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INTEGRABLE FUNCTIONS VERSUS A GENERALIZATION
OF LEBESGUE POINTS IN LOCALLY COMPACT GROUPS

S. BASU

Abstract. Here in this paper we intend to deal with two questions: How
large is a “Lebesgue Class” in the topology of Lebesgue integrable functions,
and also what can be said regarding the topological size of a “Lebesgue set”
in R ?, where by a Lebesgue class (corresponding to some x ∈ R) is meant the
collection of all Lebesgue integrable functions for each of which the point x
acts as a common Lebesgue point, and, by a Lebesgue set (corresponding to
some Lebesgue integrable function f) we mean the collection of all Lebesgue
points of f .

However, we answer these two questions in a more general setting where in
place of Lebesgue integration we use abstract integration in locally compact
Hausdorff topological groups.
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1. Introduction

We begin by introducing the following classical notions and a historically
important result.

Definition 1. A point x is called “a Lebesgue point” of a Lebesgue integrable
function f if

lim sup
I→x

∫
I |f(t)− f(x)|dµ

µ(I)
= 0,

where the left hand side expresses the quantity

sup
{Ik}

{
lim sup
k→∞

∫
Ik
|f(t)− f(x)|dµ

µ(Ik)

}
,

the supremum being taken over all sequences {Ik} of all non-degenerate in-
tervals in R such that x ∈ Ik for all k and µ(Ik)→ 0. For any Lebesgue inte-
grable function f we write L(f) = {x ∈ R : x is a Lebesgue point of f}. As
mentioned in the abstract, the above set L(f) may be termed as the “Lebesgue
set” corresponding to f .
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Now instead of the function, if we keep the point as fixed, we obtain in
turn the following subclass of Lebesgue integrable functions.

Definition 2. L(x) = {f : f has a Lebesgue point at x} which as men-
tioned in the abstract may be termed as the “Lebesgue class” correspond-
ing to x. This class is a subclass of the class of all Lebesgue integrable
functions which forms a topological space, the topology being induced by
the usual metric on the class of Lebesgue integrable functions defined by
ρ(f, g) =

∫
|f − g|dµ. The class L(x) is actually the dual of L(f), where the

roles of ‘point’ and ‘function’ are interchanged.

The following classical theorem is known as the Lebesgue density Theo-
rem: The set of Lebesgue points of any given Lebesgue integrable function
is of full (Lebesgue) measure in R.

Thus in connection with Lebesgue’s work, µ(R \ L(f)) = 0 which means
that the complement of L(f) in R is a set of Lebesgue measure zero (such sets
are often called “sets of Lebesgue full-measure in R”). It can also be shown
that “given any Lebesgue integrable function, each of its Lebesgue point is
also its point of approximate continuity”. The converse holds provided f is
bounded and measurable.

We already know by virtue of Lebesgue’s theorem that for any Lebesgue
integrable function f , L(f) is a set of full-measure in R and hence is measure-
theoretically very large. Can there be a Lebesgue integrable function f for
which the set L(f) is also topologically large in R? So if such functions
exist, then it is worth investigating the topological size of that subclass in
the topology of integrable functions. Besides this, for any x ∈ R we may also
enquire regarding the size of the class L(x); whether L(x) is topologically
large in the same topology; or stands in opposition to the measure-theoretic
largeness of L(f).

In this paper, we propose to deal with these two questions. But instead of
Lebesgue integrable functions defined on the real line, we prefer treating the
entire thing in a more general setting which refers to abstract integration in
locally compact groups.

We therefore start by supposing that G is a locally compact, Haus-
dorff topological group, with e as the identity element. Let S1 denote the
σ-ring generated by compact sets [6] and S denote the σ-ring generated
by S1 and subsets of sets in S1 of µ-measure zero, where µ is a non-zero,
σ-finite, diffused (this property of Haar measure is equivalent to the non-
discreteness of the group) and complete, regular left Haar measure on S.
The diffusedness of the measure µ may also be stated in other words as
follows: for each ε > 0, there exists an open set V containing e such that
µ(V ) < ε. For any E(⊆ G) let the outer measure induced by µ be given by
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µ∗(E) = inf{µ(F ) : E ⊆ F ∈ S}. Moreover, L1(G) denotes the class of all
real valued µ-integrable functions on G. It is the class of all µ-measurable
real valued functions f on G for which

∫
G fdµ is finite. On L1(G) the

topology induced by the standard norm is considered and we express by
writing C(L1(G)) the class of all real valued continuous functions on the
space L1(G). Although S1 has been defined in [6] as the class of Borel sets,
we will not adopt this terminology. Instead, by Borel sets we mean the
members of the σ-algebra generated by open subsets of G.

