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TESTS OF MULTIVARIATE NORMALITY USING
SHAPE MEASURES OF THE DISTRIBUTION

ABSTRACT. Karl Pearson, in 1990, proposed two numerical characteristics of the
distribution of random variables i.e. asymmetry (skewness) and kurtosis (flatness). Their
sample approximations allow to describe partially the empirical distribution, to find out
if it differs from a symmetric distribution and if it is exceedingly flat or high.

The measures of shape for distributions with known first four central moments are
uniquely defined, in particular, for the univariate normal distribution they are equal to
0 and 3. It allows to compare distributions with known measures of shape with the nor-
mal distribution. Such comparisons in univariate case is done by means of standardized
tests based on the third and fourth sample central moments. An overview of such tests
may be found in the work by D ’Agostino and Pearson (1973).

The translation of shape measures to multivariate case was done by Mardia (1970).
These measures significantly enriched the statistical description of empirical distribu-
tions and allowed to introduce many tests of multivariate normality. The distributions of
these tests’ statistics using sample multivariate asymmetry and kurtosis are usually de-
rived through central limit theorems.

In the work an overview of multivariate normality tests based on the sample meas-
ures of asymmetry and kurtosis is given. The statistical properties of these measures are
discussed as well as the usefulness of these tests with respect to power and sample size.
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I. DEFINITION OF MULTIVARIATE RANDOM VECTOR’S
ASYMMETRY AND KURTOSIS

Let X be /»-dimensional random vector with a distribution given by the cu-

mulative function Fp(x,p,'L) = Fp, where XeRp, p is ap-dimensional vector

ofexpected values and L, by assumption, is aP x p-dimensional covariance
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matrix positive definite. When the distribution considered is multivariate normal
its cumulative distribution function is denoted by N p[x,/J,I.) = Np.

Multivariate asymmetry and kurtosis denoted with [ p, 820 as random vec-

tor’s X measures of shape, are Pearson’s numerical characteristics JR and 2

of univariate case, generalized to p-dimensional case. The numerical character-
istics B 1p, B 2p are defined with a form

(a) bilinear
P,,=e [[(x-*z-"(Jr.-x)]"}

for independent /7-dimensional random vectors X , X. identically distributed,

(b) quadratic

Plr=A[(x-rtr'(x.-M]J

for /»-dimensional random vector X, where S'1is the inverse matrix of . In
particular, for p =1,wehave /?,, = and B2 =R 2.

The properties of P\p, 8 2p when X ~ N p are given by two lemmas.
Lemma 1 If X ~ Npthen BIp =0.
Proof. Let Y = £“/2(JTT~/j)-Then Y ~ N p{0,l), where/is a unit ma-

trix and B X = isj(Y'Y.)3]= 0, because ordinary moments of odd order of the

standard normal distribution are equal to zero and each component of two-linear
form Y'Y, contains at least one variable in odd power.

Lemma 2. If X ~ Npthen Blp =p(p +2)=g =

Proof. Let us make use of the formulae for the expectation and variance of
the quadratic form

E(X'AX) =E(X')AE(X) +tr(lA),

D\X'AX) =4E(X")AIAZE(X) +2tr\"LAfT,



where //s() stands for matrix trace. After substitutions X —(X - //) and

A-»1"1 we get

Pap=e [ [(A-")'i- (x.-/1)]2}=di([("-~)-z-'(*-~)]2)+

+{e[(X-M"Er(X.-N)] Y2=2p +p1l=/2(/?+2).
When p = 2, i.e. for twovariate distributions, we have

Ra =(1-P2)"3{ylo+ /03 +3L+2pr)(ylr+rl)- 213m3 +
+bp{yiO(pyn -F2\) + r<a(p/21 -rn)-(2+ P 2)ynr,ri}>

BRIl = [0 + jo4 + 2y2 W (22 —Y]3—Y3|)]*~7z7) 1
where

X =(X1tX2j, p ={m,,pr), of =D2(X{), er] = D(X2),
p =Corr(X,,X2),
r,=/"1«20 , n,=E{X,-A)r(X2-")}

In particular, when p = 0, i.e. when the coordinates of the two dimensional
random vector are independent, then

B\2 = I'lo + /03 + 3(r.2 + IT2.) and RI2 = N0+ Q4+ 2722

Now we will prove lemmas 1and 2 in the case of p = 2, i.e. for the two
dimensional normal distribution.

Lemma 3. O 2= 0and/?2=8 if (XItX2)'~ N2

Proof: We apply the well known formulae for distribution’s moments (see
e.g. Kendall and Stuart 1963 p. 91): YN = y2\= /30 = 0 from which imme-
diately follows that Bn =0. To prove B2 we apply other known formulae

Yo =M = 3, )ﬂ: yB: 3 and )Q: 1+ 2p 2, from where we have

B2 = {3+3+2(1+2/>2) + 4/>2L+ 2/>2-3-31}/(1-/>2)2=

= {8-16p2+8p *}(L- p1)2=8(1- 2/22+ p4}(L- /72)2=8.



