-

tion and real wages. Our results seem to be fairly intuitive and suggest that the most 

severe inflation reactions occur during regimes characterized by more flexible wages 

and prices. Both  whereas regimes with high degree of nominal rigidity are similar to 

model with constant parameters. Similarly, the strongest reactions of wages are ob-

served in the regimes with the low wage rigidity. These results suggest that the econ-

omy reacts more strongly on monetary policy shocks during regimes characterized by 

low wage rigidities. Moreover, in contrast to technological shock, response magni-

tudes seem to be governed by wage stickiness switches, whereas changes in price 

stickiness appear to be rather unimportant.   
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Conclusions 

In this paper, we examined changes in the degree of nominal rigidity in Poland. 

Using monthly data for 1996-2015, we estimated a set of sticky price and wage models 

while allowing for Markov switching in Calvo price and/or wage stickiness parame-

ters. We compared four variants (varying in terms of switching parameters) to the 

model without regime changes (which was treated as a benchmark). Our findings are 

as follows.  

First, the data reveal two regimes and strongly prefer models with switching de-

grees of both price and wage rigidity. The model with two independent Markov 

chains that govern price and wage rigidity is preferred than the model with synchro-

nized price and wage rigidity changes. 

Second, the timing of the estimated rigidity changes is fairly intuitive. The model 

identifies a low price stickiness regime during the transition period when inflation 

rates were rather high, which is consistent with the menu cost interpretation. The 

model also switches in May 2004 when Poland joined the European Union and in 

January 2011 when VAT rates increased. However, we do not find similar results in 

the case of wages, potentially due to high unemployment rates occurring during the 

transition period. Surprisingly, we do not find significant changes in either regime 

during the last financial crisis. 

Third, our comparison of impulse response functions shows that during periods 

of low rigidity, the economy reacts more strongly to structural shocks. The magni-

tudes of responses to technological shock are largely driven by changes in price stick-

iness, whereas wage stickiness switches are rather unimportant. In contrast to the ef-

fects of technological shock, we find that the economy reacts more strongly to mone-

tary policy shock during low wage rigidity regimes, and the magnitudes of responses 

are largely driven by changes in wage stickiness. 

 



26 

 

Literature 

1. Alstadheim, R., Bjørnland, H.C., & Maih, J. (2013). Do central banks respond to 

exchange rate movements? A Markov-switching structural investigation. Norges 

Bank Research Working Paper, 24. 

2. An, S., & Schorfheide, F. (2007). Bayesian analysis of DSGE models. Econometric 

reviews, 26(2-4), 113-172.  

3. Baele, L., Bekaert, G., Cho, S., Inghelbrecht, K., & Moreno, A. (2015). Macroeco-

nomic regimes. Journal of Monetary Economics, 70, 51-71. 

4. Berradi N., Gautier E., & Bihan H. (2015). More Facts about Prices: France Before 

and During the Great Recession. Journal of Money, Credit and Banking, 47(8), 1465–

1502. 

5. Bianchi, F. (2012). Regime switches, agents' beliefs, and post-world war ii us mac-

roeconomic dynamics. The Review of Economic Studies, rds032. 

6. Blagov, B. (2013). Financial Crises and Time-Varying Risk Premia in a Small Open 

Economy: A Markov-Switching DSGE Model for Estonia. Eesti Pank. Working Pa-

per Series, 8/2013.  

7. Blanchard, O.J., & Kahn, Ch.M. (1980). The Solution of Linear Difference Models 

under Rational Expectations. Econometrica, 48(5), 1305-1312.  

8. Calvo, G.A. (1983). Staggered Prices in a Utility-Maximizing Framework, Journal 

of Monetary Economics, 12, 383-398. 

9. Canova, F. (2009). Bridging cyclical DSGE models and the raw data. manuscript  

10. Chakraborty R., Dobson P.W., Seaton J., Waterson M. (2015), Pricing in inflation-

ary times: The penny drops, Journal of Monetary Economics, 76, 71-86.  

11. Chiaie, S.D. (2009). The sensitivity of DSGE models’ results to data detrending. 

Working Paper, 157, Oesterreichische Nationalbank. 

12. Chortareas, G., Magonis, G., & Panagiotidis, T. (2012). The asymmetry of the New 

Keynesian Phillips Curve in the euro-area. Economics Letters, 114(2), 161-163.  

13. Davig, T., & Doh, T. (2008). Monetary Policy Regime Shifts and Inflation Persis-

tence. Research Working Papers, 08-16, The Federal Reserve Bank of Kansas City, 

Economic Research Department.  

