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M ULTIPLE ENDPOINTS

Abstract. In A N O V A we are mainly based on inter-treatment comparisons. Another 
com m on problems arising in biometric studies (especially in biomedical studies) is that o f  
comparing two groups of patients (treatment and a control group) based on multiple response 

(called multiple endpoints).
In this paper we present the continuos and discrete approaches to multiple endpoints. In 

the case o f continuous multiple endpoints we have common assumption in that the covariance 
matrices in group o f  the control and observation are equal. Let p  be the correlation coefficient 
between Y, and Yj endpoints and p, be the raw p-value obtained using some tests statistics

for the i-th endpoints.
We can also proposed a general bootstrap approach which can be used to estimate the 

p-value without making any parametric and distributional or correctional assumptions.
Binary outcom es are common in medical studies. We present the modified Bonfferroni 

procedures and permutational procedures and we compare these procedures to each other.
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I. INTRODUCTION

In ANOVA we are mainly based on inter-treatm ent comparisons. 
A nother common problems arising in biometric studies (especially in 
biomedical studies) is that of comparing two groups oi patients (treatment 
and a control group) based on multiple response (called multiple end­
points).

Suppose there are к ^  2 endpoints У,, Y2, Y k. Denote by 
Y0 =  (У0„ Y02, Y ok) and Y,  = ( Y ll, Y li, . . . , Y u)  the vectors of observa­
tions on a typical patient from a control group and the treatment 
group.
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Let ц0 =  (моь1Ло2,...,Цод and p, =  (jin , ß n, М\к) be the mean vectors of 
the two groups and let 0 =  p,, — p0 be the difference vector.

Two different types of questions are often posed:
1. Is there at least one endpoint for which the treatment is more effective 

than the control? Identify all such endpoints.
2. Do different endpoints point in the same direction with regard to 

the superiority of the treatment over the control? If, so, does the combined 
evidence support the treatm ent’s superiority?

In this paper we present the continuous and discrete approaches to 
multiple endpoints ( H o c h b e r g ,  T a m h a n e  1987). In the case of con­
tinuous multiple endpoints we have a common assumption in that the 
covariance matrices in group of the control and observation are equal.

We also proposed a general modified bootstrap approach which can be 
used to estimate the p-value without making any parametric and dist­
ributional or correlational assumptions.

2. CO NTINUO US END PO IN TS

Let Y0n, m =  1,2, ...,n0, be n0 i.i.d. observations from the control group 
and Y,m, m =  1 ,2 ,..., n,, be n, i.i.d. observations from the treatment group. 
A common assumption is that the covariance matrices of the Y,m in each 
group I = 0,1 are equal. Let p,v be the correlation coefficient between Y, 
and Yj (the i-th and y'-th endpoint) for 1 <  i < j  <  k.

Let p, be the raw p-value obtained using some statistic for the i-th 
endpoint 1 <  ť <  к.

First we can mention the methods based only on the raw p-values for 
adjusting the p,

pal= 1 -(1 -р,)Л l<i</c.

We can generalize this formula to depend on the p{J as follows:

Pat =  1 -  (1 -  p f ' ",

where p is the average of all the p(J.
Now suppose that the Y0m and Ylm are multivariate normal. For testing 

H0, : 0, =  0 consider the usual test statistic



where 7 H and 7 Ш are the corresponding sample means and a, is the standard 
deviation of Y , (usually estimated from data) (1 <  i ^  к). Note that 
corr(Zj, Zj) = Pu (1 <  i < j  <  k). The raw p-values are given by

where z( is the observed value of Z, (1 <  i ^  k).
Recently most of authors have development the following ad hoc method, 

which is a hybrid of the multivariate normal and the p-value based methods. 
Let z(c° be the upper a critical point of the univariate standard normal 
distribution. Then k' is found from

The advantages of the bootstrap approach are that:
1) it is distribution free,
2) it accounts for the dependence structure automatically from the 

observed data,
3) it is very flexible in accommodating different tests for different 

endpoints.
We proposed a general bootstrap approach which can be used to estimate 

that pai without making any parametric distributional or correlational as­
sumptions.

Let y0i,Jta ,-,yo« . and y u , y l2,..., ylBl be the observed data vectors from 
control and the treatment groups, respectively. Let p[,p 2, . . . , pk be the 
observed raw p-values obtained using appropriate two-sample tests for each 
endpoint. The bootstrap procedure operates as follows:

1) pool the two samples together,
2) draw bootstrap samples yôi, Ут,  •••> Уоп0 a°d У и ,  У п , У и ,  with re­

placement from the pooled sample,
3) apply the appropriate two-sample tests to each of the к endpoints 

using, the bootstrap samples and calculate bootstrap p-values p t , p 2, . . . ,pi,

р, = р ( г , > 21\о = о),

Having found k', the adjustment p-values are calculated using 

Pa,= l - V - P f  ( K i < f c ) .

