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Abstract. Estimates of the generalised Taylor rule suggest that monetary policy in Poland can

be characterized as having reacted in a moderate fashion to output and inflation gaps and are

strongly dependent on the lagged interest rate. Moreover, as for the majority of central banks the

short-term rate paths are smooth and only gradual changes can be observed. Optimal monetary

policy models in the linear-quadratic framework produce high variability of interest rates, and are

hence inconsistent with the data. One can obtain gradual behaviour of optimal monetary policy

by adding an interest rate smoothing term to the central bank objective. This heuristic procedure

has not much substantiation in the central bank’s targets and raises the question: What are the

rational reasons for the gradual movements in the monetary policy instrument?

In this paper we determine optimal monetary polices in a VAR model of the Polish economy

with parameter uncertainty. By incorporating a proper structure of multiplicative uncertainty in

the linear-quadratic model of the Polish economy we find a data consistent robust monetary policy

rule. Thus proving that parameter uncertainty can be the rationale for ”timid” movements in the

short-interest rate dynamics. Finally, we show that there is trade off between parameter uncertainty

and the interest rate smoothing incentive.

Keywords: Optimal Monetary Policy, Parameter Uncertainty, the Brainard conservatism princi-

ple, Interest rate smoothing, SVAR model
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1. Introduction

The fundamental point of the analysis presented in this paper is based on the assumption

that policy makers act in an optimal manner. This hypothesis is consistent with a generally

accepted principle of economics which states that any economic behaviour can be understood as

a problem of constrained optimization (see eg [Tinbergen, 1952] and [Theil, 1961]). It is believed

that this principle should apply to central banks (CBs) as strictly as to the representative firm

or household. However, standard optimal inflation targeting rules obtained in linear-quadratic

models are inconsistent with data and produce a too aggressive policy. Moreover, the majority of
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central bank short-term interest rate paths are smooth and only gradual changes can be observed.

This behaviour has been considered as evidence that monetary policy makers follow the interest-

rate smoothing incentive. In many empirical studies this gradualism can be explained using the

optimal monetary policy models by adding the interest-rate smoothing term to the CBs objective

function [Goodfriend, 1987]. But this heuristic procedure has not much substantiation in central

bank’s targets. [Woodford, 2003b] lists several plausible reasons why policymakers should prefer

”policies that do not require the level of short-term interest rates to be too variable”1.

This paper examines whether gradual movements of optimal interest rates can be explained by

incorporating a proper structure of parameter uncertainty for an optimal central bank with the

sole aim of price and macroeconomic stability. More precisely, we investigate the effects of different

forms of uncertainty in the linear model of the Polish economy on the optimal central bank policy.

In models with parameter uncertainty we minimize the expected value of central bank’s objective

function which is calculated also with respect to the random model’s parameters and as a result

we obtain a so called optimal policy with multiplicative uncertainty (or in short robust monetary

policy).

The Brainard conservatism principle2 not always turns out to be fulfilled in dynamic models.

In existing literature this principle is confirmed for a few dynamic models of monetary economy,

but still under the assumption that there is no correlation between the risk and the parameter

uncertainty. An unambiguous answer to the question of whether the correlated uncertainty about

parameters affect optimal monetary policy is not known. One of the main aims of this paper is the

examination of the Braniard principle for Poland in the presence of correlation between random

parameters and exogenous shocks.

The critique by Lucas ([Lucas Jr, 1976]) pays attention to the two-sided relationship between

model parameters and policy rule, and thus to some extent limits the application of optimal macroe-

conomic theory (see [Amman and Kendrick, 2003]). The results of Söderström ([Söderström, 1999])

and Sack ([Sack, 2000]) are based on the simplest method of identification which is the Choleski

decomposition, whereas in [Salmon and Martin, 1999] authors follow the short run zero restrictions

in variance-covariance decomposition, introduced by [Sims, 1986]. Both procedures are subject to

the Lucas critic. To make our model more robust on the Lucas argument we propose a novel shock

identification procedure based on optimal policy rule (see Section 3.2). The method assumes that

the structure of exogenous shocks is estimated using the restriction put on the impulse response

function of the optimal interest rate rule.

1Using microfoundations in the framework of DSGE models (see Chapter 6 of [Woodford, 2003a]) he derives an
objective function that depends on interest rates squares and an optimal feedback rule that responds to lagged
endogenous variables; and hence in particular it has a smooth course.
2according to which: if the parameter uncertainty at control variable is uncorrelated with endogenous shocks, then
the model gives less aggressive policies (see [Brainard, 1967], [Rudebusch, 2001]).
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As the true model of the economy is unknown, we estimate a dynamic simultaneous equations

model3 of monetary transmission mechanism in Poland with parameter uncertainty. We do not

impose any restriction on random model parameters, hence this approach can to some extent

handle model uncertainty. On the basis of the estimated model the optimal paths of macroe-

conomic variables are found and the analysis of impulse response functions (IRFs) with different

stochastic structures of parameters is conducted. Analysing not only these structures of parameter

uncertainty but also controlling the level of Knightian incertitude we compare volatility of macroe-

conomic variables and IRFs from optimal monetary policy models with the empirical model coun-

terparts to find the uncertainty structure which matches closer the optimal policy to data. The

objective function is assumed to reflect two main aims of central banks: price and macroeconomic

stability. We also consider the optimal central bank with the interest rate smoothing term added

to the objective function. We compare the individual influence of two factors: structural uncer-

tainty in macroeconomic dynamics and smoothing term in the objective function on the optimal

unrestricted policy rule. We show that the optimal paths of interest rate from the model with

certainty and positive relative weight at interest rate smoothing term in the objective function can

be nearly approximated by the optimal interest rate derived from the model without smoothing

term, but with appropriately chosen uncertainty parameters.

This paper proposes a general method based on the dynamic programming principle to derive

optimal monetary policy rules with multiplicative uncertainty (see Appendix A). These rules are

those that are the best amongst those that yield an acceptable performance in a specified range of

models described by parameter uncertainty of the structural model. In this paper we propose a new

and simple approach to uncertainty-management with no active learning process, where estimation

and control are separated. We apply dynamic programming methods for general linear systems

to derive exact solutions. Moreover, we assume that the model parameters follow according to a

serially uncorrelated process with an estimated mean and variance at the beginning of the decision

period. This framework helps us to obtain an analytical solution of optimal monetary policy and

makes the counter-factual model simulations feasible in reasonable time. Furthermore, we do not

need to impose any prior assumptions on the parameters distribution.

The paper is organized as follows: In the next section we briefly review the existing literature on

uncertainty in monetary policy. Section 3 introduces the linear model of monetary transmission

mechanism with parameter uncertainty. In Section 4 we derive the solution to the optimal monetary

policy problem with multiplicative uncertainty. Section 5 contains the empirical results where we

compare the optimal monetary policy rules with different structures of model uncertainty. In

Section 6 we conclude our findings.

3Dynamic SEM models are presented in [Lütkepohl, 2005]. Other names for dynamic SEM models that used in the
related literature are vector autoregressive models with exogenous variables (VARX) or distributed lag models.
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2. Related literature on uncertainty in monetary policy

Researchers and central bank practitioners list several sources of uncertainty that can disturb the

monetary policy rules (see [Goodhart, 1999], [Poole, 1998] , [Greenspan, 2004], [Blinder, 1999],

[Onatski and Williams, 2003], [Woodford and Walsh, 2005]): exogenous shocks which are usually

connected with the risk of the model, random economy parameters with unknown distribution i.e.

