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ABSTRACT. There are many methods o f construction o f multivariate normality 
tests. The current review o f the literature proves that there are at least 60 procedures of 
verification o f the hypothesis about multivariate normality o f variable and random dis­
tributions. We can indicate a few factors which prove an analysis o f this class’s tests 
ascd on skewness and kurtosis measures. It is easy to notice that these tests application 

contributes also a better multivariate analysis o f the considered variable.
I he paper presents results o f power tests based on analytic deliberations and Monte 

Carlo methods.
Key words: tests for multivariate normality, power o f tests, quantiles o f distribu­

tions o f tests statistics.

I. INTRODUCTORY REMARKS

Tests which make use o f multivariate measures o f skewness and flatness 
constitute an important category of tests for multivariate normality. This ap­
proach complements earlier studies based on skewness and flatness coefficients 
and assessing normality of uniform distributions. A characteristics of these tests 
together with tables o f quantiles of test functions can be found in the study of 
Snedecor and Cochran (1989).

The fact that other distributions may have the same value is the main disad­
vantage o f testing univariate normality, in order to become convinced whether 
skewness and flatness are equal to values taken by these parameters for normal
distribution.

For instance, every symmetric distribution not only for variable of normal dis­
tribution, will have skewness coefficient equal to zero. Therefore, testing of univari­
ate normality is dominated by such tests as Kolmogorov-Smimov test or, particu- 
аг1У. by Shapiro-Wilk test. This fact has not hampered, however, the development
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of multivariate skewness and flatness measures and their application for con­
structing tests for multivariate normality.

Mardia (1970) worked out a generalisation of skewness and flatness meas­
ures for multivariate distributions. The measures introduced by Mardia arc in­
variant.

A statistic from a sample for multivariate skewness is defined by the follow­
ing formula:

- у )]* . (1)n  /=I y=|L J

An analogous statistic from a sample for flatness takes the form:

(2)

Let us notice that both Mardia’s skewness and flatness coefficients are func­
tions of Mahalanobis squared distances. This fact causes that these measures, 
and particularly multivariate flatness measure, arc useful for detecting “sticking 
out” values. When compared to expected value of normal distribution, values of 
this coefficient indicate that one or more observations are characterised by 
a long Mahalanobis distance, and for that reason they are placed far from the 
intersection point of geometric solid set of observations.

II. HYPOTHESES ON MULTIVARIATE NORMALITY

Let X it...,X_„ be a set of n observablep-variate random vectors being inde­

pendent realisations of random vectors X_. Distribution of (P^ o f random vectors

X  is defined by a distribution function Gp(r ,9)  = Gp( x ) , x e R p where 9  is

a vector of parameters which belong to a given space. The distribution function 
^ p ( í )  т а У be unknown both as its form and its parameters are concerned. We

assume , however, that for every x g R p it is a continuous function.

Let us denote by ^  =  { ^ . Z J ^ e A ^ . Z e ^ Ą ^ O ,  

ß i p  = P(P + 2)}a family of p -\ariate non-singular normal distributions (normal



statistical space), where Д ;,апс1 A ,  are multivariate measures o f shape o f ran­

dom vectors X_ o f the following form, respectively :

& P = E { [  (3)

Ä , = ^ ( * - £ ) T ' ( * - £ ) ] 2} (4)

and they express multivariate asymmetrical kurtosis, where x  and x . are inde­
pendent and have identical distribution . The distrbution function and density of 
distributions from ÍA{  are denoted b y Fp(x;,j l L) and f p( x , £ , ľ . ) , x e R p . If

4.p  contains the known /± or Z then symbols 9{,p ( ^ 0) or 9^p ( I 0) denote 

that in 0\[p respective ц  = //(j or Z = L0 are known. We introduce some more 

denotations. The family of distributions from Д р * 0  and ß lp = p (p  + 2) is 

denoted by A b and similarly, the family of distributions from ß l p =0  and 

Pip * p ( p  + 2) by A2 , and finally, from ß ]p * 0  and ß 2p * p ( p  + 2) by A ,. 