3. BOOTSTRAP APPROACH



4) repeat steps 2 and 3 some large number (N ) of times,
5) the bootstrap estimates of the adjustment p-values are then

л # (m in  p j ^ p )  „
Pal =  ---------JZ--------  (1 <  I <  k),

where # (m inpj  <  pt) is the number o f simulations resulting in p / < p (.

3.1. Discrete endpoints

Binary outcomes are common in medical studies. Suppose that we divide 
randomly 100 patients into a control and a treatment group.

For each patient, к different sites (e.g. heart, skin) are examined for 
the occurrence o f tumors. The к outcomes for each patient can be regarded 
as multiple endpoints.

Based on these data, it is of interest to determine if there is an increases 
incidence of tumors in the treatment group at certain sites. If  л01 and 
я,, denote the tum or incidence rates at site i for the central and treatment 
groups, respectively, then this can be formulated as a multiple hypotheses 
testing problem

Н ,:я 0| =  я[, vs. A,: n0i < я и (1 <  i <  k).

Let H =  f ],k. . H, and A = f |i*-1 A,.
Suppose there are n0 patients in the control group and и, on the 

treatment group. Let Y0, and Y u be the numbers of patients in each 
group with tumors at site i (1 <  i <  k). Then Y0 = ( Yai, Ym, Y 0k) and 
Уi =  (Уп> Yi2, У|*) are independent multivariate binomial vectors with 
correlated components. Let y0 = (y0l, y02, y ok) and y x = (yn , y l2, ..., y lk) 
be the corresponding observed data vectors. For each site i we have 
a 2 x 2 table

Tumor N o tumor Total

Control Уа по - У а «0

Treatment Уи «1 — Ун «1

Total m, n —mt n

where n = n0 + nl is the total number of animals in the study.



The raw p, can be obtained by conditioning on m, and using Fisher’s 
exact test

One may consider using the p, to test the H, and (by the UI method) 
pmin to test H. However, to account for the multiplicity of the tests, the 
adjusted p-values, pa i and pa,mm> must be used. For this purpose, the 
Bonferroni methods for continuous data are generally too conservative.

The following formulas are easily generalized to calculate the pa i:

R. E. T a r o n e  (1990) used this idea to sharpen the Bonferroni procedure 
as follows: Calculate the minimum value of pt for each i if mi, <  n, then

1. First check whether the Bonferroni procedure can be used with level 
a for each hypothesis. Since the FEW must be controlled at level a, this 
is possible only if these is at most one rejectable hypotheis, i.e., if

4. M ODIFIED PROCEDURES

4.1. Tukey-Mantel procedure

к

Pa,m in  =  H l í n  (  £  p ' ,  1  ,  p aMa  =  1  -  П О  -  P i ) '

4.2. Tarone’s procedures



If there are no rejectable hypotheses (/c, =  0) then accept all H,’s. If fc, =  1 
then test that rejectable hypothesis at level a.

2. If k t > l  then check whether the Bonferroni procedure can be used 
with level a/2 for each hypothesis. Since the FEW  must be controlled at 
level a, this is possible only if there are at most two rejectable hypotheses,
i.e. if

k2 = #  ( i : Pi, min < « /2 ) <  2.

If /c2 — 0 then accept all H,’s. If k2 =  1 or 2 then test those rejectable 
hypotheses each at level a/2. If k2> 1 go to the next step.

3. In general, let

k j=  #  ( i : p(>inin <  а/у), у =  1 ,2 ,..., k.

Note /с, >  k2 ^  kk. Find the smallest у =  /  such that k jš i j .  Then test 
the rejectable H, at level а/у*.

5. PERM UTATIONAL PROCEDURES

5.1. Brown and Fears procedure

To explain this method, introduce the notation Y0(S) and ľ",(S) where 
Y0(S) (respectively, Y,(S)) is the number of animals in the control group 
(respectively, treatm ent group) with at least one tum or at each site 
i e S  £  К  =  {1, 2 ,..., к}; if S is an empty set then the notation stands for 
patients with no tumors at any of the sites. Note

Y0, = I  Yn(S) and Yu = X  y,(S).
S: ieS S'.ieS

Let Y0(S) +  7,(5) =  m(S) be the total number of patients with at least one 
tumor at each site i s  S. The Brown and Fears method ( B r o w n ,  F e a r s  
1981) is based on the permulational (randomization) joint distribution on 
all m(S), {1,2, ...,k} (not just the marginal totals m,.). Under

H : tcqi — ti 11 (1 ^  i ^  /с), 

this distribution is multivariate hypergeometric



where y, =  (y,„ y l2, ..., y ik) and the sum is over all y t(S), S ^ K  such that