The formulae for B n and Bn  for some two dimensional distributions are

given in the form of (Mardia 1974, Mardia et al. 1979, Davis 1980):
a) the mixture of  two dimensional normal distributions

h(x) =0,8f(x, 0,1)+0,2f(x,0, cr2l), where /(*) is the density function

and Bn =0, Rn =8
(er2+4)2

b) two dimensional gamma distribution

for (x ,x2)"6R2=(0,00)ar(0,00)-A42=0,
36

Bn =11>
c) two dimensional exponential distribution

P(X{=x{X2>xr)- exp[-x, -x2- max(x,,x2)],
_ 3/34+9pt +15/92+12p +4

(arx2)eNn2; Bn=
21-py’
5+p-pl-3p3
Bn 4(1-p 2) ’

d) twodimensional Morgenstern distribution

[*(*) =1+ 3/0(1- 2x,)(1- 2x2), X6 (0,1) x (0,1), Bn =0,
Bn =4(7- 1bpl)/(B5(1-p 1)2.

Il. MULTIVARIATE SAMPLE ASYMMETRY AND KURTOSIS

The estimators blp and b2p of Blp and R Ip based onp-dimensional sam-

ple U ={Xx X2,...,Xn) are expressed through the powers of bilinear and

quadratic form (Mardia 1970, 1974, 1977) in the following way:
a) sample multivariate asymmetry (skewness)



b) sample multivariate kurtosis (flatness)

bp= -ts 2
nj.u
where gtj,=( X j S~I(XI'~X) and X and S are the mean vector and
covariance matrix based on sample U. The forms gj. and gM may also be
expressed through scaled residual vectors Yj =S~U2(Xj -X), then
gir=Y'jYj, and gjj =Y j'Yj . Inthis notation 1 stands for the inverse
matrix S'12, so that S'122(S'12)’=S.

The random variables bip and b2p have distributions implied the distribu-

tion of the random vector X whose independent realizations are expressed by
matrix U. For these variables the distribution characteristics in the case of the
multivariate nonnal distribution are the following (Mardia 1970, 1974, 1977,
Mardia and Kazanawa 1983, Mardia and Foster 1983):

a) g((n+ND(p+1) 6 g=p(p+2)
(n+1m+3)

b) D 2(bip) = J2('P +~ P +21,

¢) E(blpy=9(n-h
n+1l ’

D\blIp)= 29N - 3 -p- Hiw-p +1)

d)
(n+1)2(n+3)(n +5)

n

e
) 2g(9p4+\2pi -\92p2—328/7 + 256



8

h)

k)

D)

m)

n)

/"3gh2p$ . 64g(P2+ 8) .

M+ 1)2(« + 3)(« +5)
(n-3)(/i-p-D(n-p+1)

Cov(bt br )=12ph/n2, h- 8p2-13/? + 23,

. 3/i
bip,b =
CorrOIPD2) = oo+ e + 222

o "(» 6/~12v’(/).

CoV(s[bp,b2p) =- " L
nyjnf

>2v(N)(1 - 21 +4v2(]))
oLy /s> 21 T\312

yj6ph

Corr(Jb~b2p) = njnf

1/2
89 (6/-12v29/)



The above given formulea for the moments of random variables bX and

b2 are correct for big n, and their approximations were given up to the order of

I1l. TESTS OF MULTIVARIATE NORMALITY BASED
ON bX AND b2p

For the distribution Np we have R\p =®< anc* Rip=P(P +2)=g. In-
vestigating the /»-dimensional empirical distribution Pp by means of independ-
ent observable random vectors X itX2,...,Xn we ask if they come from a mul-
tivariate population with Rip=0 or A ,-* or, simoultaneously, Rlp =0 and
B2 - g. This leads to define the null hypothesis as HO: Ppe Np against the
alternative hypothesis determined by one of the distribution classes:

A-fltp*0, B2p=gl Al-B {p=o0, Rlp*g;Ai-RIp*o, R2p*g.