The family of distributions which does not contain normal distributions is de­
noted by A, i.e. A=A i U  A 2u  A3, in the sense of the criteria studied in the arti­

cle. Exactly A is the set alternative distributions differed from normal distribu­
tion asymetry or flatness.

As we have at our disposal the observed set of vectors X_x,...,X_n we intend

to investigate the consistency of distribution functions Gp(x)  and F

’•e. we ask whether distribution function Gp(x)  can be assumed as identical

with F^ x- j u , ! . ) , or whether it belongs to the 9{p family , which is denoted as

'Pp e  9^ p .The assumption whose validity we want to prove on the basis of

multivariate sample X it. . . ,Xa > is expressed by a complex non-parametric zero
hypothesis:

H0:(Ppe9ip, 
against a complex alternative hypothesis:

Я , :Tp č  9ir  or Hx:Tp e A .



Hypothesis / / ,  can be denoted in the form o f the sum of 
/-/, = H\ i ^ / / | 2 and the problem posed above can be formulated in one
of the situations listed below:

a) H 0 :Pp e  7 i  H u : T p e A j  (the family of asymmetric distributions 

with kurtosis equal to multivariate normal kurtosis);
b) H 0 : Tp e  , Я 12: G A2 (the family of symmetric distributions with 

kurtosis different from normal);
c) H 0 :Tp g X. p , H ^ : T p e A y

III. TESTS OF MULTIVARIATE NORMALITY BASED 
ON SKEWNESS ( b l p ) AND FLATNESS ( b2p ) STATISTICS

Normal p-variate distribution has parameters of distribution shape i.e. skew­
ness Д ,  = о and flatness ß 2p = p ( p  + 2).

While investigating p-variate empirical distribution with the use of inde­
pendent observable random vectors X ......X„ we ask whether they come from
a multivariate population ß lp = 0  or Pip = p ( p  + 2) ,or simultaneously ß lp =0

and ß 2p= p ( p  + 2).

This leads us to define zero hypotheses which were already given in Section
2. Families of distributions A,, A2,A 3, for defining respective alternative distri­
butions , were also given in that section. Numerous statistical tests for verifying 
hypothesis H 0 : *Pp e  # p , against alternative hypotheses defined by a class of

distributions A ,,A 2 or A3 are based on statistics blp and b2p.

Let us distinguish here two types of tests i.e. direction tests and omnibus 
tests.

DEFINITION 1. Statistical tests for a given class of alternative distributions 
are called direction tests

DEFIN n ION 2. Statistical tests which are most powerful in a class of pos­
sible alternative distributions are called omnibus tests.

For verifying hypothesis H 0 : fPp e9(_p against H, : Pp e  A, or

^2 • ł p e  A 2 we aPP^y êsts of multivariate normality based on test statistics 

(test checks) being respective functions bip lub b2p. The applied direction tests 

will be most powerful for the class of distributions A| lub A 2. However, when



we analyse the alternative defined by a family of A3 distributions we make use 

of test statistics which are functions of bip and />2/) f°r omnibus tests. Omnibus

tests have such a property that they show simultaneously a departure of/j-variate 
empirical distribution from p-variatc distribution ß lp = 0  and ß 2p= p ( p  + 2).

Omnibus tests are recommended whenever we do not have any a priori informa­
tion on distribution specified with the use of alternative hypothesis.

Test statistics based on bip and 6^  have distributions known for large

л and based on limit theorems . Detailed distributions for small n are not known. 
LEMMA 1.
nb\p / 6 ~  X f  ar>d n - » oo, f = p(p + l)(p + 2)/6, when U ~ MN
Proof. Mardia ( 1970). See also Domański and Wagner (1984).
LEMMA 2.
(b2p - E ( b 2p) ) /D(b2p) ~  W(0,l)andn-*oo , when U ~ MN  

Proof. Mardia (1970, 1974).
The above lemmas arc used for constructing tests o f multivarate normality. 

