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A TWO-PHASE SAMPLING STRATEGY
FOR ESTIMATING MULTIPLE MEAN VALUES
IN THE PRESENCE OF NONRESPONSE

Abstract. ‘I'ne phenomenon of nonresponse in sample surveys usually results in biased
estimates of population characteristics. One of the means to deal with nonresponse is the
subsampling technique. It relies on re-contacting some subset of nonrespondents by using
more expensive and more efficient tools (e.g. direct interview) than those used in the first
attempt to collect data. This allows to increase response rate and to obtain unbiased estimates
of population characteristics. In this paper, the problem of establishing the sample and
subsample sizes minimizing the expected cost of the survey, while achieving desired precision
of multiple mean value estimates, is considered. An algorithm is proposed that allows to
establish the optimum initial sample and subsample sizes for two-phase sampling strategy.
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1. INTRODUCTION - TWO-PHASE SAMPLING

One of the measures taken to deal with nonresponse in surveys is the
callback technique. It relies on re-contacting nonrespondents and allows to
increase response rate and, under some conditions, to obtain unbiased
estimates of population characteristics. To reduce the survey cost, usually
only a small fraction of nonrespondents from the initial sample is questionned
in the next phases of the survey. |he subset of re-contacted nonrespondents
is called a subsample. Obviously, this technique is a special case of
multiphase sampling. In this paper a two-phase sampling strategy for
estimating multiple mean values of population characteristics is considered.
A deterministic nonresponse is assumed.

Let us assume that a population Q of the size N is divided into two
nonoverlaping strata iit and 02 whose sizes are equal to and N2
respectively. All the units belonging to stratum Qj would respond to all
the questions, if contacted. AIll the units from the stratum Q2 would not
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respond to any questionl Let us also denote: = NJN, W2-NJN . The
aim of the survey is to estimate mean values of k population characteristics.
In the first phase of the survey a simple random sample s of the size n is
drawn without replacement from the population i2, according to the
sampling design:

(1)

The sample s is partitioned into two disjoint sets and s2czfl2
of the sizes 0< nd < n and 0 < ntl < n respectively and uj2=s,.vn.s2= 0,
nd+ nd = 1 The sizes n§ and n,2 are random variables having the following
hypergeometrical ditribution function:

)

where:

max{0, n-iV2}"~ M, < min(M, Nt}

max{0, n-N”" < n2<min{n, N2}

All the sampling units from the set si would respond to questions
concerning all the characteristics, and all the sampling units from the set
s2 would not respond to any question. In the second phase of the survey
a subsample u of the size nuis drawn from among nj2 units of the set s2
with the probability of selection equal to:

(3)

It is assumed that all units in the sample u respond in the second
attempt of contact, so the data is collected for the nS+ nu units, and,
according to W. G. Cochran (1977), the following statistic is an unbiased
estimator of mean value of the i-th population characteristic:

1This kind of response mechanism is commonly called “unit nonresponse”



where:
Sij* - the mean of the characteristic under study in the set st,
xp - the mean of the characteristic under study in the subsample u.
For fixed n and n,2 the variance of the estimator described above is
given by expression2:

where:
Sf - the variance of the i-th characteristic in the population Q,
Si, - the variance of the i-th characteristic in the stratum 2.

Assume that the cost of observing all the population characteristics is
given by the expression:

K = COn+ Cln,t+ C2n, (6)
where:
CO - per-unit cost of making the first contact attempt.
C, - per-unit cost of processing data obtained during the first contact
attempt.

C2 - per-unit cost of getting and processing data from the second stratum.
The quantities nljf nS and nu are random variables, so we will consider
expected value of the cost given by expression3:

E(K) = COn + C1E (nJ + C2E(nu) (7)

2. SPECIAL CASE: LIMITED VARIANCE FOR SINGLE CHARACTERISTIC

Let us assume that desired precision VOi should be achieved for the i-th
population characteristic4. For fixed n and nSl, the minimum subsample size
needed to obtain variance F(x”) not exceeding FOi is given by:

1See eg. W. G. Cochran (1977) or C. E. Sarndal, B. Swensson, J Wretman
(1992) for a proof.