14. Dixit, A.K., & Stiglitz, J.E. (1977). Monopolistic competition and optimum product 

diversity. The American Economic Review, 297-308.  

15. Eo, Y. (2009). Bayesian analysis of DSGE models with regime switching. Available 

at SSRN 1304623. 

16. Erceg, C. J., Henderson, D. W., & Levin, A. T. (2000). Optimal monetary policy 

with staggered wage and price contracts. Journal of Monetary Economics, 46(2), 281-

313. 

17. Farmer, R.E.A, Waggoner, D.F., & Zha, T. (2005). Understanding Markov-

switching rational expectations models, Journal of Economic Theory, 144, 1849-1867. 

18. Fernandez-Villaverde, J. (2010). The econometrics of DSGE models. SERIEs Jour-

nal of the Spanish Economic Association, 1, 3-49.  



27 

 

19. Geweke, J. (1998). Using Simulation Methods for Bayesian Econometric Models: 

Inference, Development, and Communication. Research Department Staff Report, 

249, Federal Reserve Bank of Minneapolis. 

20. Guerrón-Quintana, P.A., & Nason, J.M. (2012). Bayesian Estimation of DSGE 

Models. Working Paper, 12-4, Research Department, Federal Reserve Bank of Phil-

adelphia. 

21. Hagemejer, J., & Popowski, P. (2014). The distribution of monopolistic markups 

in the Polish economy. Eastern European Economics, 52(6), 3-31. 

22. Kass, R.E., & Raftery, A.E. (1995). Bayes Factors. Journal of the American Statistical 

Association, 90 (430), 773-795. 

23. Kim, Ch-J., & Nelson, Ch.R. (1999). Has the U.S. Economy Become More Stable? A 

Bayesian Approach Based on a Markov-Switching Model of the Business Cycle. 

The Review of Economics and Statistics, 81 (4), 608-616.  

24. Kolasa, M. (2009).  Structural heterogeneity or asymmetric shocks? Poland and 

the euro are through the lens of a two-country DSGE model. Economic Modelling, 

26, 1245-1269. 

25. Klein, P. (2000). Using the generalized Schur form to solve a multivariate linear 

rational expectations model. Journal of Economic Dynamic & Control, 24, 1405-1423.  

26. Krajewski, P. (2014). Comparison of Nominal and Real Rigidities: Fiscal Policy 

Perspective. Comparative Economic Research, 17(1), 61-76. 

27. Kuchta, Z. (2014). Nominal wage rigidities in small-scale DSGE models: An em-

pirical analysis for the Polish economy [in Polish: Sztywność płac nominalnych w 

modelach DSGE małej skali. Analiza empiryczna dla Polski]. Gospodarka Narodo-

wa, (6), 31-56. 

28. Lee, J., & Nelson, C. R. (2007). Expectation horizon and the Phillips curve: The so-

lution to an empirical puzzle. Journal of Applied Econometrics, 22(1), 161-178. 

29. Lhuissier, S. & Zabelina, M. (2015). On the Structural Nature of Pricing Parame-

ters. Journal of Economic Dynamics & Control, 57, 77–95. 

30. Liu, P., & Mumtaz, H. (2011). Evolving macroeconomic dynamics in a small open 

economy: An estimated markov switching DSGE model for the UK. Journal of 

Money, Credit and Banking, 43(7), 1443-1474. 

31. Liu, Z., Waggoner, D. F., & Zha, T. (2011). Sources of macroeconomic fluctuations: 

A regime‐switching DSGE approach. Quantitative Economics, 2(2), 251-301. 

32. Macias, P. & Makarski K. (2013), Stylised facts on consumer prices in Poland [in 

Polish: Stylizowane fakty o cenach konsumenta w Polsce], NBP Working Papers, 

268. 

33. Peterman, W. (2016). Reconciling micro and macro estimates of the Frish labor 

supply elasticity. Economic Inquiry, 54(1), 100-120. 

34. Rabanal, P. & Rubio-Ramírez, J.F. (2005). Comparing New Keynesian models of 

the business cycle: A Bayesian approach. Journal of Monetary Economics, 52(6), 

1151-1166 



28 

 

35. Rabanal, P. (2007). Does inflation increase after a monetary policy tightening? An-

swers based on an estimated DSGE model. Journal of Economic Dynamics & Con-

trol, 31, 906-937. 

36. Rabanal, P., & Rubio-Ramírez, J.F. (2008). Comparing new Keynesian models in 

the Euro area: a Bayesian approach. Spanish Economic Review, 10(1), 23-40. 

37. Ravn, M.O., & Uhlig H. (2002). On Adjusting the Hodrick-Prescott Filter for the 

Frequency of Observations. The Review of Economics and Statistics, 84(2), 371-380. 