As far as their application is concerned, tests of multivariate normality based on 
measures ftl;) and blp with respect to the above defined classes o f alternative

distributions, can be divided as follows:
A, -  tests M (, С i , L(Z)|p ), U(blp), W(blp) , Q \ ,

A j  -  tests M 2 , С 2 , U( Ajp), W(ft2/)), 0 2 ,

A 3 -  tests M 3 , C 3 , C 4 , S I , S 2n , S 2w , C 2n , C 2w , C 2r ,Q- 
We present tests o f multivariate normality and limit ourselves to providing 

forms of respective test statistics and their distributions. We make an assumption 
that U_ ~MN p . First we list:

(1) the author or authors, then, (2) test statistics, and finally (3) distribution 
of test statistics for « —> oo .

Tests for hypothesis H 0 ! against H, : P e  A,

(a) (1) Mardia (1970),
(2) M i = nb\p / 6,

(3) x~f (lemma 1);

(b) (1) Bera and John (1983)

(2) C 1= „ £ t ; 2/ 6,
/'=1



where
n

T <= S Y<y/ n ’ i = 1..... P
7=1

Y , = ( Y „ .... Y rf) ' = f ,/2(2y- i ) ,

(3 )  ; i f n  00

(c)(1) Mardia and Foster (1983),

(2) L( b{p)=y + Ö\n(b]p- ^ ) ,  when n->oo

where y,ô,** are parameters in the family of log-normal S , Johnson distribu- 
tians.

Following Kendall and Stuart (1963) we show the way o f determing y , ô , ^ . 

We make substitutions: / = (w 2 - l ) '  2 , w = e x p ( l /£ 2) and p = e x p ( - y  I S ) .  
Then we determine t from cubic equation using Cordano equations

f3 = 3/ — 2 f y [ 2 f  = 0 ,

and finally, we calculate w . From the above given formulas for parameters 
of b\p distribution we get:

E (bip y=w p  = 6  f i n  i D 2(bip) = p 2w2(w2—\) = 72 f  In  ,

what allows us, having the known w , to calculate p  .

Parameter is determined from the formula:

t  = E{b{p) -D{bXp)l t = 6 [ f - 2 f  11}/n.

With the known w  and p  we calculate ô and у;
(3) N ( 0,1);
(d) ( 1) Mardia and Foster (1983);

(2)U(bip) = (bl p - E ( b ip) ) /D(bip) = [bl p - 6 f / n ] / [ 6 ( 2 f / n 2)U2],
and n —> oo

(3) N (0,1);
(e)(1) Mardia and Foster (1983),



(2)W(blp) = [6(4n f 2bip /3 )1' 3 - 1 8 / + 4]/(2/ ) l/2 (Wilson-Hilferty approxi­

mation o f blp distribution).

(3) m i ) :
Tests for hypothesis H0 :Tp e  against H, :(Pp e  A2:

(0 (1 ) Mardia (1970),
(2) M 2 =(b2p- g ) 2 /(8g/ii), g = p ( p  + 2),

(3) *,2;
(g) (1) Bera and John (1983),

(2) C2 = п [ ^ Т и -  3)2 /24 + £ ( 7 ) ,  -  *)2 /4 1 >
/ж I 1 ii< i'ip

where

>1

i',i', = 1......p U * i '
7=1

and defined in (Л),

(3) j 2p(p + l) /2 ;
(h) ( 1) Mardia and Foster (1983),

(2) L/(i>2/)) =[/?2/, - g ( n - l ) / ( «  + l)]/(8g/«)'/2»

