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A bstract: In this paper w e discuss stepdown methods that control the fam ilyw ise  
error rate in finite sam ples. Such methods proceed stagew ise by testing an intersection 
hypothesis without regard to hypotheses previously rejected. H ow ever, one cannot al­
w ays achieve strong control in such a sim ple manner. B y  understanding the limitations 
o f  this approach in finite sam ples, w e can then see w hy an asym ptotic approach w ill be 
valid under fairly weak assumptions. It turns out that a sim ple m onotonicity condition  
for theoretical critical values allow s for som e immediate results.
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I. INTRODUCTION

Suppose data X  generated from some unknown probability distribution P. In 
anticipation of asymmetric results, we may write X  = X м , where n typically 
refers to the sample size. A model assumes that P  belongs to a certain family of 
probability distributions Cl, though we make no rigid requirements for Q . In­
deed, Cl may be a nonparametric model, a parametric model, or a semiparamet- 
ric model.

Consider the problem of simultaneously testing a hypothesis Hj  against 

Hj  for j  = 1 O f course, a hypothesis Hj  can be viewed as a subset, (Oj, 

of Cl, in which case the hypothesis Hj  is equivalent to P e o j j  and Hj  is 

equivalent to P i tO j .  For any subset К  a  { 1 , let H K = r\JeKH j  be the 

hypothesis that P = C\jeK (Oj.

Suppose that a test o f the individual hypothesis Hj  is based on a test statis­

tic Tn J, with large values indicating evidence against the H j . For an individual 

hypothesis, numerous approaches exist to approximate a critical value, such as
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those based on classical likelihood theory, bootstrap tests, Edgeworth expan­
sions, permutation tests, etc. The main problem addressed in the present work is 
to construct a procedure that controls the familywise error rate (FEW). Recall 
that the familywise error rate is the probability of rejecting at least one true null 
hypothesis. More specifically, if P  is the true probability mechanism, let
1 = 1 (P) cz {1,..., k) denote the indices of the set of true hypotheses; that is, i e I  
if and only Р е о )г  The FWE is the probability under P  that any H, with i e l  is 
rejected. To show its dependence on P, we may write FEW = FWE/.. We require 
that any procedure satisfy that the familywise error rate to no bigger than a  (at 
least asymptotically). Furthermore, this constraint must hold for all possible con­
figurations of true and null hypotheses; that is, demand strong control of the 
FEW. A procedure that only controls the FEW when all к null hypotheses are 
true is said to have weak control of the FEW. As remarked by Dudoit et. al. 
(2002), this distinction is often ignored.

For any subset AT of {1,..., k), let cnK(a, P) denote an or-quantile of the dis­

tribution of ma\ j eKTnj  under P. Concretely,

For testing the intersection hypothesis H K, it is only required to approxi­
mate a critical value for P е П (Oj. Because there may be many such P, we 
define

At this point, we acknowledge that calculating these constants may be for­
midable in some problems (which is why we later turn to approximate or asymp­
totic methods).

c„,k (a ’p ) = inf{* ■' ^{m axTn J < x) > a). (1)

cn Aa ~x) = SUPK k0 - a , P ) : P e  П C0j}. (2)

Let

(3)

denote the observed ordered test statistics, and let , H h be the corre­

sponding hypotheses.



II. STEPDOWN PROCEDURES

Stepdown procedures begin by testing the joint null hypothesis //,, k) that

all hypotheses are true. This hypothesis is rejected if Tn is large. If it is not

large, accept all hypotheses; otherwise, reject the hypothesis corresponding to 
the largest test statistic. Once a hypothesis is rejected, remove it and test the re- 
maining hypotheses by rejecting for large values of the maximum of the remain­
ing test statistics, and so on. Thus, at any step, one tests an intersection hypothe­
sis, and an ideal situation would be to proceed at any step without regard to pre­
vious rejections (or not having to consider conditioning on the past). Because the 
Holm procedure works in this way, one might hope that one can generally test 
the intersection hypothesis at any step without regard to hypotheses previously 
rejected. Forgetting about whether or not such an approach generally yields 
strong control for the time being, we consider the following conceptual algo­
rithm, which proceeds in stages by testing intersection hypotheses.

Algorithm 2.1 (Idealized Stepdown Method)
1. Let K { ={1,...,}. If T„A < сл ЛГ| (1 -  a), then accept all hypotheses and stop;

otherwise, reject H r> and continue.