Knightian uncertainty and finally data and model uncertainty. In the view of many policymakers

a little stodginess at the central bank is entirely appropriate (see [Blinder, 1999], and the Kohn

comments to [Batini and Haldane, 1999]), since among other things they have little confidence in

estimates of the size of the output gap, the equilibrium interest rate and model parameters. As

noted by Chow (see [Chow et al., 1975]) in general there is no one-sided relationships between the

parameter uncertainty and policy rule. Hence quantitative analysis is required.

In many papers the effect of parameter uncertainty on the performance of the optimal Taylor

rule is analysed. The authors conclude that in parsimoniously parameterized structural models the

parameter uncertainty does not make the optimal Taylor rule attenuated (see [Rudebusch, 2001],

[Estrella and Mishkin, 1999], [Peersman and Smets, 1999], [Smets, 2002] and reference therein).

However, [Estrella and Mishkin, 1999], [Svensson, 1999] demonstrate a positive influence of pa-

rameter uncertainty at the policy variable in the IS equation on central bank gradual decisions.

Other works that also confirm some moderation of optimal policy assume an unrestricted rule and

a VAR model with many lags (see [Söderström, 1999] [Salmon and Martin, 1999], [Sack, 2000]) or

many independently distributed parameters in the restricted VAR model (see [Söderström, 2002]).

Sack in [Sack, 2000] gets round the problem of random multipliers and replaces the state variable

with its expected value in the previous period, which imply that the central bank cannot respond

to contemporaneous shocks in the economy, and assumes that the expected objective function

depends both on the squared deviations of expected variables from targets, and on the variance

of the targeted variables. This form of uncertainty limits the aggressive movements in the inter-

est rate. Using the Sack approach in [Salmon and Martin, 1999] the authors confirm the same

results for the UK economy. Söderström in [Söderström, 2002] considers a simple monetary policy

model developed by Svensson [Svensson, 1999]. Under the assumption that random parameters

are independent of structural shocks and have a diagonal variance-covariance matrix he proves that

uncertainty does not necessarily dampen the policy response. Söderström shows that parameter

uncertainty at lagged inflation can even increase the optimal response of the interest rate.

Optimal control theory for models with multiplicative uncertainty advice a policy maker how to

make optimal decisions from the point of view of minimizing average loss and when the model ap-

proximates a correct one. Whereas robust control theory tells us how to make good decisions in the

worst case scenario i.e. decision makers minimize worst-case loss (see [Hansen and Sargent, 2008],

[Barlevy, 2011]). Robust policy rules are found assuming that the moments of parameter un-

certainty are not available and by using min-max methods where the maximization is taken
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over the range of parameter values and then we minimize with respect to control variables (cf.

[Kendrick, 2005]). In [Onatski and Stock, 2002], [Giannoni, 2002], [Giannoni, 2007] the authors

using the min-max technique show that the robust optimal policy rule is likely to involve an ag-

gressive response of the interest rate to inflation and the output gap shocks than is the case in

the absence of uncertainty. A systematic approach based on model error modelling to find robust

Taylor-type rules is presented in [Onatski and Williams, 2003], where Bayesian and minimax tech-

niques are compared. The authors noticed that in the Bayesian case the result strongly depends

on prior beliefs of model parameters. With uninformative priors the Bayesian optimal policy rules

were attenuated, whereas for stronger prior beliefs and in the min-max case the Bayesian optimal

and robust rules were more aggressive than in the absence of uncertainty.

As noted in [Blinder, 1999] uncertainty about parameters in optimal monetary policy models

is much more difficult to handle. The usual approach to uncertainty-management in the models

of monetary transmission mechanism is the application of Bayesian decision-making, where the

optimal monetary policy model can be written as the adaptive control problem ([Prescott, 1972],

[Zellner, 1996], [Wieland, 2000]). In this framework active learning and design techniques are

involved and subjective assumption on prior parameters distributions is needed. The Bayesian

approach seems to be an adequate framework for uncertainty-management, but since the updating

equations are non-linear, the determination of an exact solution usually appears to be impos-

sible. As a result numerical approximation is used to find solutions [Easley and Kiefer, 1988],

[Kiefer and Nyarko, 1989], [Zellner, 1996] ) which involves high computational costs. Much re-

search on monetary policy states that optimal central banks face a trade off between control and

estimation since they are uncertain about the model parameters. Moreover, policy actions may

affect the relationships between controls and state variables. Unfortunately the adaptive control

approach has not attracted the attention of economists or central bank practitioners. According

to Blinder [Blinder, 1999] the explanation of this inadvertence is as follows: ”You don’t conduct

experiments on a real economy solely to sharpen your econometric estimates”.

3. Model of the monetary transmission mechanism with uncertainty

We build an empirical monetary policy model for the Polish economy using the vector autoregres-

sive equations with exogenous variables estimated on the quarterly data for the period 2000–2014.

Let us recall that in 1998, the Monetary Policy Council (MPC) in Poland announced its deci-

sion to adopt an inflation targeting regime. Since 2004 MCP has fixed an inflation target at

the level of 2.5% and has used short run interest rate to bring the inflation as close as possible

to its target constant level of 2.5%. A practical utility of the optimal and risk-sensitive mone-

tary policy rules in a vector autoregressive framework for the Polish economy were presented in

[Milo et al., 2013], [Bogusz et al., 2015b] and [Bogusz et al., 2015a]. In the latter paper authors

shows that risk-sensitive monetary policy rules response stronger to shocks than standard optimal

rules.
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In this paper it is assumed that the economy fluctuation is described by a state vector yt =

[xt, πt, qt]
′ consisting of output gap, xt = logGDPt

ĜDP t
, deviation of inflation from its target, πt = CPIt−

ĈPI t, and deviations of real effective exchange rate from its long run trend qt = REERt−R̂EERt
4.

The only tool used by the policy maker to influence the economy state yt is the monetary policy

instrument, it = WIBOR1M t − ̂WIBOR1M t, being the deflection of one month interest rate

WIBOR1M t around its trend value ̂WIBOR1M t
5. The model is described by the following

vector autoregressive specification with present and lagged exogenous prices of oil crude6, oilt, :


yt =

(
A + ξA

t

)
yt−1 +

(
B + ξB

t

)
it−1 + c0 + C0oilt + C1oilt−1 + Ξe

t

it = D0yt + D1yt−1 + Eit−1 + c1 + F0oilt + F1oilt−1 + εit
y0, i−1 are given

(1)

where: t = 1, 2 . . . , T , Ξe
t = [ξxt , ξ

π
t , ξ

q
t ]
′, εit are exogenous shocks such that cov(Ξe

t , ε
i
t|Ft−1) = 07

and c0, c1,A, B, C0, C1, D0, D1, E, F0, F1 ∼ F0 are matrices of parameters obtained from OLS

estimation (sample period 2000.q1-2013.q4, see Appendix B for more details). The Knightian

uncertainty in the model is describe by

ξA
t =

ξA
1,t

ξA
2,t

ξA
3,t

 , ξB
t =

 ξB
1,t

ξB
2,t

ξB
3,t

 .(2)

We call the equation for it in (1) the empirical interest rate rule and in Section 4 we replace it

with robust optimal momentary rules (11) or (12). Notice that to verify the smoothing effects of

parameter uncertainty on optimal policy rule we analyse the model with only one lag at control

variable it. Thus the unrestricted optimal flexible inflation targeting rule (12) does not depend on

the lagged it−1, and therefore the smoothing effect of the optimal interest rate can be explained

by a proper structure of Knightian uncertainty in the model (see Section 5).