(3) N(0,1);
(0(1) Mardia and Foster (1983),
(2) W(b2p) = 3 (/j / 2)I/2{1 - 2 /g /i - (1  - 2 / g /j) /[ l + « (2 /( /i  - 4 ))|/2]}|/3 

where

/ ,  = 6 + 4[d + yld + d 2] and d  = np(p + 2) / 2(p  + 8)2 
and a = (b2p -  E(b2p) ) /D(b2p)) ,

(3) ^(0,1);
T ests for hypothesis H 0 : ‘Pp e  > against H j : e  A 3 :

(j) (1) Jarque and McKenzie (1982),
(2 ) M , = M , + M 2 ,

* [ ( p /6Xa»+IXp+2)+I]
(k)(l) Bera and John (1983),



(2) C3 =n{'fŕiTl1 /6  + ^ (7 ), — З)2/ 24},
/=i /-i

(3) х\р\
(1)(1) Вега and John (1983),
(2) С4 = C, + С2,

( 3 )  % р(р+3)/2 >

(m) (1) Mardia and Foster (1983)
(2 ) S 2Ĺ = L 2(bip) = U 2(b2p),

S 2N = U \ b lp) + U 2(b2p),

Sjy=fV2(blp) + fV2(b2p),

C l  =b'v~'b,

b  = (bl p - 6 f  / n ,  b2p - g ( n -  1)/(л + 1))’

72 f i n 1 12ph/n2

12p h / n 2 8 g / n

C 2w = c ' W ~ ' c .
с = (lV(blp), fV(b2p) ) \

1 v
W = r

u  l .

Y = Cov{W {b,p \

W(b2p) ) = 3 ( f t / 2)tl2(72f , y >12 - 4 0 /9 ( l - 2 /y j) / ( y j  - 4 )  + n ( l-2 /_ /j) ,/3/ 

3 ß ( i v ) [ 2 / ü i - 4 ) ] l,!C < > v (fv V  
C 2 = d'  D ' d

^  = ( J b ^ - E ( J b ^ ) ,  62/, - # ( "  -!)/(«  + !)),

v = h = 8p2 -13/7 + 23,

D = o ' K Cov(,/b

Cov(yJh\P,b2p) 8g/n

(3) S L , S j j , S w , C w , C l  ~ ^2;
(n)(l) Small (1980),

(2) ô i  =  Y ( |)£ /( ,jY b  with í* e  A j ,



0 2  -  Y.(2)£ /(2) w i t h  (Pp £  A 2 ,

Q  = 0.1 + 0 .2 , with <Pp e  A 3 ,

( З ) 0 , ~ л г ? ,  Q i - x l ’ Q ~ x l P
where

Y(1) = J, sinh"1 ( y fbJx^) / ^ , . . . , S{ s in ir1 ( у[Щхр) /А ,))',

1 (2) = Гг + <?2 sinh4  [(*2 (-v,) -  $ ) ' / л г ] .-.Г а + ^ in h " ' [ (^  (дс,) - ^ / А 7 ])';

У * ) - ( $ ) ,  t / (2) = (''«•). i.i = 1.....я ; i * ? ,  r„ = \,

where rlľ are rectilinear correlation coefficients from U. <5r, Л,, y t, are the

transformation parameters o f Johnson’s system z = у  + S g \ ----- - where S., y.
K v J

are shape parameters, £  is the location parameter and v is the range parameter

IV. EXAMINATION OF POWER OF TESTS

There are numerous tests for multivariate normality and as many rules of 
constructing test stastistics for them . Having such a variety o f tests to choose 
from it seems worthwhile to ask a few questions about them.

Which o f them are best in the sense of power? Which o f them have the 
Properties o f omnibus tests? Which are direction tests? And finally, which of 
them can be recommended for practical use?.

While seeking answers to all these questions it is best to refer to Monte 
Carlo simulation experiments. It is a well known fact that examinations o f power 
° f  multivariate normality tests based on skewness and flatness measures have 
heen conducted for almost forty years now.

