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ABSTRACT. In the paper we analyze the accuracy o f the empirical best linear un­
biased predictor (EBLUP) o f the domain total (see Royall, 1976) assuming a special case 
of the general linear mixed model. To estimate the mean square error (MSE) o f the 
EBLUP we use the results obtained by Datta and Lahiri (2000) for the predictor pro­
posed by Henderson (1950) and adopt them for the predictor proposed by Royall (1976). 
In a simulation study we study real data on Polish farms from Dąbrowa Tarnowska region.

Key words: small area estimation, empirical best linear unbiased predictors, general 
mixed linear model.

I. BASIC NOTATIONS

The finite population Q  consists of N  units, each o f which has a value of 
a target variable у  associated with it. The population vector of ^ ’s is

У = [> 'p^2’—» Л гГ 3™1 istreated as the realization of a random vector

V = [}^,72,...,Ул/]г . The joint distribution of Y is denoted by £ . From the

population of N  units, a sample í  of л units is selected, and the у  values of the 
sample units are observed. For any sample s we can reorder the population vec­

tor у so that the first n elements are those in the sample: у =  [ y j . y j ] Гwhere

У5 is the «-vector of observed values and y r is the Nr-vector o f unobserved 
values where Nr=N-n. The set of unsampled elements is denoted by 
Q r = Q - s .  Hence, the vector Y can be reordered as follows:

V = [Y st ,Y it J 7 . The population is divided into D domains Q d (d=l,...,D), 

each of size N d (d = 1,...,D). Let sd = Q rf H i  consists of nd elements (where
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n,i may be random), Q rtl =  Q it - s tl and N rd =  N lt —nt, . For the domain of 
interest we a add star to the subscript cl, for example the domain o f interest is 
denoted by Q f/, and its size by N (l, .

Let us introduce the general linear model (GLM). We assume that:

r^ ( Y )  = X |i 

I D U \ )  = \
( 1 )

where X is a N  x p  matrix of values of p auxiliary variables, ß is a p x l  vec­
tor of unknown parameters and V is a variance-covariance matrix depending on

some parameters Ô = ^5, J . If the population elements are rearranged so

that the first n elements of Y and the first n rows of X are for units in the sample,

where X, is и х  p , X r is N r x p ,

V„ is и x n , Vrr is jVr x N r , V,r is n * N r and = Vŝ .
Introduce the general linear mixed model (GLMM) which is a special case

of (1):

T

>>

Гх,г x'r 1 , v =
ss sr

L * r J 1 1__
__
_

Y = Xp + ZV + e

£ ’í (c) =  0 a £ í ( v) = 0

D]
V G o '

с 0 R

(2)

where Z is known iVxA matrix, and random vectors v and e are h x 1 and 
N  x 1 respectively. If the population elements are rearranged so that the first n 
elements of Y are those in the sample, and the first n rows of Z are for units in

the sample, then e, Z and R can be expressed as: e = Z =
Z,
Z.



R = K  R .
R „  R .

where c, is n  x 1, er is N r x 1, Z, is n x h , Z r is N r x h  ,

R„ is n x n , Rrr is N r * N r , Rjr is nxJV r and R ra = R[r .
In the paper we will also discuss the GLMM with block-diagonal variance- 

covariance matrix which is a special case o f (2) assuming that
Cov( (Yld,Yľíl.) = O f o r d * d ' .

II. SUPERPOPULATION MODELS

In this section wc introduce three special cases of the GLM and the GLMM. 
Superpopulation model I. We assume that (Chambers and Ayoub, 2003, 

P-12):

Yid =M + vd + e M(i-l,...N; d=l,...,D), (3)

iid iid
where ц  is fixed, vd ~(0,cr*) , ekl ~ ( 0 ,a ; )  and vd and eid are independent. 
In our case additional normality assumption will be needed to derive MSE and 
its estimator.

What is interesting, from (3) we may obtain that (Valliant et al., 2000, 
p. 256):

E4(Yid) = V

a) + a] for i = i’,d = d'
a] for i*i',d=d' (4)

0 otherwise.

Superpopulation model II. Let us assume (4) and that су] = 0 . 

Superpopulation model III. Let us assume that random variables Yjd 
0=1,...,N; d=l,...,D) are independent and

Cov( (Yid,Yrd,) = .



III. BLUPS ANI) TH EIR  MSES

In this paragraph wc present the following theorem which gives the formu­
lae of the BLU predictor and its MSE and their special cases for the superpopu­
lation models presented in section II.