3.1. Structures of parameter uncertainty at state and control variables. We consider

three stochastic structures of model uncertainty and the benchmark model with certainty i.e.. ξA
t ,

ξB
t = 0. (see Table 1). The first structure of uncertainty assumes that parameters at control

4Here CPIt stands for inflation, measured using consumer price index, annual percentage changes and CPItargett is

the National Bank of Poland target inflation, GDPt is seasonally adjusted real GDP and ĜDP t represents potential
GDP and is obtained by Hodrick-Prescott filter; REERt is real effective exchange rate in Poland, 2010q1=100,

seasonally adjusted and R̂EERt is Hodrick-Prescott trend of real effective exchange rate.
5 ̂WIBOR1M t is estimated long-term trend of interest rate in period t (seasonally adjusted, Hodrick-Prescott filter)
6oilt is oil Brent price in period t per barrel in the Polish zloty at constant prices of 2010.
7Ft = σ(i−1, y0, (oils)

t
s=0, (Ξ

e
s)
t
s=1, (ε

i
s)
t
s=1, (ξ

A
s )ts=1, (ξ

B
s )ts=1) is σ- algebra of events observed up to the period

t. The condition cov(Ξet , ε
i
t|Ft−1) = 0 means that the monetary policy shock εit does not have instantaneous

impact on macroeconomic variables yt which is consist with the observation that nominal and real rigidities prevent
economy agents from the instantaneous adjustments. Moreover, the empirical interest rate rule assumes that there
is immediate dependence of it on exogenous shocks Ξet passed by the term D0yt. This partial structure of shock is
consistent with models describe in [Bernanke and Blinder, 1992], [Sack, 2000].
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variable are random. In the second we add the uncertainty to parameters at state variables

and assume that they are uncorrelated with each other and with the exogenous shocks. The last

stochastic structure of the model allows for correlations between random parameters and exogenous

shocks. In all the above considered version of model (1) we assume that shocks in period t have zero

conditional mean given that Ft−1, covariance matrix of exogenous shocks satisfies cov (Ξe
t |Ft−1) =

Σξ, cov (εit|Ft−1) = σ, cov (Ξe
t , ε

i|Ft−1) = 0, and cov
(
ξA
n,t, ξ

A
m,t|Ft−1

)
= cov

(
ξB
n,t, ξ

B
m,t|Ft−1

)
=

cov
(
ξA
n,t, ξ

B
m,t|Ft−1

)
= 0 for all t > 0 and m,n ∈ {1, 2, 3},m 6= n. The last conditions reflect lack

of correlation between uncertainty shocks of different equations.

Moreover, in the model with correlated uncertainty it is assumed that for all n,m = 1, 2, 3,

m 6= n we have

cov(ξA
m,t|Ft−1) = Σm,A, cov(ξA

m,t,Ξ
e
t |Ft−1) = Σm,AΞe(3)

cov(ξB
m,t|Ft−1) = σ2

m,B, cov(ξB
m,t,Ξ

e
t |Ft−1) = Σm,BΞe ,

cov(ξA
m,t, ξ

B
m,t|Ft−1) = Σm,AB,

where the variance-covariance matrices Σm,A, Σm,AΞe , Σm,BΞe , Σm,AΞe , σm,B are estimated at

the beginning of decision period (see Appendix B). In the model with uncorrelated uncertainty we

assume that all covariances between parameters, and exogenous shocks and parameters disappeared

i.e. Σm,AΞe = 0, Σm,BΞe = 0, Σm,AB = 0 and Σm,A is diagonal for all m ∈ {1, 2, 3}. The last

structure of shocks assumes uncertainty only in parameters at control variable (it), hence here we

assume that Σm,AΞe = 0, Σm,BΞe = 0, Σm,AB = 0 and Σm,A = 0 for all m ∈ {1, 2, 3}.
Having variances and covariances of shocks we define the uncertainty operatorsGA : M (4× 4)→

M(4 × 4), GB : M (4× 4) → R, GAB : M (4× 4) → R4, GAΞ : M (4× 4) → R4, GBΞ :

M (4× 4)→ R by the following formulae:8

GA (K) = un · Σ3
m=1kmmΣm,A, GAΞ(K) = un · Σ3

n=1Σ3
m=1knmΣn,AΞeem,(4)

GB (K) = un · Σ3
m=1kmmσ

2
m,B, , GBΞ(K) = un · Σ3

n=1Σ3
m=1knmΣn,BΞeem,

GAB(K) = un · Σ3
m=1kmmΣm,AB

for all K = [knm]4x4, where vectors e1, e2, e3 forms the canonical orthonormal basis in R3 and where

parameter un ∈ {0, 1, 2, 3} measures the degree of Knightian uncertainty in the model.

Table 1 shows the relationship between the stochastic structure of the model and uncertainty

operators. Operator GA reflects the uncertainty of parameters A at state variable, GB contains

the randomness of parameters B at control variable, whereas GAB measures both variability of

all random parameters and correlation between them. Operators GAΞ, GBΞ are created from

covariances between parameter uncertainty shocks and exogenous shocks. Notice that if there is

certainty of model parameters (un = 0), then all uncertainty operators are equal to zero.

8M (m× n) stand for the linear space of m× n matrices.
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Table 1. Monetary transmission models with certainty and uncertainty

model version uncertainty operators

model with certainty none, un = 0
model with uncertainty at control variable GB, un > 0
model with uncorrelated uncertainty GA, GB, un > 0
model with correlated uncertainty GA, GB, GAB, GAΞ, GBΞ, un > 0

3.2. Shock identification. In the previous Section we have imposed the following partial struc-

ture of exogenous shocks:

[
Ξe
t

εit

]
=

[
P11 03x1

P21 P22

]
εxt
επt
εqt
εit

(5)

where εxt , ε
π
t , ε

q
t , ε

i
t are fundamental shocks in the economy called demand, price, exchange rate

and interest rate shocks, respectively. Notice that P11,P21,P22 satisfy P−1
22 P21P

−1
11 = I − D0,

Σξ = P11P
′
11 and σ = P2

22. The exogenous shock structure (5) has been considered by many

scholars (see [Sack, 2000], [Bernanke and Blinder, 1992]). The structure assumes that CB can

respond to contemporaneous state economy shocks επt , ε
q
t , ε

i
t (or equivalently contemporaneous

economy variables xt, πt, qt) when setting the interest rate, but also that the interest rate shock

does not have a contemporaneous impact on the economy yt. In order to identify the system (1)

we have to add three more restrictions on matrices P11,P21. In the optimal and robust monetary

models we replace the empirical policy rule:

it = c2 + D0yt+D1 yt−1+Eit−1+F0oilt+F1oilt−1+εit

by its optimal counterpart (see (11) or (12)) and make the shock identification procedure complete

by imposing all three possible zero restrictions on elements of matrix P11 and analysing the signs

of the impulse response functions (IRFs) of optimal interest rates in the model with certainty. We

choose the matrix P11 which gives contractionary response of the optimal interest rate to demand,

εxt , and price, επt , shocks and expansionary response to the exchange rate shock (appreciation of

the Polish zloty), εqt . This identification procedure give the following estimates:

P11 =

 0.006088 0.001368 0

0 0.006926 0

−0.00407 0.006615 0.029523

 P21 =
[

0.00114 0.00032 0.00034
]

P22 = 0.00282.

We believe that including the optimal policy rule into the shock identification limits to some extent

the Lucas critic.
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4. Optimal model of monetary policy under uncertainty

For the optimal central banks we assume the following inter-temporal quadratic loss function which

defines the CB objective.