У и  =  I  V Á S )
S:ieS

Using this distribution, pa min is obtained from

Pa,miB = P H ^ U ( Y u > c l l m ( S ) V S ^ K ) ^

where c, is the largest integer such that

Pн(^  1 j ^  ci I mi) — Pi Pmin-

5.2. Rom procedure

D. R o m  (1992) proposed to test the overall null hypothesis H based 
on the adjusted p-value (denoted by pa) that takes into account all the 
p-values instead of only the р ^ в. Let p(1) >  Ppj ^  Pw be the ordered 
p-values and let P (0 be the r.v. corresponding to p(/). Then pfl is the 
probability of the event that

{P(k) <  P(k)} o r  { - P ( * )  =  P ( t ) }  n  { - ^ ( * - 0  < P ( * - > ) }  o r  • ”  o r

{P(k) = P(k)} П ... П {P(2) =  P(2)} П {P(i) <  P(|)}.

Clearly, this probability is never larger (and often much smaller) than 
Pa min =  P(Pmin ^  Pmin)- Therefore the test of II based on pa is more powerful 
than the test based on pfli

6. EXAMPLE

In a hypothetical study 100 patients are randomly assigned with 50 each 
to the control and the treatment group. Only к =  2 tum or sites, A and B, 
are examined with the following results presented on table.



The m arginal p-values using Fischer’s exact test are: p, =  
=  P( Y,, >  5 1 m, =  6) =  0.1022 and p2 =  P(Y12 >  8 |m 2 =  10) =  0.0457. We 
shall now calculate pa,min using the methods discussed above.

Site Control Treatment Total

A  only 0 3 3

В only 1 6 7

A  and В 1 2 3

N o  Tumor 48 39 87

Total 50 50 100

First, for the Bonferroni procedure we have pamin =  2-0.0457 =  0.0914. 
Next, to apply the Tukey-M antel procedure we need to calculate pi 
and p2. We have P(YU >  6| m,  =  6) =  0.0133 < p rain and P(Y,, >  
Ss 5|m,  =  6) =  0.1022 > p mia1, therefore p* =  0.0133. Next, p2 =  0.0457. We 
have: paMn = 0.0133 +  0.0457 =  0.0590. We get pa,min =  1 -  (1 -  0.0133) 
(1 -0 .0457 ) =  0.0584.

To apply the Tarone procedure ( T a r o n e  1990), first calculate 
P i . m i n  =  0.0133 and p2imin =  0.0005. Therefore fc, =  2, k2 = 2 and /  =  2; thus 
no reduction in the number of rejectable hypotheses is achieved. Comparing 
the observed p, and p2 with a / /  =  0.025, we find that neither site has 
a significant result at a =  0.05.

To apply the Brown and Fears procedure ( B r o w n ,  F e a r s  1981) we 
need the joint distribution of У, =  (Yn , Yl2). From the marginal distributions 
of Yn and Y,2 we see that the largest values c, such that P(YH >  c,|m () =  pmin 
are c, =  6 and c2 =  8. Therefore

р0.тш =  Р { ( Г п ^ 6 ) и ( 7 12> 8 )}  =

=  P{ Yu ^  6} +  Р{У12 >  8} -  P{(Yn >  6) n  ( Y12 >  8)} =  

=  0.0133 +  0.0457 -  0.022 =  0.0568.

Notice that the M antel-Tukey approximations, namely 0.0590 and 0.0584. 
are quite close to the exact pQ)nua. However, they are all greater than a =  0.05 
and so H cannot be rejected.

Finally we apply the Rom procedure ( R o m  1992) to these data. Adding 
up the probabilities from joint distribution of Y u and Y12 we find that 
pa =  0.0285. Thus, in this example, only the Rom procedure yields a sig­
nificant result.
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WIELKOKROTNE PUNKTY KRAŃCOW E

W iększość procedur testowych, dotyczących porównań wielokrotnych, związanych jest 
z porównaniami między zabiegami medycznymi. W studiach biometrycznych często spotykamy 
się z problemem porównań między dwiema grupami pacjentów (grupą zabiegową i grupą 
kontrolną) opartymi na wielokrotnych wynikach (relacjach) zwanych punktami krańcowymi. 
Rozważamy к  <  2 punktów końcowych Y l, Y 1, . . . , Y k. Oznaczmy przez Y0 =  (У0|, Y ^ , ..., Y ok)
oraz Y , =  (У ,,, У,,.......y , t) wektory obserwacji typowego pacjenta z grupy kontrolnej i grupy
zabiegowej.

Niech (i, =  (jiov ..., /ím) oraz ц, =  (jtu, m,v .... będą odpowiednio wektorami średnich 
z obu grup, natomiast 0 =  ц 1 — będzie wektorem różnic. W artykule przedstawiono procedury 
testowe i ich modyfikacje dotyczące ciągłych i skokowych punktów krańcowych oraz za­
proponowano podejście bootstrapowe do estymacji p-wartości.