The development o f tests for multivariate normality dates back to the year 
1968 when Wagle’s work entitled “Multivatiate Beta Distribution and a Test for 
Multivariate Normality“ was published.

The next stage in the development o f tests for multivariate normality is 
closely connected with Mardia and his works (1970, 1974, 1975, 1980). As it 
Was mentioned above he introduced the measure of multivariate asymmetry and 
^ rto s is  being the generalised measures of Pearson shape. Taking these meas- 
Ures as the basis, several tests for multivariate normality were constructed. Om-



nibus and direction tests using the above measures were developed in the works 
of: Mardia and Foster (1983), Bera and John (1983).

A different approach towards constructing tests for multivariate normality 
was adopted by Malkovich and Afifi (1973) who, making the use o f Roy’s union 
and intersection principle, gave measures o f shape for multivariate distributions, 
taking as a basis Cramer-Wold theorem. The mentioned above principle enabled 
to generalise tests for multivariate normality of the class o f tests such as: Sha- 
piro-Wilk, Kolmogorov-Smirnow, and Cramer -von Mises, as well as standard­
ised third and fourth central moment from a sample in a multivariate case (cf 
Domański and Wagner, 1984).

Although several general examinations of power of tests for mutivariate 
normality can be found, none of them is fully universal in character. This is due 
to the fact that it would be pointless to examine every existing method and im­
possible to test every departure from normality. The majority o f more universal 
examinations limit the scope of their analyses to selected categories of tests, or 
to most popular or most promising ones. Unfortunately, none of the tests for multi- 
varate normality can be described as the one which has been fully examined.

Ward (1988) compared the power of Mardia’s skewness and flatness tests, 
Shapiro-Wilk test generalised by Malkovich-Afifi, Anderson-Darling test modi­
fied by Hawkins, Mardia-Foster test, and two of his own propositions which 
developed Kolmogorov-Smirnow and Anderson-Darling tests.

In most cases Mardia tests seemed to be most powerful, yet none of them 
was considered to be the best. Multivariate measures of skewness and flatness 
prove useful both as statistics characterising multivariate sample, and as the 
basis for normality tests. For that reason examinations o f multivariate tests based 
on measures o f skewness and flatness were carried out.

In the conducted experiment simulating Monte-Carlo method the power of 
the following ten tests was investigated: M x,C \ ,V {b Xp) ,M 2,C 2,U{b2p),
M » C < ,S U>CU .

The experiment involved 50,000 repetitions for both multivariate normal and 
alternative distributions for n=20, 30, 40, 50, 100; p=2, 3, 4, 5.

The obtained results are presented in tables 1.1., 2.1 and 2 2 in figures 
1.1-1.4, 2.1-2.4, 3.1-3.4.

The conducted examination allows us to form the following conclusions

1. Mardia and Foster test based on statistics W(blp),lV(b2p) i S* and Bera 

and John test based on statistic C3 for p >  2, with the assumption o f the truthful­
ness of the hypothesis that multivariate distribution is normal, exceed the ac­



cepted significance levels. In such cases it is recommended to take quantiles of 
statistical distributions, obtained with the use of Monte-Carlo method, as the 
basis for analysis. In the further stages of the analysis these tests were disre­
garded. Figures 1.1-1.4 present power of tests A /,,A /2 i A/ 3 = MSK  for zero 
multivariate normal distribution for p=2, 3, 4 and 5.

2. Mardia test (M,), Mardia and Foster ( U(l \p) i ( S *)) and Jargun and 

McKenzie (M 3) tests are most powerful ( c f table 2 .land fig. 3.1-3.4). These 
tests proved to be better for symmetric distributions (cf table 2.2 and 2.1-2.4).

3. Power o f tests for multivariate normality based on measures o f shape 
for n < 30 decreases according to the increase in p.