Theorem I. (Royall (1976)). Assume that the population data obey the gen-
 ̂ j .

eral linear model. Among the linear, model-unbiased predictors 0  = g, Y, of

linear combination o f random variables 0  = y ' Y  (where Y =  [Yj>Yrľ ]  ) 

MSE is minimized by:

Ô .L U  =TľY. +Tfľ[x,ŕ+v„v,;'(v, -x .p )

where P = ( x : V „ 'X . ) ‘ l X X ''Y , -  

The MSE of 0BLU is given by:

M S E ; (QBLU) = Var( Ф вш - 0) = g i (b)  + g 2 (Ô), (7)

where

«,(S)=Tľ(v„-v„v„-'v„K . (8) 

г,(8) -  i ]  (x , -  V„ v.;'x, )(x,Tv„'x, )'■ (x , -  V„v,;'x, )T Yr. (9>

The proof of the theorem is presented in details for example by Valliant, 
Dorfman, Royall (2000) pp. 29-30. In the paper we consider the problem of 
prediction of the domain total, hence the /-th element of у  vector equals 1 when

i 6 Q.d, and 0 otherwise.
BLUP and its MSE for superpopulation model I. The BLU predictor (6) of 

the domain total under the superpopulation model (3) simplifies to (Chambers 
and Ayoub, 2003, p. 13):

= Y ,Y. + H .J  + N .ä W lt f  +nt.a lr '{ lí. - P)• <10)
iesj.

(6)



where ß  =
< rf=l /  rf=I I'eij

The MSE o f the BLUP of the domain total given by (7) may be written as 
follows:

mse(0 .lu)= e(0 ilu -eý= E!(8t,w -e,ý. do

where

4 .Ш  =Y,, [X ,P  + V„V1;’ (Y ,-X .P)1 is the BLUP of r> =  £  l ;
/6n„(.

0 , = 0 - I > ; =  I  !^=y: (X ,P + Z ,v + c, ) .  (12)
lesj. 'еПп1.

Let = у,1 (X (.ß + Z fv) = ör - y rrc r Then from (12) and (11) we obtain 

that:

M SEl (Ôt w ) = El 0 r tu , - e : ) 1 + y y „ y , - 2 E l (-l r, e , 0 r lu , - e ; ) ) . ( m

Chambers and Ayoub (2003) p.25 approximated the MSE of the BLUP by

the first term on the right hand side of (13) given by E ( (0rBLU -  6* )2 . In this

paper we use Royall’s exact equation of the MSE given by (7). To derive (7) 
under the superpopulation model (3) we note that under (3) the following equali­
ties hold:

Y r V „V-  = N rd̂ M ] + nü. a i r , ] ,

Y X V „ 'V ,ry r = n d. ( N rdtcr2v ) \ a 2e + nd. a 2y \  

y X y  r = N A ° l + N rJ. o l ) ,

Y JV„V„-‘X, = nd, N rd. a l ( a ]  + nd. a 2v y l ,



4 1 ( X , -  V„V „-'X ,) -  И , , . а ] ( а ]  +  n„.a] )'■.

Hence, the MSE of the BLUP under superpopulation model (3) simplifies to 
(7), where

(14)g, (Ô) =  N rJ.a ]  {a] + Nd.at )(a; + ) - ,_2\- l

( D
& (« )  =

V I
Z n< / ( ^ + W 2)"' ( N e c t i a 1'  + n d. a 2v y l ) • (15)

BLUP and its MSE for superpopulation model II. The BLUP and its MSE 
are given by (note that the following predictor is £  -unbiased under (3)):

e ,LU = Z  y, +  N ,ä.n - ' X  У, and Ш Е { (<?„„) -  ( N ,,. + W > - ' ) o-;. (16)
/ej

BLUP and its MSE for superpopulation model III. Under (5) BLUP and its 
MSE are given by (note that the following predictor is č, -unbiased under (3)):

в  BLU =  N d 'n d ' Y j  Yi and M S E 4 № b L U  ) =(jle ,l'N d*(N d' ~  «rf* W *  • ( 1 7 )

IV. EBLUPS, T IIE IR  MSES AND ESTIM ATORS OF MSES

Note that the BLUPs for superpopulation models II and III do not depend on 
the unknown in practice parameters, hi this cases we need only the following