3 To simplify the notation, the symbol £(¢) is used to denote the expectation over both
sampling designs P, and P2, so it is equivalent to £, (£, (v)).

4 At this moment we assume, that variances of all other characteristics are not limited.
However all the characteristics are observed and the cost is still given by the expression (6).
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where:
NVol + Sf
= (9)
NS
Sf
1 -53” 0°)
yi(n) = nai-bi (11)
and initial sample size satisfies the condition:
NSf
n“n*, where n*= -2 (12)
N Vgl + Oj

For fixed n and n,r, the cost given by (6) grows with the subsamplc
size nu. Thus, given the variance limit \Oi, it is minimized, when subsample
size is established by using expression (8). Assuming that the subsamplc
size is given by (8), and that £(n,t) = nWx, the expected cost of achieving
the desired precision for the i-th characteristic is approximately5 equal to:

B A4, =/,(» - nCc+ ne,*, +— (13)

and it reaches minimum for initial sample size equal to:

"= n*(AN(«i-D +1) 04)
where:
5 Under assumption, that W2 is a sufficiently accurate estimate of nonrespondent fraction

(n /n) in the sample.



3. GENERAL CASE: LIMITED VARIANCES FOR ALL THE CHARACTERISTICS

For fixed n and nl2, the minimum subsample size needed to achieve
desired precision levels for all the k characteristics is equal to:

= max {nn} (17)
1.k

so it is equal to the quantity nuw, where j is the number of the characteris-
tic for which the expression y7(n) takes the minimum value. Hence the
result of the comparison of expressions y,(n) does not depend on nlr, we
may write

E(K) =/u)(n), where yAn) = min {y,(n)} (18)
1=1.k

The expected cost of estimating all the k characteristics is equal to the
expected cost of estimating this one characteristic, for which vy,(n) is
minimal. Let us formulate the problem of establishing initial sample size
n, minimizing the expected cost without violating the precision limits Voi for
all k characteristics. This can be expressed as:

(E(K) — min
mx~*XKoi for i=1, K (19)
2<n<N

10 solve the problem stated above, we determine intervals of the initial
sample size6 n, inside which yt(n) yields the minimum value for the same
characteristic. Hence yi(n) is a linear function of n, the bounds of intervals
can easily be established by finding the values of n, for which some of the
expressions y”n) are equal to each other. In each interval corresponding to
some y'-th characteristic we find the value nxJ minimizing the cost7, under
assumption that only the variance of this single characteristic is limited by
K, By comparing the values of minimum expected cost evaluated in each
interval we choose the optimum initial sample size, and the corresponding
value of expected cost E(K).

6 At this point we assume, that the initial sample size n is a real number, not an integer.

1 The optimum value is obtained by evaluating the expression (14). If the result of
evaluation falls outside the appropriate interval, it is assumed to be equal to the corresponding
bound of this interval because f U(n) is a convex function of n.



The optimum initial sample size may be evaluated according to the
algorithm presented below. The variables m0 and m, arc used to denote
lower and upper bound of current interval.

1. Assign the value n*,n to the variable mO.

2. Denote by the index j the characteristic for which the expression
Y|0ko) yields the minimum value. If there exists more than one characteristic
having this property, the one with minimal ai value should be chosen. The
characteristics for which y,(m0) > y,(mQ and a,>aj may be eliminated from
further considerations.