4. The considered tests are to be applied for samples n > 30.

V. FINAL REMARKS

The assumption that a sample comes from a multivariate normal distribu­
tion is a fundamental one for many commonly used multivariate statistical tech­
niques. If this assumption does not hold good, then the results of statistical 
analysis become dubious.Even now power of numerous multivariate analyses is 
hardly acceptable due to the fact that researchers are frequently forced to use 
samples which are far from perfect; either because o f the sample size or because 
of the applied methodology.

The first attempts to test multivariate normality were undertaken almost 
forty years ago. Healy (1968) developed Q-Q diagram to chi-square which is 
fequently used for graphic evaluation of multivariate normality. Mardia pro­
posed multivariate measures o f skewness and flatness. These measures prove 
helpful both as a descriptive statistic for a multivariate sample and as the basis of 
many useful tests for multivariate normality. Mardia tests are apparently the 
most often used consistency procedures for multivariate normal distribution.

Some other comparisons of power of tests for multivariate normality were 
also made (cf e.g. Meklin and Mundfrom, 2004). However, no uniformity in the 
analysed tests or in alternative distributions was observed. I he only type of tests 
which were taken into consideration in every examination of power, are Mardia 
skewness and flatness tests. All in all, Mardia tests are thought to be generally 
effective, although their use as diagnostic tests which allow to find the reason for 
the lack o f normality was questioned by Horswell and Looney (1992). Other 
tests which are potentially useful include: Koziol test (1986) and Royston test 
(1983), and particularly, Henze and Zinkler test, (1990).

As it was shown by the earlier research none o f the methods is good enough 
when multivariate normality is taken into account. The graphic approach alone



e.g. visual examination o f chi-square or beta diagram, will signal considerable 
departures from normality. Multivariate measures of skewness and flatness are 
useful both as discriptive statistics of multivariate set of data, and as a basis of 
tests for normality.
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Monovariate case p  = 1 is well known in the literature. Determination of 
empirical critical values requires complex experiment by Monte Carlo method.

Table 1,1

Empirical power of selected tests for multivariate normal distribution for 
a = 0.05, p = 2, 3, 4, 5 and « = 20, 30, 40, 50, 100

Test statistics Sample size (n)
20 30 40 500 100

1 2 3 4 5 6
-----------  P = 2

.0137 .0266 .0309 .0382 .0419
c, .0157 .0261 .0324 .0971 .0399

UK ) .0133 .0258 .0306 .0372 .0418
M 2 .0022 .0093 .0150 .0177 .0298
C2 .0074 .0166 .0212 .0269 .0357
U(b2p) .0032 .0086 .0131 .0167 .0249
M3 .0098 .0205 .0258 .0317 .0383
C A .0141 .0250 .0321 .0376 .0450

N .0118 .0229 .0273 .0341 .0400

l n .0003 .1753 .0635 .0530 .0462

P z= 3
Л/, .0080 .0210 .0283 .0311 .0435
C, .0141 .0245 .0326 .0320 .0413
UK ) .0104 .0210 .0264 .0277 .0392
M 2 .0316 .0359 .0350 .0387 .0462
C 2 .0086 .0214 .0276 .0320 .0414
u(b2p) .0009 .0051 .0120 .0140 .0284

.0067 .0167 .0238 .0363 .0557

.0151 .0285 .0358 .0411 .0503

6N .0078 .0186 .0261 .0271 .0397
C2 L N .0001 .0007 .0007 .4367 .0671



Table 1.1 (cont.)