L =
1

2

T∑
t=0

γt
(
π2
t + λx2

t

)
+ ν

1

2

T−1∑
t=0

γt(it − it−1)2(6)

where γ is a discount factor, the weight at deviation of inflation from its target is normalized to

one, λ determines the relative weight of the deviations of GDP, ν is an interest rate smoothing

parameter of L. We consider two types of optimal central bank. The first only wants to stabilize

both prices and the output gap, thus the bank follows flexible inflation targeting i.e. policy makers

assume that λ > 0, ν = 0 in (6). The second optimal CB follows the flexible objective function

with interest rate smoothing incentive, hence policy makers choose the loss function (6) with

λ > 0, ν > 0. Notice that we consider a finite decision horizon T . Therefore, the following control

problem is solved by the optimal CBs:

min
(it)

T−1
t=0 ∈IT

E (L|F0) subject to(7)

yt =
(
A + ξA

t

)
yt−1 +

(
B + ξB

t

)
it−1 + c0 + C0oilt + C1oilt−1 + P11ε

e
t(8)

y0 is given and t = 1, 2, . . . , T.

where IT = {(it)T−1
t=0 : it = it(y0, y1..., yt) ∈ R, t = 0, 1, .., T − 1}. The excepted value in (7)

is taken with respect to two sources of randomness: exogenous shocks εet = [εxt , ε
π
t , ε

q
t ] and pa-

rameter uncertainty shocks ξA
t , ξB

t and can be interpreted as the excepted risk function (see

[DeGroot et al., 1981]). Moreover, if un > 0, then the solution i∗t to (7)-(8) takes into account

the perturbations ξA
t , ξB

t to the estimated model parameters and in this way i∗t constitute robust

monetary policy with respect to model uncertainty.

In Appendix A the solution to the general linear–quadratic optimal control problem with mul-

tiplicative uncertainty is presented. Here we apply these results in order to derive the formula

for optimal and robust monetary policy rules. As the objective function of CB with interest rate

smoothing incentive contains lagged control variables we need to use the following state space

representation of (8) to derive the optimal monetary policy. Let Xt = [yt, it−1]′ be a new state

variable, then Xt satisfies the equation of the form:

Xt+1 = dt + (A + ξAt+1)Xt + (B + ξBt+1)ut + ξt+1(9)

where ut = it is a control variable, A =

[
A 0

0 0

]
, ξAt =

[
ξA
t 0

0 0

]
, B =

[
B

1

]
, ξBt =

[
ξB
t

0

]
,

dt =

[
c0 + C0oilt + C1oilt−1

0

]
, ξt+1 =

[
P11ε

e
t

0

]
. The expected loss function in the new state
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space takes the following form:

E(L|F0) = E

(
T∑
t=0

γt
1

2
〈QtXt,Xt〉+

T−1∑
t=0

γt
(
〈FtXt, ut〉+

1

2
〈Rtut, ut〉

))
,(10)

where Qt =

[
Q 0

0 ν

]
for t = 0, 1, . . . T − 1, QT =

[
Q 0

0 0

]
, Q =

 λ 0 0

0 1 0

0 0 0

, Rt = ν,

F = [0, 0, 0,−ν]. Therefore, the optimal monetary policy with uncertainty is the solution to the

problem of minimizing (10) subject to (9).

Applying Theorem 2 from Appendix A to the optimal monetary policy problem (10)-(9) we

obtain the formulae for flexible inflation targeting policy with interest rate smoothing incentive (

ν > 0):

i∗t = Gt[y
∗
t ; i
∗
t−1] + gt,(11)

and for the flexible inflation targeting monetary rule (ν = 0):

i∗t = Proj3(Gt)y
∗
t + gt,(12)

where

Gt = −γRt (B′Kt+1A + F +G′AB(Kt+1))(13)

gt = −γRtB′(Kt+1dt+1 + pt+1)− γRtGBξ(Kt+1),(14)

Rt = (ν + γGB(Kt+1) + γB′Kt+1B) −1(15)

where (Kt)Tt=0 is the solution to the Riccati recursion (see Appendix A eq. (22)), (pt)
T
t=0 satisfies

(23). The red terms in (11) and in (22)-(23) indicate dependence of optimal monetary rule on

the stochastic structure of parameter shocks 9. Thus the policy does not follow the equivalence

principle (see [Simon, 1956], [Theil, 1957]) and takes into account not only the means but also

the variances and covariances of shocks. The last property makes the optimal interest rate to be

robust on uncertainty of model parameters. Notice that the optimal central bank with interest

rate smoothing incentive implement the policy rule given by (11), which assumes some amount

of persistence as it depends on lagged interest rate. Whereas for the optimal central bank which

focuses only on price and output stability and follows the equation given by (12), where there is

no lagged policy instrument, we can obtain persistence of interest rate by the effect of parameter

uncertainty.

9Notice that in (9) the uncertainty shocks affect only first coordinate of Xt thus the uncertainty operators are given
by (4) i.e. GA = GA, GB = GB, GAB = GAB, GAξ = GAΞe , GBξ = GBΞe
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5. Empirical results

In this section we consider the simulation on the optimal and robust monetary transmission models

(8) with two parametrization of the objective function and four structures of exogenous shocks (see

Table 2). In Scenarios 1,3,4,5 we assume flexible inflation targeting, whereas only in Scenario 2

we add to the central bank objectives an interest rate smoothing incentive term. Scenarios 1

Table 2. Experiments on monetary models

Scenario

1 optimal inflation targeting policy in the model with certainty
(un = 0, λ = 0.2, ν = 0)

2 optimal inflation targeting with interest rate smoothing in-
centive in the model with certainty
(un = 0, λ = 0.2, ν = 0.55)

3 robust inflation targeting policy in the model with correlated
uncertainty
(un > 0, corr = 1, λ = 0.2, ν = 0)

4 robust inflation targeting policy in the model with uncorre-
lated uncertainty
(un > 0, corr = 0, λ = 0.2, ν = 0)

5 robust inflation targeting policy in model with uncertainty at
control variable
(un > 0, corr = 0, ξA = 0, λ = 0.2, ν = 0)

and 2 constitute two benchmark monetary policy models with certainty of model parameters. In

the second group of simulations (Scenarios 3, 4 and 5) there is a positive uncertainty about model

parameters and at the same time there is no smoothing interest rate term at CB objective function.

We calibrate the relative weight of output gap λ = 0.2 in objective function based on the

estimated DSGE model of the Polish economy [Baranowski et al., 2013] and the quadratic approx-

imation of the wealth function (cf. [Gaĺı, 2009], [Polito and Wickens, 2012]). Then the smoothing

parameter ν = 0.55 is calibrated in such a way that makes the distance between the optimal

monetary policy rule with smoothing term at objective function (Scenario 2) and robust monetary

policy rule with un = 3 and uncorrelated uncertainty (Scenarios 4) to be minimal.

We assume that the decision horizon equal to T = 24 quarters, which corresponds to the length

of the term in office of the Monetary Policy Council in Poland or can be approximately equal to

the time of Poland’s entrance to Eurozone. After Poland’s accession to the European monetary

union the Polish economy will undergo structural changes and as consequence before this moment

one can expect an increase in model uncertainty.