2. Let K2 be the indices of the hypotheses not previously rejected. If
Tn rj < cn Ki (1 -  or), then accept all remaining hypotheses and stop; oth­

erwise, reject / / , ; and continue.

j. Let Kj be the indices of the hypotheses not previously rejected. If 
T„ r -  cn к 0  ~ °0> then accept all remaining hypotheses and stop; oth­

erwise, reject H r and continue.

k. If Tn k < cn Kk (1 -  or), then accept Я Г(; otherwise, reject .

The above algorithm is an idealization for two reasons: the critical values 
may be impossible to compute and, without restriction, there is no general rea­
son why such a stepwise approach strongly controls the FWE. The determination 
of conditions where the algorithm leads to strong control will help us understand 
the limitations of a stepdown approach as well as understand how such a general 
approach can at least work approximately in large samples. First, we present an 
example to show that some condition is required to exhibit strong control.



Example 2.1 Suppose Tn , and Тп2 are independent and normally distrib­

uted, with Tni ~ N(0i ,(\ + 02)2p) and T„2 ~ N(02,(\ + 02)~2p) ,  where 0, > 0  and

02 > 0. (The index n plays no role here, but we retain it for consistent notation). 
Here, p  is a suitable positive constant, chosen to be large. Also, let Ф () denote 
the standard normal cumulative distribution function. The hypothesis //, speci­
fies Q{ = 0  while //, specifies 0t >0. Therefore, the first step of Algorithm 2.1 
is to reject the overall joint hypothesis 0{ =02 = 0 for large values of 
m a x i^ L ^  j)  when Tnl and Tn2 are i.i.d. N(0, 1). Specifically, accept both hy­

potheses if

max(7; i , T„2 ) < с ( \ - а )  = Ф'' (л /Г ^а );

otherwise, reject the hypothesis corresponding to the larger Tni. Such a proce­

dure exhibits weak control but not strong control. For example, the probability 
of rejecting the H\ at the first step when 0l = 0 and 02 = c(l -  a ) / 2  satisfies

Ро,в2{ТпЛ> с ( \ -а ) ,Т „л >ТП'2} - > \ / 2

as p  -> oo. So, if a  < 1/2, for some large enough but fixed p, the probability of 
incorrectly declaring H\ to be false is greater than a  . Incidentally, this also pro­
vides an example o f a single-step procedure which exhibits weak control but not 
strong control. (Single-step procedures are those where hypotheses are rejected 
on the basis of a single critical value; see Westfall and Young (1993).)

Therefore, in order to prove strong control, soma condition is required. Con­
sider the following monotonicity assumption: for I  с  К,

сп.к 0  ~ ^  c„j (1 -  a). (4)

The condition (4) can be expected to hold in many situations because the left 
hand side is based on computing the 1 -  a  quantile of the maximum of |Äľ| vari­
ables, while the right hand side is based on the maximum of | / 1<| К  \ variables 
(though one must be careful and realize that the quantiles are computed under 
possibly different P, which is why soma condition is required). Romano i Wolf 
(2005) proved the following theorem:



Theorem  2.1 Let P  denote the true distribution generating the data.
(i) Assume fo r  any К  containing I  (P),

cn,y f O - « )^ c»,/(/>)(!-«)• (5)
Then, the probability that Algorithm 2.1 rejects anyi  e I{P) is < a\ that is, 

FWEP < a .
(ii) Strong control persists i f  in Algorithm 2.1, the critical constants 

cn K (1 -  a)  are replaced by dn K (1 -  a)  which satisfy

d n,Kj 0 - °0  ̂  cn,Kt (1 ~ a ) (6)

(Hi) Moreover, the condition (5) may be removed i f  the dnK (1 -  a )  satisfy

dnMP)( l - a ) (7)

fo r  any К  3 1(P).

Rem ark 2.1 Under weak assumptions, one can show the sup over P  of the 
probability that Algorithm 2.1 rejects any i e I(P)  is equal to a. It then follows 
that the critical values cannot be made smaller, in hopes of increasing the ability 
to detect false hypotheses, without violating the strong control of the FWE. 
(However, this does not negate the possibility of smaller random critical values, 
as long as they are not smaller with probability one.)

Example 2.2 Assumptions stronger than (5) have Been used. Suppose, for 
example, that for every subset K C f  1 , к},  there exists a distribution PK 
which satisfies

Сп.К^-а Р̂)^ СпА1~а 'Рк) (8)

for all P  such that 1(P) z> K. Such a PK may be referred to being least favorable 
among distributions P  such that P e (Oj. (For example, if  Hj corresponds to 

a parameter Oj < 0, then intuition suggests a least favorable configuration should 

correspond to Oj = 0.)