There are many tests of multivariate normality to verify the hypothesis for-
mulated which are based on sample statistics blp and b2p. We will differentiate

between the omnibus and directed tests.
Definition 1. Statistical tests for a determined class of alternative distribu-

tions will be called directed tests.
Definition 2. Statistical tests most powerful in the class of possible alterna-

tive distributions will be called omnibus tests.
To verify the null hypothesis against #,: Ppe A, or //,: Ppe A2 we use

the tests of multivariate normality based on the tests statistics being the equiva-
lents of b1p and bép. The directed tests used will be most powerful for distribu-

tion classes A, and A2. For the omnibus tests and the alternative defined by
family A} we apply the tests’ statistics being functions blp or b2p. These tests

have the property of simoultaneous assessment of the departures of multivariate
assymetry and kurtosis of the empirical distribution Pp from BX=0 and

B2 =g. These tests are recommended whenever we do not have any prior in-

formation about the distribution specified in the alternative distribution.



The descriptive statistics based on blp and b2p have distributions known for

big n, which are given by lemmas 4 and 5.

Lemma 4. nbip/6~ R :{p +A I, when U~ MNp that is when U has
the matrix nonnal distribution (see e.g. Wagner 1990).

Lemma 5. (b2p- E(b2p))I D[b2p)~ N(O,I).

The proofs of the lemmas may be found in Mardia (1970, 1974), as well as
in Domanski Wagner (1982).

From the applicational point of view, one differentiates between the tests of
multivariate normality based on bX and blp with respect to the determined class

of alternative distributions, in the following way:

e Ai- M,C, L(b{p),u{byp),w{b[p).Q, tests;
e A2- M2,C2,U(b2p),W[b2p),Q2 tests;

e A3- Mi,C3CASI,SjIL,SMCIL,CRQ tests.

In what folows, we review the above mentioned tests, limiting ourselves to
mentioning: (1) author (or authors), (2) test’s statistic and (3) the distribution of

the test’s statistic, always assuming that U ~ MN
A. Tests for hypothesis //,,: Ppe Npor #, : Ppe Ar.
(&) (1) Mardia (1970); (2) M, =nbip/6 ; (3) (lemma 4);

(b) (2) Bera iJohn (1983); (2) C, = , (3) X2
0H

T =£y,2/a,1=1,2.
Yy = S"12(A - X ) =(Y1},Y2j,....Ypiy ;

(c) (1) Mardia and Foster (1983); (2) L(blp) =y + S\n(blp -<I;),
(3) N(0,1) y,S,” - SLJohnson distribution parameters;



. Kp~6f/n
(d) (1) Mardia and Foster (1983); (2) U(b.) = i (3) N(0,1);
6"2fin2

1
(e) (1) Mardia and Foster (1983); (2) W(bX) = [_STGJINF -3/+3-17jIf

(the Wilson-Hilferty approximation of distribution bip); (3) N (0,1).

B.  Tests for hypothesis HO: Ppe Np or Hx: Ppe A2.

() (1) Mardia (1970); (2) M2=~" ; (3) Zi'>
8g/n
(9) (1) Bera and John (1983); (2) C2=— «£([.-3>" + £ (7-,.-N!
3) T.-YXIn, r» =X (W 1/n- r, asin(b);
yH Y1
6, -g(n-1)/({/j+1)
(h) (1) Mardia and Foster (1983); (2) U(b2p) =-
yRg/n2
(3) N(0.1);
(i) (1) Mardia i Foster (1983);
1-2/91,
= ~ - ' ; (3) N(0,1);
@) W(bﬁb 3\9'2 I1 9/; l+ap/(f-4)\ ) NED
o< + 2% _b2P - E (b2p)
f=6 +4(d+Jd +d ),d- 2(/7+8)2" D™ } -

C. Tests for hypothesis 7/0: Pp £ Np or Hx\ Pp e An.

(J) (@) Jargune and Mckenzie (1982); (2) n/3=n/, +N/2;(3) Ey+,
(K) (1) Bera and John (1983); (2) AEN2+E. (N -3)
H

(1) (1) Bera and John (1983); (2) C4-C, + C2; (3) XP(PH)/2>



(m)(1) Mardia and Foster (1983); (2) S2=1L2 p)+ U2(b2p),

S1= U \bip) +LI2(blp), S2= W \A ) £ W\ 2D,
ca=b'v-th B =q'v-d,

nip -6 //11 " 2ftn2 \2ph/n2
1 Vv =
b2p-g(n-1)/(n+1) \2ph!in2 8gin

VBTP-E (Jb~]j
n-1
nN+1

d=

(3) all statistics mentioned here follow the chi-square distribution with two
degrees of freedom;
(n) Small (1980); (2) £, =« Y (1), P,eA,; Q2=Y(@QU "™ Y(2),
P,eA2

0=0,+02, Pp6A3,

Ssinh'y]of(X O / T
YO =
S'sinh'1Q b A X A /A

r2+Siswh-I[(b2(X1) -4 2)/A1]
y 2=
y2+iJ2sinh-,[(62(X J-")/A 2]

L) =¢(mab> U@ =(4). i’=12..,A

where ril' are sample coefficients of linear correlation determined from matrix

U. The mentioned constants 5*\ and \/X\ can be found in the tables given
by D’Agostino and Pearson (1973). The remaining constants S2,y2,/12,£2 are

determined according to the principle of parameter estimation in the SI Johnson
distribution family.