There are several methods to implement optimal policy experiments, which differ in the amount

of information used (see Section 4.2 in [Polito and Wickens, 2012]). In this paper in all the exper-

iments we assume that in each period, the policy is re-optimised with decision horizon reduced by
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one compared to the previous period, i.e. at the beginning we find the policy instrument with finite

decision horizon T , in the subsequent quarter we determine the policy with horizon T − 1, and

after T − 1 periods we make the decision about interest rate taking into account that it will affect

the economy only in one quarter ahead. This assumption takes into account that after T periods

from the initial moment, the economy will undergo structural change (such as Eurozone accession)

which leads to among others different policy instruments. We make the unrealistic assumption

that the first two moments (mean, variances and covariances) of the VAR parameters and the

values of exogenous variable (olit) are known for the whole decision period. Then we reconstruct

the VAR paths for both the optimal (un = 0) and robust (un > 0) policy rules by computing the

optimal values of the policy instruments and the one-period-ahead forecasts of the state variables

using actual and past values of the state vector and current period disturbances Ξe
t .

5.1. Optimal and robust trajectories without interest rate smoothing. In this section we

solve several versions of the optimal CB problem (7)-(8) under the assumption that policy makers

do not follow the interest rate smoothing incentive. Using the results presented in Section 4 the

optimal and robust policy rule is given by (12). Figures 1- 3 present the optimal and robust paths

of macroeconomic variables for Scenarios 1, 3, 4, 5 (see Table 2) with different levels of uncertainty

parameter un = 0, 1, 2, 310. The optimal policy in certainty (Scenario 1) is very osculating and

thus unrealistic. There are periods where optimal nominal interest rates are strictly below the

zero level eg −3% in 2012q2 and −1% in 2013q2. In Table 3 volatility measures of robust and

optimal solutions are compared with each other and with their actual counterparts. In models

a with high level of uncertainty un = 3 the interest rates are over the zero level bound and the

standard deviation of the optimal interest rate decreases with the positive uncertainty parameter

and reaches minimum equal to 1.23 p. p. at un = 3 for the model with uncorrelated uncertainty

(Scenario 4). Hence by taking into account the parameter uncertainty we observe the interest rate

smoothing effect, however the actual policy is sightly more gradual, where the standard deviation

measure is 0.93 p.p.. The robust momentary policy causes that the optimal inflations CPI∗ for

un = 1, 2, 3, presented on the Figures 1-3, wander off slightly from its target level as uncertainty

increases. But robust inflation paths are still closer to the inflation target than the empirical path

of inflation. The standard deviations of the optimal and robust inflations rate from the target

belongs to the interval (0.50 p.p, 0.89p.p) while the average standard deviation of their empirical

counterpart is equal to 1.39 p.p.

Moreover, strong fluctuations of optimal interest rate cause relatively large changes of the opti-

mal output gap (see Table 3), but all optimal and robust paths of output gap are less fluctuating

than historical trajectories. Under our versions of the model CB’s monetary rule with and without

parameter uncertainty brings also grater REER∗ fluctuations than the actual monetary policy

10Figures 1- 3 present the trajectories of the following variables: interest rate (top left panel), inflation (top right
panel), output gap (bottom left panel), exchange rate (bottom right panel), where subscripts ∗ means the optimal
path and superscript hat indicates the empirical trend path.
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Table 3. The standard deviation measures in p.p, |z| =

√
1
T

T∑
t=1

z2
t .

Scenario un |π∗| |i∗| |x∗| |q∗|
1 (un = 0, λ = 0.2, ν = 0) 0 0.51% 3.06% 0.89% 9.28%

3 (un > 0, corr = 1, λ = 0.2, ν = 0)
1 0.50% 2.08% 0.87% 8.76%
2 0.51% 1.76% 0.88% 8.63%
3 0.53% 1.59% 0.89% 8.58%

4 (un > 0, corr = 0, λ = 0.2, ν = 0)
1 0.52% 2.25% 0.89% 8.71%
2 0.64% 1.58% 0.93% 8.09%
3 0.89% 1.23% 0.99% 7.56%

5 (un > 0, corr = 0, ξA = 0, λ = 0.2, ν = 0)
1 0.52% 2.29% 0.89% 8.77%
2 0.59% 1.66% 0.92% 8.27%
3 0.72% 1.35% 0.96% 7.95%

Actual - 1.39% 0.93% 1.19% 5.90%

Figure 1. The actual, optimal and robust trajectories in Scenarios 1 and 3.
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Figure 2. The actual, optimal and robust trajectories in Scenarios 1 and 4.

reflected in the empirical series of REER. Furthermore, all optimal and robust trajectories with

different levels of uncertainty have the same turning points, while the optimal trajectory of interest

rates, inflation and the output gap differ from historical counterparts. The optimal policy rules are

better, in terms of implementation of strict inflation targeting than the realized policy in Poland

in the period 2008q1-2013q4.

From the above we can conclude that there is a classical trade off between variability of policy

instrument and closeness of target variables (inflation, output gap) to their targets. Moreover, for

a high level of parameter uncertainty un = 2, 3 the correlation between parameters distribution

increases the volatility of robust interest and exchange rates correspondingly it makes the average

distance between inflation and inflation target smaller. Finally, the model with un = 3 and

uncorrelated uncertainty (Scenario 4) turns out to be the closest to actual data for the Polish

economy in period 2008q1-2013q4.

5.2. Uncertainty vs interest rate smoothing. In this section we compare the effect of adding

the interest rate smoothing term to the CB objective with the influence of parameter uncertainty on
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Figure 3. The actual, optimal and robust trajectories in Scenarios 1 and 5.

the variability of policy rule. The results shows that there is a trade off between model uncertainty

and the interest rate smoothing incentive in CB objective function (see Table 4 and Figure 4). In

Table 4 we collect the variability measures from three scenarios. The first two include the models

without parameter uncertainty (Scenarios 1 and 2), and only in Scenario 2 we have the interest rate

smoothing term in the central bank objective function. We compare them to the data consistent

model found in the previous section (i.e. Scenario 4 with un = 3).

It turns out to be possible to calibrate the smoothing parameter ν = 0.55 in such a way that

the distance between the optimal monetary policy rule with smoothing term at objective function

(Scenario 2) and robust monetary policy rule from Scenario 4 with un = 3 is minimal (see Table

411). Hence this proves that the gradual movements of interest rate commonly observed in much

empirical data can be explained by the optimal monetary policy models not only by adding interest

rate smoothing term to the CB objective but the same behaviour of interest rate can be obtained

from the robust monetary transmission model with an appropriate level of parameter uncertainty.

11Our simulations confirm that this result seems to be robust with respect to the values of λ ∈ (0, 5)
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Table 4. The standard deviation measures in p.p, |z| =

√
1
T

T∑
t=1

z2
t .

Scenario un |π∗| |i∗| |x∗| |q∗|
1 (un = 0, λ = 0.2, ν = 0) 0 0.51% 3.06% 0.89% 9.28%
2 (un = 0, λ = 0.2, ν = 0.55) 0 0.84% 1.23% 1.03% 7.68%

4 (un = 1, 2, 3, corr = 0, λ = 0.2, ν = 0)
1 0.52% 2.25% 0.89% 8.71%
2 0.64% 1.58% 0.93% 8.09%
3 0.89% 1.23% 0.99% 7.56%

Actual - 1.39% 0.93% 1.19% 5.90%

Figure 4. The actual, optimal and robust trajectories in Scenarios 1,2 and 4.

5.3. Impulse response analysis. The next part of the paper includes a comparison of impulse

response functions (IRFs) obtained from the VAR model with those from the optimal and robust

models.

In the Figures 5, 6, 7 for the VAR model we put a black continuous line for the average IRF paths

and dashed red lines for their mean ±2 standard deviation. Coloured continuous lines represent
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IFRs in optimal and robust models with different types or levels of uncertainty. In the first four

rows of each panel of Figures 5, 6, 7 we present the effects of exogenous shocks on the output

gap, inflation, interest rate and real effective exchange rate, respectively. The last row contains

responses of the output gap, inflation and interest rate to demand, price and interest rate shocks,

respectively.