2 3 4 5 6
p-= 4

4 .0039 .0154 .0203 .0275 .0406
c, .0119 .0255 .0285 .0321 .0443
Щ„) .0559 .0421 .0400 .0399 .0449
M2 .1410 .1039 .0869 .0770 .0612
c2 .0077 .0222 .0282 .0324 .0478
U(blp) .0003 .0035 .0102 .0135 .0312
Mi .0026 .0128 .0167 .0231 .0391
c4 .0127 .0305 .0358 .0419 .0556

S2n .0374 .0361 .0376 .0382 .0460

cl .0001 .0005 .0013 .0010 .2773

P-= 5
My .0011 .0102 .0163 .0208 .0393
C, .0127 .0246 .0264 .0298 .0420

.1449 .0891 .0705 .0597 .0540
мг .3349 .2120 .1571 .1318 .0892
C2 .0048 .0213 .0255 .0323 .0463
U(b2p) .0008 .0053 .0117 .0189 .0335
M} .0009 .0089 .0144 .0182 .0356
Q .0107 .0269 .0334 .0400 .0526

si .1111 .0783 .0635 .0623 .0558

cl .0000 .0002 .0005 .0008 .0018

Source: Author’s own calculations.



Table 1.2
Empirical power of tests for alternative multivariate gamma distribution 

( a = 2; в  = 2 ) for p  =2, 3, 4, 5 and a  = 0,05 (in %o)

Test statistics
Sample size (n)

20 30 40 500 100
1 2 3 4 5 6

/7 = 2
Л/, 331 659 858 941 1000

c, 129 272 409 525 881

327 655 855 940 1000
M 2 83 223 351 458 785

c 2 127 281 412 510 817

U(b2p) 119 269 401 503 809
м ъ 344 675 874 954 1000
c4 167 339 488 607 914
ę2 286 593 808 916 1000

С* L  N 2 892 933 974 1000

P ’= 3
M, 290 662 877 962 1000

c, 98 220 350 471 860
U(b,„) 273 644 867 960 1000
M2 44 181 333 467 840

C2 104 261 408 521 839
U(b2p) 75 250 408 539 872

M y 296 674 890 972 1000
c4 133 307 478 602 922
e2 231 575 816 938 1000

С* 27 23 1 1000 1000

P == 4
M, 211 632 889 934 1000

c, 102 260 439 590 945

UK) 186 601 870 969 1000

M2 45 145 300 461 872

c2 81 259 413 545 866

U(b2p) 37 221 395 555 905



Table 1.2 (cont.)

1 2 3 4 5 6
м г 214 642 900 979 1000

Cą 118 319 499 655 953

S 2n 152 531 818 950 1000

c l 14 124 138 35 1000

P  = 5
M, 132 588 871 970 1000

C, 121 336 534 721 867

116 545 848 962 1000

M 2 94 104 250 423 704

C2 72 265 423 561 767

W h p ) 13 174 371 543 765

Mi 133 598 880 976 1000

C4 114 345 544 701 914

J/ŕ 92 474 794 935 1000

l N 4 105 233 278

Source: Author’s own calculations.

Tablica 1.3

Empirical power of tests for alternative empirical gamma distribution ( a  — 10;#  — 2 )  for p -2 , 3,

4, 5 and a  = 0,05 (in %o)

Test statistics
Sample size (n)

20 30 40 500 100
1 2 3 4 5 6

P~---2
M, 67 153 242 333 729

c, 35 70 100 137 296

UK) 67 150 239 330 726

M 2 13 38 67 94 200

C2 29 64 91 121 239

U(b2p) 20 49 80 110 223

м ъ 76 168 261 356 762
c4 41 86 118 157 318

si 57 130 203 283 672

cl 1 125 306 359 725



Table 1.3 (cont.)
1 2 3 4 ! 5 6

P-= 3
4 41 124 229 32 759
c, 25 50 85 104 246
U(b,„) 38 113 214 308 742
M , 28 38 60 76 182
C2 20 58 94 122 237
U(b2p) 7 32 64 90 215
My, 42 13 241 340 783
c4 31 74 116 149 300

s i 30 97 181 263 679

c l 3 6 3 730 801

P 4
M, 19 99 199 303 773
C, 24 59 94 130 318

UK) 43 95 178 277 744
м г 108 71 63 73 162
C2 17 59 99 129 248
U(b2p) 2 20 49 75 203
M) 20 102 207 315 793
Q 25 77 123 164 338

s i 30 86 148 230 672

Cl 1 8 18 19 918

P = 5
M, 7 70 160 274 757
C, 24 68 120 168 422

UK) 86 80 144 245 721
M2 264 128 85 86 141

C2 12 54 101 134 249
U(b2p) 1 13 39 66 189
м г 7 72 164 284 773
c 4 21 76 131 178 376

s i 66 70 123 203 643

c l 0 4 13 50 11

Source: Author’s own calculations.