38. Schorfheide, F. (2005). Learning and monetary policy shifts, Review of Economics 

Dynamics, 8, 392-419. 

39. Sims, Ch.A. (2001). Solving Linear Rational Expectations Models. Computational 

Economics, 20, 1-20. 

40. Smets, F., & Wouters, R. (2003). An Estimated Dynamic Stochastic General Equi-

librium Model of the Euro Area. Journal of the European Economic Association, 1(5), 

1123-1175. 

41. Taylor, J.B. (1993). Discretion versus policy rules in practice. In Carnegie-Rochester 

conference series on public policy,39, December, 195-214. 

42. Vavra, J.S. (2014). Time-Varying Phillips Curves. National Bureau of Economic Re-

search Working Paper, 19790. 

43. Yun, T. (1996). Nominal price rigidity, money supply endogeneity, and business 

cycles. Journal of Monetary Economics, 37, 345-370. 

  



29 

 

Appendix A: 

This appendix presents a log-linear representation of the theoretical model. It is 

given by the following equations:  

�̂�𝑡 = 𝐸𝑡{�̂�𝑡+1} −
1

𝛿𝑐
𝐸𝑡{�̂�𝑡 − �̂�𝑡+1 + 𝜀�̂�+1

𝑏 − 𝜀�̂�
𝑏} 

�̂�𝑡 =
(1 − 𝜃𝑝(𝑠𝑡

𝑝)) (1 − 𝛽𝜃𝑝(𝑠𝑡
𝑝))

𝜃𝑝(𝑠𝑡
𝑝)

𝑟𝑚𝑐̂ 𝑡 + 𝛽𝐸𝑡{�̂�𝑡+1} 

�̂�𝑡 =
(1 − 𝜃𝑤(𝑠𝑡

𝑤))(1 − 𝛽𝜃𝑤(𝑠𝑡
𝑤))

𝜃𝑤(𝑠𝑡
𝑤)

𝑏𝑤𝜏𝑤

𝛿𝑙(1 + 𝜏𝑤) + 𝜏𝑤

𝑚𝑟𝑠̂ 𝑡 + 𝑏𝑤𝛽𝐸𝑡{�̂�𝑡+1 + �̂�𝑡+1} − 𝑏𝑤�̂�𝑡

+ 𝑏𝑤�̂�𝑡−1 

𝑟𝑚𝑐̂ 𝑡 = �̂�𝑡 − 𝜀�̂�
𝑎 

𝑚𝑟𝑠̂ 𝑡 = 𝜀�̂�
𝑙 + (𝛿𝑐 + 𝛿𝑙)�̂�𝑡 − 𝛿𝑙𝜀�̂�

𝑎 

�̂�𝑡 = 𝜌�̂�𝑡−1 + (1 − 𝜌)(𝜙𝜋�̂�𝑡 + 𝜙𝑌�̂�𝑡) + 𝜂𝑡
𝑅; 𝜂𝑡

𝑅~𝑖𝑖𝑑 𝑁(0, 𝜎𝑅
2) 

𝜀�̂�
𝑎 = 𝜌𝑎𝜀�̂�−1

𝑎 + 𝜂𝑡
𝑎;  𝜂𝑡

𝑎~𝑖𝑖𝑑 𝑁(0, 𝜎𝑎
2) 

𝜀�̂�
𝑏 = 𝜌𝑏𝜀�̂�−1

𝑏 + 𝜂𝑡
𝑏;  𝜂𝑡

𝑏~𝑖𝑖𝑑 𝑁(0, 𝜎𝑏
2) 

𝜀�̂�
𝑙 = 𝜌𝑙𝜀�̂�−1

𝑙 + 𝜂𝑡
𝑙 ;  𝜂𝑡

𝑙 ~𝑖𝑖𝑑 𝑁(0, 𝜎𝑙
2) 

where 𝑏𝑤 ≡
𝜃𝑤(𝑠𝑡

𝑤)[𝛿𝑙(1+𝜏𝑤)+𝜏𝑤]

𝛿𝑙(1+𝜏𝑤)+𝜏𝑤−(1−𝛽𝜃𝑤(𝑠𝑡
𝑤))(1−𝜃𝑤(𝑠𝑡

𝑤))𝛿𝑙(1+𝜏𝑤)+𝛽𝜃𝑤(𝑠𝑡
𝑤)

2
[𝛿𝑙(1+𝜏𝑤)+𝜏𝑤]