Figure 5 presents IRFs in Scenarios 1 and 4.Notice that the impulse response functions in the

VAR model and models with robust and optimal monetary rules are economically plausible, but the

latter exhibit different shape patterns than those of the VAR model. All the responses of optimal

and robust WIBOR1M∗ to price (επ), demand (εx) and exchange rate (εq) shocks have a maximum

level at the beginning and are significantly stronger than hump-shaped patterns of WIBOR1M

reactions from the VAR model. Moreover, we can observe an interest rate smoothing effect via

uncertainty. For the models with certainty or with small values of the parameter uncertainty

(un = 0, 1) we observe very aggressive reactions of optimal monetary rules to the exogenous

shocks, but as un goes up these responses become up to 3 times lower, simultaneously the time

of the return of the robust interest rate to equilibrium is longer. Furthermore, a stabilizing effect

after monetary policy shock on the output gap and on CPI is present in models with optimal

and robust momentary policy. Hence, in particular the costs of monetary policy tightening in

terms of output losses are also significantly lower than in VAR model. Moreover, the responses

of REER∗,WIBOR1M∗ to monetary shock εit in the optimal policy model are very aggressive,

but the robust polices attenuate them and make the return of all variables to steady state after

interest rate shock longer.

In Figure 6 we compare the IRFs of models with different structures of uncertainty. Adding cor-

relation between random parameters and exogenous shocks has an effect in the opposite direction

by increasing the maximal reaction of policy instrument to demand (εxt ) and price (επt ) shocks and

shortens their time of return to equilibrium. We can also observe that the correlation structure of

parameters decreases slightly the time at which inflation, output gap and interest rate is at steady

state after the interest rate shock.

Finally, Figure 7 presents IRFs of the model from Scenario 2 - with a positive interest rate

smoothing parameter ν = 0.55, and compares it with the reaction from the optimal policy model

(Scenario 1) and the data consistent robust monetary policy model (Scenario 4). We can observe

the considerable similarity between the IRFs in Scenarios 2 and 4 (green and red lines). Scenario

2 gives slightly less oscillating reactions of WIBOR1M∗, and the maximum response of inflation

is somewhat stronger.

Next we calculate the feedback VAR horizons and the optimal horizons (see Table 5) defined as

the time at which inflation should be on target (90% of maximal response vanishes) in the future

after one standard deviation shock in the VAR model and optimal and robust models, respectively

(cf. Batini, N. and Nelson, E. (2001)). From Tables 5 we conclude that all optimal horizons are
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Figure 5. IRFs in model with uncorrelated uncertainty (Scenario 1- blue solid lines,
Scenario 4- red and green solid lines) to one-standard-deviation shocks to demand
(εx− >), prices (επ− >), exchange rates (εq− >) and monetary policy (εi− >).
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Figure 6. IRFs in models with uncertainty un = 3 (Scenario 3- green lines , Sce-
nario 4 - red lines, Scenario 5- blue lines) to one-standard-deviation shocks to demand
(εx− >), prices (επ− >), exchange rates (εq− >) and monetary policy (εi− >).
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Figure 7. IRFs in models with un = 0, 3 and ν = 0, 0.55 (Scenario 1 - blue lines,
Scenario 2- green lines, Scenario 4- red lines, Scenario 6- navy lines) to one-standard-
deviation shocks to demand (εx− >), prices (επ− >), exchange rates (εq− >) and
monetary policy (εi− >).
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shorter than the feedback VAR horizons, especially for shock from target (επt ) and instrument (εit)

variables the difference is striking. Moreover, in Scenarios 3, 4, 5 (i.e. in models without interest

rate smoothing incentive) for the monetary policy impulse εit the model uncertainty makes the

return of optimal inflation longer by as much as 5 quarters in Scenarios 4. At the same time

the increase in parameter un does not change significantly the time of return of inflation after

the demand shock εx. Finally, comparing the times of inflation return to equilibrium we are able

to match closely the model with interest rate smoothing incentive (Scenario 2) with the model

with uncorrelated uncertainty structure (Scenario 4 with un = 3). The last observation is another

confirmation of the trade off between interest rate smoothing and model uncertainty.

Table 5. VAR policy horizons and optimal policy horizons (in quarters of a year).

models with certainty εxt επt εqt εit
Scenario 1 12 2 13 3

Scenario 2 8 6 8 9

VAR 17 14 16 19

models with uncertainty Scenario 3 Scenario 4 Scenario 5

un εxt επt εqt εit εxt επt εqt εit εxt επt εqt εit
1 11 3 8 4 11 3 8 4 12 3 9 5
3 9 5 7 7 11 6 7 9 12 4 9 9

6. Conclusions

This paper proposes a general method based on the dynamic programming principle to derive

optimal monetary policy rules with multiplicative uncertainty. These rules are robust with respect

to parameter uncertainty of the structural model thus they yield a data consistent paths of short

run interest rate.

For Polish quarterly data in the period 2008-2014 we find optimal and robust monetary policy

rules. We notice that standard optimal rules with parameter certainty are inconsistent with data,

they produce a very aggressive policy. However, the standard deviation of the robust interest

rate decreases with positive parameter uncertainty. With a high level of uncertainty the optimal

policy model matches closer actual data and generates significantly smoother and less oscillating

impulse responses of interest rate and exchange rate. Therefore, our findings confirm the Brainard

conservatism principle.

A high level of model uncertainty is also responsible for interest rate smoothing behaviour

commonly presented in empirical data. We confirm that there is a trade off between parameter

uncertainty and the interest rate smoothing incentive. However, the correlation between param-

eters uncertainty influence conversely and cause an interest rate response to shock increases in

magnitude and the time of return to equilibrium is shorter.
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Finally, the stabilizing effect of parameter uncertainty on IRFs of state variables to monetary

policy shock is confirmed. All optimal horizons are shorter than the feedback VAR horizons,

especially for price επt and monetary policy εit shocks.
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Appendix A

Let (Ω,F ,P, (Ft)t=0,1,...) be a probability space with filtration.

Lemma 1. Let Z, z and U, u be random vectors of dimensions n × 1 and m × 1, respectively,

moreover, let Z = [Z ′1, ..., Z
′
k]
′
k×n, U = [U ′1, ..., U

′
k]
′
k×m and A = [aij]n×k, B = [bij]m×n be random

matrices such that z, u,A are Ft-measurable for some t ≥ 1. Then, we have:

E(〈BZ,U〉 |Ft) = 〈BE(Z|Ft),E(U |Ft)〉+ tr(BΣt,ZU)(16)

E(〈AZz, U〉 |F) = 〈AE(Z|Ft)z,E(U |Ft)〉+ tr(A[〈z,Σt,ZiUej〉]k×m)(17)

E(〈AZz,Uu〉 |F) = 〈AE(Z|Ft)z,E(U|Ft)u〉+ tr(A[
〈
z,Σt,ZiUj

u
〉
]k×m)(18)

where Σt,ZU = E((Z − EZ)(U − EU)′|Ft) = [σt,ij]n×m and Σt,ZiUj
= E((Zi − EZi)(Uj − EUj)′|Ft)

for i = 1, 2, . . . k, j = 1, 2, . . .m and e1, . . . , em is standard basis in Rm.

Proof. By proof of (16) follows by straightforward calculation

E(〈BZ,U〉 |Ft) =
m∑
j=1

n∑
i=1

bjiE(ZiUj|Ft) =
m∑
j=1

n∑
i=1

bji(E(Zi|Ft)E(Uj|Ft) + σt,ij)

= 〈BE(Z|Ft),E(U |Ft)〉+ tr(BΣt,ZU).