1 H — 2
unbiased estimators of cr2 and a ] tI. , given by á ]  = ------ V  (1̂ . -  Y  ) and

и - 1 ы
j Hj* _ 2

-------- ) ’ respectively to obtain unbiased estimators of
n d *  “ 1 M

MSEs presented in (16) and (17) respectively. Let discuss the problem of pre­
diction of the domain total under the superpopulation model I. The BLU predic­

tor (10) depends on the variance parameters 6 = | cr], a \  J which are unknown 

in practical applications. Replacing ô by an estimator ô , we obtain two-stage



predictor called the empirical best linear unbiased predictor (the EBLU predic­

tor). It is denoted by 0EBLU and it remains unbiased if (i) Е ( в ЕВШ) is finite; (ii)
А А Л

8 is any even, translation-invariant estimator of ô , that is ô( Y ,) = 0 ( -Y s) and

ô ( Y ,- X ,b )  =  ô(Y , ) for all Y, and b; (iii) the distributions o f v and e are
both symmetric around 0 (not necessarily normal). This problem for Royall’s 
predictors is discussed by Żądło (2004) and for Henderson’s predictors by 
Kackar and Harville (1981). We should stress that many standard procedures for 
estimating Ö (including maximum likelihood - ML and restricted maximum 
likelihood - REML) yield even, translation-invariant estimators (Kackar and 
Harville (1981)).

To obtain the MSE of EBLUP for our case we adopt Datta and Lahiri (2000) 
results for Henderson’s EBLUP. Under the general linear mixed model with the 
block diagonal variance-covariance matrix we assume that D is large and we 
neglect all terms of order o(D '). What is more the normality o f random compo­
nents and the following regularity conditions are assumed: (a) the elements of X,

and Z, are uniformly bounded such that |Х ^ У и'Х 5|  = [ 0 ( D ) ] ^ ^ , (b) 

suPr/żi n d < 00 and suP,/ži К  < 00> ^ rY r -X ^ V jV .rY r  =  [P0)]pxi. (d)

^ - X X ' ,V.rYr = [0 ( l ) ] pxl for k=l .... q, ( e ) R ,d(ô) =  É ^ C * C í  and
odk ,-=о

where Rsd and G d are submatrices o f R s and G re-
j=о

spectively for d-th domain, <50 = 1, C dj- and F^(d=l,. . . ,D, j=0,.. . ,q)  are known 

matrices of order nd x hd and hd x hd respectively. The elements of the matri­

ces C dj and Fdj are uniformly bounded known constants such that R sd and 

G d (d=l,...,D) are all positive definite matrices. (In special cases, some of C dj 

and Fdj  may be null matrices.) (0  Š is an estimator of Ô which satisfies (i) 

h ~ b  = O p( D ^ 5),  (ii) ô - ô Wi = O p(D~')  (iii) ô(Y í ) = ô ( -Y J) ,  (iv)

b (Y s -  X vb) = ô(Y í ) for any b and all Y ,, where 6 X<L is maximum likelihood

(ML) estimator of ô . Conditions a), b), e) and f) are assumed by Datta and La­
hiri (2000) who discussed the MSE of the Henderson’s EBLUP. Conditions c) 
and d) may be treated as modifications of the assumptions c) and d) proposed by 
Datta and Lahiri (2000).



Under these assumptions and replacing m TG Z jV “1 in the proof presented 

by Datta and Lahiri (2000) by yJV „V J we obtain that the MSE for Royall’s 

EBLUP (i.e. the MSE of the predictor (6) where Ô is replaced by its estimator 

ô ), in the case when Ö is maximum likelihood (ML) or restricted maximum 
likelihood (REML) estimator. Let c r = y r‘ VrIVM‘ ,

d c T  , d c T  , y rrV V '1 , г T r 1 r
= col̂ 4 = со1ш ч d ô  > c°/|s*sfla * = La , • • • a,  J -

a s

d 2l

dS f iS j
Jqxq  у

and / is log likelihood assuming multivariate normal distribution o f Y|,...,Yn. 
Hence,

MSE,  {0EBLU (ô)) = g , (ô) + g 2 (ô) + g 3* (ô) + o ( D - ' ) , (18)

where

f t  (ô) =  Гг
ôô

i-i (19)

Under superpopulation model I g, (ô), g 2 (ô) are given by (14) and (15) re­

spectively and

(20)

where

/ „ = - 2 < Г ' + а ? ) .
d ~ l d =I rf=l

a,/ = ^ 2 >a = -  W  W ) I X  " X 2 r
. d =I

D У
- 2  
d

d =I /

J



Now we adopt the MSE estimator presented by Datta and Lahiri (2000) for 
our case. To estimate ô we use REML because REML estimators are less bi­
ased than ML estimators. The bias of REML estimator is o(D''). What is impor­
tant our MSE estimator is approximately unbiased in the sense that

+ Finally the estimator of

(18) under superpopulation model I may be written as follows:

M ŠEi {ÔEBLum  = g x (ô )+ g 2(ô) +  2 g ] ( ô ) , (21)

A A j A

where g x (ô), g 2 (ô), g } (Ô) are given by (14), (15) and (20) respectively where 

8 = [c r2 <7*1 is replaced by REML estimator ô = \ j j ]  <ŕv2 J .