3. If all the characteristics except the y'-th one were eliminated, assume
ml =N and go to the step 5.

4. For each not eliminated characteristic evaluate the expression:

n, = (20)
ai—aj

Assume ml =minlnj. If mlI >N assume mi = N.
5. Evaluate the initial sample size nx minimizing the expected cost, under
assumption that only the variance of y-th characteristic is limited.

rix = nU = ] (w 2*E(0iJ- 1)+ 17 (21)

6. If nx<m0, assume nx —maO.
7. If nx>m1l assume nx —ml.

8. Evaluate minimum expected cost corresponding to nx, according to
expression:

NnxW 2S2IC2
BAo»,) - ,,(C.+C.NY+w V- - s-}j N~ sh w (22,

9. In the first iteration, store the values nx and E(K\nx) obtained in
steps 7-8. In the successive iterations, compare the cost evaluated in step
8 with previously stored value of cost and if it is greater, then store the
values nx and E(K\nx) obtained in steps 7-8.

10. Eliminate the i-th characteristic from further considerations. If all
the characteristics were eliminated, terminate execution: the stored values
of nx and £(K|nX constitute the solution. In other case assign the value
of ml to mO and go to the step 2.

The number of iterations to execute is not greater than the number
K characteristics under study. In every iteration the expression (20) is



evaluated in step 4 for each of not eliminated characteristics, so if we
assume, that evaluation of this expression is a dominating operation, the
computational complexity of the algorithm is of the order 0(k2).

4. EXAMPLE

In the population of size N = 100 000, values of 9 characteristics are
observed. Per-unit costs are CO= 0.1, Ct = 0.4, C2 = 4 respectively. Table 1
shows the variances Sf, Sh, the desired precisions VOI, and the minimum
initial sample sizes n* corresponding to each characteristic.

Table 1
Example data
Characteristic Sf s2 K, e
1 1 400 1 800 1 1 380.671
2 500 1 160 0.5 990.099
3 950 1 700 0.8 1 173.564
4 400 700 2 199.6008
5 1 450 1 550 1 1 429.276
6 3 000 1 800 2 1 477.833
7 1 000 1 340 1.2 826.4463
8 325 250 0.3 1 283.317
9 1 500 500 4 373.599

Table 2 shows the interval bounds mO and m,, evaluated in successive
iterations, optimum initial sample sizes for each iteration and corresponding
expected costs.

Table 2
Computation results
Iteration m0 m, "y E (K)
1 1 477.833 1 544.986 1 544986 2 603.747
2 1 544.986 1 729.56 1 729.56 2 443.612
3 1 729.56 2 512.186 2 167.548 2 382.019
4 2 512.186 3 129.657 2 512.186 2 403.948
5 3 129.657 100 000 3 129.657 2 568.449



The lowest value of cost E(K) = 2382.019 was achieved in the third
interval, for nx = 2167.548. As nx is not an integer, the result was rounded
to 2168. The expected cost for the rounded size is equal to 2382.020 so it
does not differ significantly from the cost obtained for not-rounded initial
sample size.
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Wojciech Gamrol

STRATEGIA LOSOWANIA DWUFAZOWEGO DLA ESTYMACJI WARTOSCI
PRZECIETNEJ WIELU CECH W OBECNOSCI BRAKOW ODPOWIEDZI

W badaniach statystycznych wystepuje czesto zjawisko nieuzyskania danych od czesci
badanych jednostek. Prowadzi to do obcigzenia ocen badanego parametru populacji. Jedng
z technik stosowanych dla przeciwdziatania temu zjawisku jest ponawianie badania (ang.
callback) w grupie jednostek populacji, od ktérych nie uzyskano danych. Czesto spotykanym
rozwigzaniem, umozliwiajagcym ograniczenie kosztu badania jest wylosowanie jedynie pewnego
podzbioru tych jednostek w celu ponowienia préby kontaktu. W niniejszym artykule rozwazono
strategie polegajacg na jednokrotnym ponowieniu badania, dla jednoczesnej estymacji wartosci
przecietnych wielu cech w populacji. Zaproponowano algorytm iteracyjny umozliwiajacy
ustalenie optymalnej liczebnosci préby i podproby, cechujacy sie wielomianowg ztozonoscia
obliczeniowsg.