Using (16) one can prove (17) and (18). Indeed, for (17) we have:

E(〈AZz, U〉 |Ft) = E(〈A[(Z1z)′, ..., (Zkz)′]′, U〉 |Ft)
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= 〈AE(Z|Ft)z,E(U |Ft)〉+ tr(A[〈z,ΣZiUej〉]k×m),

and for (18) we obtain:

E(〈AZz,Uu〉 |Ft) = E(〈A[(Z1z)′, ..., (Zkz)′]′, [(U1u)′, ..., (Uku)′]′〉 |Ft)

= 〈AE(Z|Ft)z,E(U|Ft)u〉+ tr(A[
〈
z,ΣZiUj

u
〉
]k×m).

�

Let Xt : Ω→ RN , t = 0, 1, ...T be a sequence of random variable. Assume that

Xt+1 = dt+1 + (A + ξAt+1)Xt + (B + ξBt+1)ut + ξt+1 for t = 0, 1, 2, ...T − 1(19)

X0 − known value,

where A ∈ RN×N ,B ∈ Rc×N , dt ∈ RN are known matrices, ut is a control process, ξt, ξ
A
t =

[ξA
′

1,t+1, . . . , ξ
A′
N,t+1]′N×N , ξ

B
t = [ξB

′
1,t+1, . . . , ξ

B′
N,t+1]′N×N , t = 1, 2, ... are sequences of random variables

with conditional means and covariances defined by (H1) and (H2) below. For instance ξAj,t+1 is

a random row vector representing parameter uncertainty of A in the j-equation of the system

(19). Let F0 = σ(X0, d1, . . . , dT ) be initial σ-algebra of events and for all t = 1, 2. . . . , T we define

Ft = σ(F0, ξ1, ..., ξt, ξ
A
1 , ..., ξ

A
t , ξ

B
1 , ..., ξ

B
t ) We assume that the following hypothesise holds. For all

= 1, 2, . . . , T − 1 and i, j = 1, 2, . . . , N we have:

(H1) E(ξt+1|Ft) = E(ξAt+1|Ft) = E(ξBt+1|Ft) = 0,

(H2) Cov(ξt+1, ξt+1|Ft) = Σξ,

Cov(ξBi,t+1, ξ
B
j,t+1|Ft) = ΣB,i,j,

Cov(ξAi,t+1, ξ
A
j,t+1|Ft) = ΣA,i,j,

Cov(ξAi,t+1, ξt+1|Ft) = ΣAξ,i,

Cov(ξBi,t+1, ξt+1|Ft) = ΣBξ,i,

Cov(ξAi,t+1, ξ
B
j,t+1|Ft) = ΣAB,i,j.

In (H1)-(H2) it is assumed that at initial time 0 the policymakers knows the conditional means,

variances and covariances between model parameters and exogenous shocks.

JT ((ut),X0) = E

(
T∑
t=0

γt
1

2
〈QtXt,Xt〉+

T−1∑
t=0

γt
(
〈FtXt, ut〉+

1

2
〈Rtut, ut〉

))
,(20)

where γ > 0, Q1, ...,QT ≥ 0, R1, ...,RT−1 > 0 and F1,F2, . . .FT−1 ∈ RN×c.

The problem of minimizing (20) subject to (19) over the set of admissible controls UT ,

UT = {(ut)T−1
t=0 : ut = ut(X0,X1...,Xt) ∈ Rc, t = 0, 1, .., T − 1}

is called a linear-quadratic problem with multiplicative uncertainty. Notice that for (ut)
T−1
t=0 we

have Xt ∼ Ft for all t and hence ut ∼ Ft.
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Theorem 2. If the sequence of matrices Rt, t = 0, 1, . . . , T − 1 defined below by (26) is positive

definite, then the value function for the linear-quadratic problem with multiplicative uncertainty is

of the form:

Vt(x) = γt
(

1

2
〈Ktx, x〉+ 〈pt, x〉+ vt

)
, t = 0, 1, ..., T(21)

where

Kt = Qt + γGA(Kt+1) + γA′Kt+1A− γA′Kt+1BRtγB′Kt+1A− F′tRtFt(22)

− γGAB(Kt+1)RtγG
′
AB(Kt+1)

pt = − (γA′Kt+1B + F′t + γGAB(Kt+1))Rt (γB′(Kt+1dt+1 + pt+1) + γGBξ(Kt+1))(23)

+ γA′(Kt+1dt+1 + pt+1) + γGAξ(Kt+1)

vt = γvt+1 + γ

〈
1

2
Kt+1dt+1 + pt+1, dt+1

〉
+

1

2
γtr(Kt+1Σξ)(24)

−
〈

1

2
Rt (γB′t(Kt+1dt+1 + pt+1) + γGBξ(Kt+1))) , γB′t(Kt+1dt+1 + pt+1) + γGBξ(Kt+1))

〉
KT = QT , pT = qT , vT = 0.

Moreover, the solution to the linear-quadratic problem with multiplicative uncertainty is given by

u∗t = GtX∗t + gt,(25)

Gt = −Rt (γB′tKt+1A + Ft + γG′AB(Kt+1))

gt = −Rt(γB′t(Kt+1dt+1 + pt+1) + γGBξ(Kt+1)),

where

Rt = (Rt + γGB(Kt+1) + γB′tKt+1Bt) −1(26)

and (X∗t )t=0,1,...,T is the optimal state sequence:

X∗t+1 = dt+1 + (A + ξAt+1)X∗t + (Bt + ξBt+1)u∗t + ξt+1

X∗0 = X0

for t = 0, 1, ..., T − 1.

Proof. We use the dynamic programming principle (see [Whittle, 1996], [Zabczyk, 1996]). Let

VT , VT−1, ..., V0 be a sequence of value function defined by:

Vt(x) = γt inf
u∈Rc

(
1

2
〈Qtx, x〉+ 〈Ftx, u〉+

1

2
〈Rtu, u〉+ E(Vt+1(Ft+1(x, u))|Ft)),

VT (x) = γT
(

1

2
〈QTx, x〉

)
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for all x ∈ RN , t = 0, 1, ..., T − 1, where Ft+1(x, u) = dt+1 + (A+ ξAt+1)x+ (B+ ξBt+1)u+ ξt+1. Notice

that (21) is satisfied for T with KT = QT , pT = 0, vT = 0. We assume that (21) holds for t+ 1 < T

and we calculate Vt. Observe that

E(Vt+1(Ft+1(x, u))|Ft)) = γt+1
(1

2
E(〈Kt+1Ft+1(x, u), Ft+1(x, u)〉 |Ft)(27)

+ E(〈pt+1, Ft+1(x, u)〉 |Ft) + E(vt+1|Ft)
)

where

E(〈Kt+1Ft+1(x, u), Ft+1(x, u)〉 |Ft) = 〈Kt+1 (dt+1 + Ax+ Bu) , dt+1 + Ax+ Bu〉(28)

+ 2E(
〈
Kt+1 (dt+1 + Ax+ Bu) , ξAt+1x+ ξBt+1u+ ξt+1

〉
|Ft)

+ E(
〈
Kt+1

(
ξAt+1x+ ξBt+1u+ ξt+1

)
, ξAt+1x+ ξBt+1u+ ξt+1

〉
|Ft)