V. SIMULATION STUDY

In the section we present the results o f Monte Carlo simulation study pre­
pared in R language (R Development Core Team, 2005). We analyze agricul­
tural data on 8624 farms from Dąbrowa Tarnowska region in Poland obtained in 
1996. The region is divided into D=79 villages and towns treated as domains of 
sizes between 20 and 610 farms. We draw one simple random sample without 
replacement o f 862 farms from the population of 8624 farms which gives one 
division o f the population into sampled and unsampled parts. Realizations of 
random sample sizes in domains are between 2 and 66 farms which means that 
the direct predictor presented in (16) gives estimates o f total for each domain. 
We generate 5 000 sets o f values o f the variable of interest (sowing area in 100 
square meters) both for sampled and unsampled part o f the population based on 
superpopulation model (3) with cr2 and cr2 obtained from the entire population
data and assuming normality of random components.

We study the accuracy of the following predictors in the simulation study: 
(a) the predictor (10) assuming that cr2 and a 2 are known, which is the BLUP

under model (3) (it will be denoted by BLUP), (b) the predictor (10) where cr2

and cr2 are replaced by their estimates (based on the sample data using REML),
which is the EBLUP under (3) (EBLUP), (c) the indirect predictor presented in 
(16) and direct predictor (17) (DP) presented in (17). We study accuracy o f the 
Predictors IP and DP under (3) to check their accuracy in the case o f the model 
misspecification (the IP and DP are BLUPs under models which do not fulfil (3)).



Let us consider the simulation results obtained for 79 domains. What is im­
portant, all o f predictors are model-unbiased under superpopulation model
I (absolute simulation biases did not exceed 1,2%). Values of relative RMSE for 
79 domains range for the BLUP from 8,22% to 30,76%, for the EBLUP from 
8,24% to 31,01%, for the predictor DP from 8,49% to 51,01% and for the pre­
dictor IP from 29,37% to 35,74%. Notice that the increase o f MSE due to the 
estimation of a ] and a]  (the difference between the MSE of the BLUP and the 
MSE of the EBLUP) for the considered real data is not high. Analyzing the val­
ues of the ratio of the MSE of the EBLUP and the MSE of the BLUP we note 
that its maximum value equals 1,0217 what means that the MSE of the EBLUP 
is higher than the MSE of the BLUP but not higher than only by 2,17% in all of 
79 domains. What is more, the EBLUP has smaller MSE than the predictors IP 
and DP which are not functions of unknown parameters but are not BLUPs un­
der the considered mixed model. It means that in our case the lost of the accu­
racy due to the estimation of variance components is smaller than the lost of the 
accuracy due to the model misspecification. What is important, the absolute 
value of the bias of the estimator of the MSE of the EBLUP is not high -  it does 
not exceed 8,14017%. The MSE estimators of the IP and DP are not unbiased 
because they are derived under different superpopulation models and hence they 
are used in the case of model misspecification.
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Tomasz Żądło

O DOKŁADNOŚCI PEW NEGO PREDYKTORA TYPU EBLU

W opracowaniu analizujemy dokładność empirycznych najlepszych liniowych nie- 
obciążonych predyktorów wartości globalnej w domenie (ang. EBLUP -  empirical best 
linear unbiased predictor) zakładając model nadpopulacji należący do klasy ogólnych 
mieszanych modeli liniowych. Do oceny błędu średniokwadratowego (ang. MSE -  mean 
square error) predyktora typu EBLU wykorzystano rezultaty prezentowane przez Datta 
and Lahiri (2000) dla predyktora zaproponowanego przez Hendersona (1950) po zaadop­
towaniu ich dla przypadku predyktora zaproponowanego przez Royalla (1976). W bada­
niu symulacyjnym wykorzystano rzeczywiste dane dotyczące gospodarstw rolnych 
w powiecie Dąbrowa Tarnowska uzyskane w spisie rolnym w 1996.