Fig. 1.1 Empirical power of tests M l, М2, Fig. 1.2 Empirical power o f tests M l, М2,
MSK for multivariate normal distribution MSK for multivariate normal distribution
Np(0,l) for p=2 and alpha=0.05 depending Np(0,l) for p=3 and alpha=0.05 depending
on the sample size on the sample size

Fig. 1.3 Empirical power of tests M I, М2, MSK 
for multivariate normal distribution Np(0,l) for 
p=4 and alpha=0.05 depending on the sample 
size

Fig. 1.4 Empirical power o f tests M l, М2, 
MSK for multivariate normal distribution 
Np(0,l) for p=5 and alpha=0.05 depending 
on the sample size

n



Fig. 2.1 Empirical power o f tests M l, 
М2, MSK for alternative multivariate 
gamma distribution (alpha=50; thcta=2) 
for p=2 and alpha=0.05 depending on 
the sample size

Fig. 2.3 Empirical power o f tests M l, 
М2, MSK for alternative multivariate 
gamma distribution (alpha=50; theta=2) 
for p=4 and alpha=0.05 depending on 
the sample size

Fig. 2.2 Empirical power o f tests M l, 
М2, MSK for alternative multivariate 
gamma distribution (alpha=50; theta=2) 
for p=3 and alpha-0,05 depending on 
the sample size

Fig. 2.4 Empirical power o f tests M l, 
М2, MSK for alternative multivariate 
gamma distribution (alpha=50; theta=2) 
for p=5 and alpha=0.05 depending on 
the sample size

n



Fig. 3.1 Empirical power o f tests M l, 
М2, MSK for alternative multivariate 
gamma distribution (alpha=2; theta=2) 
for p=2 and alpha=0.05 depending on 
the sample size

n

Fig. 3.3 Empirical power o f tests M l, 
М2, MSK for alternative multivariate 
gamma distribution (alpha=2; theta=2) 
for p=4 and alpha=0.05 depending on 
the sample size

n

Fig. 3.2 Empirical power o f tests M l, 
М2, MSK for alternative multivariate 
gamma distribution (alpha=2; theta=2) 
for p=3 and alpha=0.05 depending on 
the sample size

n

Fig. 3.4 Empirical power o f tests M l, 
М2, MSK for alternative multivariate 
gamma distribution (alpha=2; thcta=2) 
for p=5 and alpha=0.05 depending on 
the sample size

n



C zeslaw  D om ański

MOC TESTÓW WIELOWYMIAROWEJ NORMALNOŚCI 
OPARTYCH NA MIARACH SKOŚNOŚCII SPŁASZCZENIA

Istnieje wiele zaproponowanych metod konstrukcji testów wielowymiarowej nor­
malności. Aktualny przegląd literatury dowodzi, że istnieje przynajmniej 60 procedur 
weryfikacji hipotezy o wielowymiarowej normalności rozkładów zmiennych losowych. 
Kilka przesłanek uzasadnia analizę testów tej klasy, które oparte są na miarach skośności
i spłaszczenia. Łatwo można spostrzec, że zastosowanie tych testów wpływa także na 
lepszą ogólną analizę wielowymiarową rozważanej zmiennej.

W opracowaniu prezentowane są wyniki badania mocy wielu autorów i własne oparte 
na rozważaniach analitycznych i metodach Monte Carlo.