By (H1) the second term in the above equation vanishes. Using (H2) and Lemma 1 the last term

can be decomposed as follows

E(
〈
Kt+1

(
ξAt+1x+ ξBt+1u+ ξt+1

)
, ξAt+1x+ ξBt+1u+ ξt+1

〉
|Ft)

= 〈x,GA(Kt+1)x〉+ 〈u,GB(Kt+1)u〉+ tr(Kt+1Σξ)

+ 2 〈x,GAξ(Kt+1)〉+ 2 〈u,GBξ(Kt+1)〉+ 2 〈x,GAB(Kt+1)u〉 ,

where the uncertainty operators GA : RN → RN×N , GB : RN → Rc×c, GAξ : RN → RN , GBξ : RN →
Rc, GAB : RN → RN×c are defined by

〈x,GA(K)y〉 = E(
〈
KξAt+1x, ξ

A
t+1y

〉
|Ft) = tr(K[〈x,ΣA,ijy〉]N×N), or GA(K) =

N∑
i=1

N∑
j=1

kijΣA,ij

〈u,GB(K)w〉 = E(
〈
KξBt+1u, ξ

B
t+1w

〉
|Ft) = tr(K[〈u,ΣB,ijw〉]c×c), or GB(K) =

N∑
i=1

N∑
j=1

kijΣB,ij

〈x,GAξ(K)〉 = E(
〈
KξAt+1x, ξt+1

〉
|Ft) = tr(K[〈x,ΣAξ,iej〉]N×N), or GAξ(K) =

N∑
i=1

N∑
j=1

kijΣAξ,iej

〈u,GBξ(K)〉 = E(
〈
KξBt+1u, ξt+1

〉
|Ft) = tr(K[〈u,ΣBξ,iej〉]N×N), or GBξ(K) =

N∑
i=1

N∑
j=1

kijΣBξ,iej

〈x,GAB(K)u〉 = E(
〈
KξAt+1x, ξ

B
t+1u

〉
|Ft) = tr(K[〈x,ΣAB,i,ju〉]N×N), or GAB(K) =

N∑
i=1

N∑
j=1

kijΣAB,i,j

for all K ∈ RN×N , x, y ∈ RN and u,w ∈ Rc. Applying the definitions of uncertainty operators in

(28) and then substituting (28) in (27), we obtain:

Vt(x) = γt inf
u∈Rc

(1

2
〈Qtx, x〉+ 〈Ftx, u〉+

1

2
〈Rtu, u〉+
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1

2
γ 〈Kt+1 (dt+1 + Ax+ Bu) , dt+1 + Ax+ Bu〉

+
1

2
γ 〈x,GA(Kt+1)x〉+

1

2
γ 〈u,GB(Kt+1)u〉+

1

2
γtr(Kt+1Σξ)

+ γ 〈x,GAξ(Kt+1)〉+ γ 〈u,GBξ(Kt+1)〉+ γ 〈x,GAB(Kt+1)u〉

+ γ 〈pt+1, dt+1 + Ax+ Bu〉+ γvt+1

)
.

After the rearrangement we have

Vt(x) = γt
(

inf
u∈Rc

(1

2

〈
R−1
t u, u

〉
+ 〈u, a〉

)
+

1

2
〈(Qt + γA′Kt+1A + γGA(Kt+1))x, x〉(29)

〈γGAξ(Kt+1) + γGAB(Kt+1) + γA′pt+1, x〉+ γvt+1 + γ 〈pt+1, dt+1〉

+
1

2
γ 〈Kt+1dt+1, dt+1〉+

1

2
γtr(Kt+1Σξ)

)
where

a = (γB′Kt+1A + Ft + γG′AB(Kt+1))x+ γB′(Kt+1dt+1 + pt+1) + γGBξ(Kt+1),

and where Rt is given by (26). Hence solving the above optimization problem we obtain the

optimal control u∗t = Gtx+ gt with

Gt = −Rt (γB′Kt+1A + Ft + γG′AB(Kt+1))

gt = −Rt(γB′(Kt+1dt+1 + pt+1) + γGBξ(Kt+1)),

Finally, the optimal value of Vt(x) takes the form

Vt(x) = γt
(
− 1

2
〈Rta, a〉+

1

2
〈(Qt + γA′Kt+1A + γGA(Kt+1))x, x〉

+ 〈γGAξ(Kt+1) + γA′Kt+1dt+1 + γA′pt+1, x〉+ γvt+1 + γ 〈pt+1, dt+1〉

+
1

2
γ 〈Kt+1dt+1, dt+1〉+

1

2
γtr(Kt+1Σξ)

)
where

〈Rta, a〉 = 〈Rt(γB′Kt+1A + Ft + γG′AB(Kt+1))x, γB′Kt+1A + Ft + γG′AB(Kt+1)x〉

+ 〈Rt(γB′(Kt+1dt+1 + pt+1) + γGBξ(Kt+1)), γB′(Kt+1dt+1 + pt+1) + γGBξ(Kt+1)〉

+ 2 〈Rt(γB′Kt+1A + Ft + γG′AB(Kt+1))x, γB′(Kt+1dt+1 + pt+1) + γGBξ(Kt+1)〉 .

After rearrangement we obtain (21). �

Appendix B

We assume in Section 3.1 that the model parameters at interest rate and state variable are

assumed to be random variables. In order to conduct the experiments with optimal and robust

policy we estimate the first two moments of model parameters by means of the ordinary least square
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(OLS) method12. Let us recall that for VAR models OLS estimators of the following parameters

are consistent and asymptomatically normal and uncorrelated with model exogenous shocks. But

in the finite samples they are biased in mean, and their variances and covariance are correlated

with exogenous shocks (cf. [Judge et al., 1988]). OLS estimators of A = [A1,A2,A3]′,B =

[B1,B2,B3]′,Σ,Σm,A, σ
2
m,B,Σm,AB,Σm,AΞe ,Σm,BΞe are given by13

[Âm, B̂m] = Proj4(X′X)−1X′Ym)(30)

Σ̂ =
1

N − 7
Ξ̂′Ξ̂(31) [

Σ̂m,A Σ̂m,AB

Σ̂′m,AB σ̂2
m,B

]
= Σ̂mm · Proj4(X′X)−1,(32) [

Σ̂m,AΞe

Σ̂m,BΞe

]
=

1

N − 7
·
N∑
t=1

Ξ̂e
m,tProj4Ξ̂e′

m(X′X)−1(33)

for m = 1, 2, 3 (m is number of the equation) and where X = [Y−1, i,1,oil,oil−1]7×N , Y =

[y′1; y′2; ...; y′N ]′ = [Y1,Y2,Y3]3×N , Y−1 = [y′0; y′1; ...; y′N−1]′, i = [i0, i1, ..., iN−1]′, 1 = [1, 1, ..., 1]′, oil =

[oil1, oil2, ..., oilN ]′, oil−1 = [oil0, oil1, ..., oilN−1]′ are the matrices consist of samples of state and

control variables and Ξ̂e = [Ξ̂e
1; ...; Ξ̂e

T ]′ = are the residuals i.e. Ξ̂e
t = yt− ŷt, ŷt = X[Â, B̂, ĉ0, Ĉ0, Ĉ1]

for t = 1, 2, ..., N .14

12One can use any estimation method of the model eg the Bayesian technique and then use the posterior variances
and covariance of model parameters to construct the uncertainty operators.
13For any k, n ∈ {1, 2, 3...} such that n > k let us denote by Projk the canonical projection from Rn to Rk or from
M(n, n) to M(k, k) defined by taking the first k or k × k coordinates from its argument.

14For a matrix

[
a b
c d

]
we use a simplified notation:

[
a b
c d

]
= [a, b; c, d]