In addition, assume the subset pivotality condition of Westfall and Young 
(1993); that is, assume there exists a Po with I(P0) -  {1.....k] such that the joint



distribution of {Tn l : i e I ( P K) under PK is the same as the distribution of 

{Tn l : i e I(P„) under P0. This condition says the (joint) distribution o f the test 

statistics used for testing the hypotheses //,, i e I(PK) is unaffected by the truth 
or falsehood of the remaining hypotheses (and therefore we assume all hypothe­
ses are true by calculating the distribution o f the maximum under Po). It follows 
that, in step j of Algorithm 2.1,

сп.к 0  - a )  = cnKj (1 -  a,PK ) = cnJlj (1 -  a,P0) = cn Kj (1 -  a); (9)

the outer equalities in (9) follow by the assumption (8) and the middle equality 
follows by the subset pivotality condition. Therefore, in Algorithm 2.1, we can 
replace cn K (1 - a )  by cn K (1 - a ,P a), which in principle is known because it is

the 1 - a  quantile o f the distribution of max(7’n i e K j)  under P0, and P0 is

some fixed (least favorable) distribution. At the very least, this quantile may be 
simulated.

The asymptotic behawior of stepwise procedures is considered in Firmer and 
Roters (1998), and they recognize the importance of monotonicity for the valid­
ity of stepwise procedures. However, they also suppose the existence of a single 
least favorable Po for all configurations of true hypotheses, which then guaran­
tees monotonicity o f critical values for stepdown procedures. As previously 
seen, such assumptions do not hold generally.

Example 2.3 To exhibit an example where condition (5) holds, but subset 
pivotality does not, suppose that Tn , and Tn 2 are independent, normally distrib­

uted, with Tn, ~ N(#,,1/(1 + <?22)) and Tn l ~ N(02,M{\ + 0?)). The hypothesis H,

specifies 0t = 0 while the alternative Я, specifies 0t > 0. Then, it is easy to 
check that, with K\ = {1,2},

сп.к, 0  -  «) = ф_‘ (> / í - a ) > Ф'1 (1 -  a)  = c„ |() (1 -  a).

Therefore, (5) holds, but subset pivotality fails.

Example 2.4 Suppose -Tn l = p n {is a p-value for testing //,; that is, assume 

the distribution of p n j is Uniform on (0, 1) when tf, is true. Note that this as­

sumption is much weaker than subset pivotality (if Ä: > 1) because we are only 
making an assumption about the one-dimensional marginal distribution of the p- 
value statistic. Furthermore, we may assume the weaker condition



P{pnJ < *} < JT

for any jre (0 ,l)  and any Р е щ .  If I(P)z>K, the usual argument using the 
Bonferroni inequality yields

c „ j c ( l - a , P ) ś - a l \ K \ ,

which is independent of P, and so

c„'K(.\-a)<-a/\K\, (10)

It is easy to construct joint distributions for which this is attained, and so we 
have equality here if the family Q is so large that it includes all possible joint 
distributions for the p-values. In such case, we have equality in (10) and so the 
condition (5) is satisfied. O f course, even if  the model is not so large, this proce­
dure has strong control. Simply, let dnK(\-a)--a/\K\, and strong control

follows by Theorem 2.1 (iii).
Part (iii) of Theorem 2.1 points toward a more general method that has 

strong control even when (5) is violated, and that can be much less conservative 
than the Holm procedure.

Corollary 2.1 Let

сл.а:у (1 -  « ) = max {сл ж (1 -  or): K e K j ) .  (11)

Then, i f  you replace cnK (1 -  a)  by cnK (1 -  a )  in Algorithm 2.1, strong con­

trol holds.

Corollary 2.1 is simply the closure principle of Marcus et al. (1976); also see 
Hommel (1986) and Theorem 4.1 of Hochberg and Tamhane (1987). Thus, in 
order to have a valid stepdown procedure, one must not only consider the critical 
value cn K (1 -  a )  when testing an intersection hypothesis HK, one must also

compute all cn, (1 -  a)  for /  er K.
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D ariusz P arys

M ODYFIKACJA KROCZĄCEJ W STĘPUJĄCEJ PROCEDURY 
TESTOW ANIA W IELOKROTNEGO

Procedury kroczące w porównaniach wielokrotnych często nie są w  stanie zachować 
silnej kontroli nad błędem  rodziny (tzw. fam ilyw ise errors rate FW E). Prezentujemy 
tutaj ogólną m etodę wnioskow ania wielokrotnego opartego na krokach zstępujących i na 
jej tle proponujemy m etodę wykorzystując m odyfikację stałych krytycznych, które lepiej 
sprawują kontrolę nad FW E dla prób skończonych.