IV.THE PROPERTIES OF MULTIVARIATE NORMALITY
TESTS USING blp AND b2p STATISTICS

In chapter 3 we mentioned many tests of multivariate normality of the di-

rected and omnibus type. Some of them have simple form of tests’ statistics,
other require additional numerical calculations.

More important properties of multivariate tests of normality using b]p and

b2p statistics are as follows:

a)

b)

<)

d)

e)
0

9)

h)

)

k)

they use scaled vectors of residuals allowing to find big residuals when big
were the bX and b2p statistics;

they use the numerical characteristics of the distribution of bip and K sta-

tistics mentioned in chapter 3;

they make use of constant parameters of the Johnson’s family of distribu-
tions which are determined by means of special numerical methods;

they have the limiting distribution either normal or chi-square;

the chi-square degrees of freedom depend only on p;

tests are appropriate for big n, because the numerical characteristics of blp

and blp were given for order 0(ri2;
the omnibus tests using both blp and will be good for applications in

which the correlation between random variables blp and b2p is sufficiently

small i.e. whenever there the condition is n>300(8p2-1 bp +23) /(p +1)

met;
the Wilson-Hilferty transformation for constructing tests based on bip may

replaced with a transformation corrected by Goldstein (1973);
because bip and b2p are invariant with respect to affine transformations, the

tests based on bip and b2p possess same property ;

there are no major numerical difficulties in determining tests statistics when
one assumes that the sample covariance matrix is positive defined;
tests based on bX and b2p have moderate power for undetermined alterna-

tive distributions and the power is higher for directed tests.

To illustrate the strength of correlation between bip and b2p influencing the

usefulness of some tests of multivariate normality, in table 1 we present the re-
sults of our own computations:



Table |

Correlation between blpand bril

b n Corr r n Corr
1 30 0.9487 4 30 1.6499
50 0.7348 50 1.2781
100 0.5164 100 0.9087
200 0.3674 200 0.6390
2 30 0.9360 5 30 2.0605
50 0.7250 50 1,5960
100 0.5127 100 1.1285
200 0.3625 200 0.7980
3 30 1.2522 6 30 0.9533
50 0.9699 50 0.7784
100 0.6859 100 0.6029
200 0.4649 200 0.4767

The above presented calculations prove how important it is to determine
the proper sample size with respect to the number of variables investigated p in
order to get a reasonable correlation measure. The general coclusion is that this
number grows with the number of variables.

V. CONCLUSIONS

We gave an overview of more important tests of multivariate normality
based on statistics bip and b2p, corresponding to multivariate sample asymmetry

and curtosis. These tests were also extensively discussed by K. V. Mardia in the
seventies and eighties.

The tests mentioned are characterised with good power, especially in the
case of directed tests. Many tetsts use the sample vector of means and sample
covariance matrix which is assumed to be positive defined. These assumptions
may be weakened, then, instead of normal inversion the so called g-inversion is
applied. This makes the scope of practical applications of the tests discussed,
much wider.

Investigating tests using statistics bip and b2p has been slightly curtailed,
mainly, due to the fact that more powerful tests of multivariate normality have

been proposed (e.g. those based on stochastic processes or empirical charteristic
functions).



A general overview of other tests of multivariate normality based on ran-
domization principle, union and Roy’s intersection, power transformation as
well as radii and angles with the use of multivariate geometry was given in
a monograph by Domanski et al. (1998). On the other hand, Wagner (1990),
gives a generalized Shapiro-Wilk test.
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Wiestaw Wagner

TESTY WIELOWYMIAROWEJ NORMALNOSCI KORZYSTAJACE
Z MIAR KSZTALTU ROZKLADU

Miary ksztattu rozktadu jedno- i wielowymiarowych zmiennych losowych znajduja
powszechne zastosowanie w konstrukcji testow jedno- i wielowymiarowej normalnosci.
Przy ich konstrukcji korzysta sie z pierwszych czterech momentéw centralnych wypro-
wadzanych z odpowiednich statystyk probkowych przy odpowiednich zatozeniach sto-
chastycznych.

W pracy dokonano przegladu testow wielowymiarowej normalnosci opartych na
prébkowych miarach asymetrii i kurtozy. Podano rézne ich wiasnos$ci statystyczne,
uwzgledniajace wielkos$ci préb oraz postacie przeksztatcone do jednowymiarowych
statystyk probkowych. Zatgczone zostaty réwniez wyniki badan dotyczace mocy testéw.