> 0 is a 

parameter, �̂�𝑡 is the output, �̂�𝑡 is the nominal interest rate, �̂�𝑡 denotes inflation, 𝑟𝑚𝑐̂ 𝑡 is 

the real marginal cost, 𝑚𝑟𝑠̂ 𝑡 is the marginal rate of substitution between consumption 

and labor, �̂�𝑡 is the real wage, 𝜀�̂�
𝑎 denotes technological shock, 𝜀�̂�

𝑏 denotes preference 

shock, 𝜀�̂�
𝑙 denotes labor supply shock, 𝜃𝑝(𝑠𝑡

𝑝) ∈ [0; 1] is the price stickiness parameter, 

𝑠𝑡
𝑝 = {1, 2} represents the discrete Markov chain for the price stickiness parameter, 

𝜃𝑤(𝑠𝑡
𝑤) ∈ [0; 1] is the wage stickiness parameter, 𝑠𝑡

𝑤 = {1, 2} represents the discrete 

Markov chain for the wage stickiness parameter, 𝛿𝑐 > 0 is the relative risk aversion 

parameter, 𝛿𝑙 > 0 is the inverse of labour supply elasticity, 𝛽 ∈ [0; 1] is the discount 

factor, 𝜏𝑤 > 0 is the wage mark-up, 𝐸𝑡 is the rational expectation operator and all var-

iables denoted by “^” represent the percentage deviation from a steady state defined 

for variable “𝑥𝑡” as: 

�̂�𝑡 = ln (
𝑥𝑡

�̅�
) 
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Appendix B: 

Figure B1. Prior and posterior marginal distributions (INDEPENDENT) 

(part 1: structural parameters) 

 
(part 2: shocks persistence and variance parameters) 
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(part 3: transition probabilities) 
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Appendix C:  

This appendix presents the result of Bayesian model comparison for a model with 

time-varying parameters of monetary policy rule (POLICY), shock’s persistence and 

interest rate smoothing (PERSISTENCE) and shock’s variances (VOLATILITY). The 

results provide additional support for the models with switching nominal rigidities 

(INDEPENDENT and SYNCHRONISED). 

 

Table C1. 

 log(MDD) Posterior Odds Ratio* Posterior Odds Ratio** 

INDEPENDENT  −558.30 1.025 ∗ 1023 102 

SYNCHRONISED −562.92 1.005 ∗ 1021 1 

POLICY −611.08 1.223 1.217 ∗ 10−21 

PERSISTENCE −598.68 2.974 ∗ 105 2.960 ∗ 10−16 

VOLATILITY −617.55 0.0019 1.882 ∗ 10−24 

CONSTANT −611.28 1 9.953 ∗ 10−22 
*,** Posterior Odds Ratios were evaluated by treating model Mj as CONSTANT and SYNCHRONISED. 
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Appendix D: 

This appendix presents the summary of estimations with more diffuse priors on Calvo 

parameters. More specifically we assumed prior distribution with 90% HPD ranging from 

0.0975 to  0.9025 (identical for price and wage rigidity, and for both regimes). The remaining 

prior distributions was set as in the baseline (see Table 1 and Priors section). In the Table D1 

posterior distribution for the parameters of interest are presented, while in the Table D2 – the 

Bayesian model comparison results. Overall, this sensitivity analysis show that posterior dis-

tribution was only little affected by change of the priors.  

 
Table D1. Posterior statistics across the models (Calvo parameters only; means and 90% 

HPD in parentheses) 

  INDEPENDENT SYNCHRONISED CONSTANT 

𝜃𝑃(𝑠𝑡
𝑝

= 1) 
0.909 

 [0.888 0.929] 

0.907 

[0.887  0.926] 
0.940 

[0.930  0.949] 

 
𝜃𝑃(𝑠𝑡

𝑝
= 2) 

0.945 

[0.935  0.955] 

0.942 

[0.931  0.952] 

𝜃𝑤(𝑠𝑡
𝑤 = 1) 

0.767 

[0.629  0.806] 

0.785 

[0.744  0.823] 0.870 

[0.857  0.880] 
𝜃𝑤(𝑠𝑡

𝑤 = 2) 
0.879 

[0.856 0.899] 

0.879 

[0.857  0.899] 

 

 

Table D2. Bayesian model comparisons (MHM logarithm of marginal data density) 

 log (MDD) Posterior Odds Ratio* Posterior Odds Ratio** 

SYNCHRONISED −559.80 7.862 ∗ 1021 1 

INDEPENDENT −554.98 6.349 ∗ 1023 123.8 

CONSTANT −610.00 1 1.575 ∗ 10−22 

*,** Posterior Odds Ratios were evaluated by treating model Mj as CONSTANT and SYNCHRONISED. 