Apart from these, we will also be using in the sequel notations such as
(i) N for the set of all positive integers and χA for the characteristic func-

tion of a set A.
(ii) E(x) and E(y) for the x-section (x ∈ X) and y-section (y ∈ Y ) of any

set E ⊆ X × Y .
(iii) f(x, .) and f(., y) for the x-section (x ∈ X) and the y-section (y ∈ Y )

of any function f : X × Y → Z.
A definition of “density of a set at a point” with respect to Haar measure in
topological groups was introduced by Lahiri [8]. It is based on the notion
of demi-spheres, the credit for formulation of which goes to Comfort and
Gordon [4]. This concept was used by the present author [3] in extending
some results of Steinhaus. However, we do not use here the same notion of
demi-spheres in extending the classical definition of “Lebesgue point” from
the real line to this general setting.

Definition 3. A family C of compact subsets of G is called admissible (or
nice) if the following conditions are fulfilled.

(i) e ∈ S and µ(S) > 0 for every S ∈ C;
(ii) for every open neighbourhood V of the identity element e there is g

with e ∈ gS ⊆ V ;
(iii) for every sequence {gnSn}∞n=1 satisfying e ∈ gnSn and lim

n→∞
µ(Sn) = 0

and every open neighbourhood V of the identity element e, we have
gnSn ⊆ V for sufficiently large n.

It may be noted that conditions (ii) and (iii) are equivalent to the following
ones

(ii)′ if x ∈ V (open), there exist g ∈ G and S ∈ C such that x ∈ gS ⊆ V ;
(iii)′ for every sequence {gnSn}∞n=1 satisfying x ∈ gnSn for every n and

lim
n→∞

µ(Sn) = 0, if x ∈ V (open) then gnSn ⊆ V for all n sufficiently
large.

However, in the Euclidean n-space, with respect to the normal n-dimensional
metric and the Lebesgue measure, we may choose the family of closed balls



24 S. BASU

centered at the origin as an admissible family of sets. But with respect to an-
other metric, the corresponding family of closed balls can form an admissible
family only when an appropriate measure is chosen.

We now introduce the notion of “Generalized Lebesgue point with respect
to C” or C-point.

Definition 4. For each f ∈ L1(G), let us write

lim sup
gS→x

∫
gS |f(y)− f(x)|dµ

µ(S)

to express the quantity

sup

{
lim sup
n→∞

∫
gnSn
|f(y)− f(x)|dµ
µ(Sn)

}
,

where the supremum is taken over all sequences {gnSn}∞n=1, (gn ∈ G, Sn ∈
C) such that x ∈ gnSn for all n and lim

n→∞
µ(Sn) = 0.

Likewise, we write

lim inf
gS→x

∫
gS |f(y)− f(x)|dµ

µ(S)

to express the quantity

inf

{
lim inf
n→∞

∫
gnSn
|f(y)− f(x)|dµ
µ(Sn)

}
,

where the infimum is taken over all sequences {gnSn}∞n=1, (gn ∈ G, Sn ∈ C)
such that x ∈ gnSn for all n and lim

n→∞
µ(Sn) = 0.

Now as an extension of the notion of “Lebesgue point” from R to the
present setting, we define a point x ∈ G as a C-point of some function
f ∈ L1(G) provided

lim sup
gS→x

∫
gS |f(y)− f(x)|dµ

µ(S)
= 0.

We write
C(f) = {x ∈ G : x is a C-point of f}

(which is a natural generalization of the Lebesgue set L(f) in the present
context), and also after interchanging the role of f and x, obtain the class
C(x) = {f ∈ L1(G) : f has an C-point at x} which is a natural generaliza-
tion of the Lebesgue class L(x).

As may be noted from the preceeding paragraph, the notion of C-point
which is a generalization of Lebesgue point in R or Rn depends on the
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choice of the admissible family C. Thus a given point may be a C-point of
a given function with respect to one admissible family but not with respect
to another. For example in the usual metric of R2 and the two dimen-
sional Lebesgue measure, the family C1 of all closed balls centered at the
origin is an admissible family,and, likewise in the pseudometric d∗ defined by
d∗((x1, y1), (x2, y2)) = |x1− x2| and the measure γ defined on the σ-algebra
Mγ = {A : the intersection of A with the x − axis is lebesgue measurable}
by the formula γ(A) = the lebesgue measure of the common part of A and
the x-axis, the corresponding family C2 of all closed balls centered at the ori-
gin is also an admissible family (according to Definition 3). But the origin
(0, 0) of R2 although being not a lebesgue point of the function f = χE\(0,0)

(where E is the set constructed in Theorem 14.4, pg. 54, [9]) with respect
to C1 is a Lebesgue point of f with respect to C2.

We have already shown in [2] that if apart from its defining condition
given by Definition 3, the class C also satisfies the following condition
(∗) For every setA ⊆ G of σ-finite measure, there exists a sequence {gnSn}∞n=1

(gn ∈ G, Sn ∈ C) such that the sets gnSn are mutually disjoint and

µ

(
A \

∞⋃
n=1

gnSn

)
= 0, then for any f ∈ H, µ-almost every point of G

is a C-point of f , in symbols µ(G \ C(f)) = 0.
It will follow from Theorem 1 that in opposition to the measure-theoretic

largeness of C(f), the class C(x) is topologically small in the topology of
L1(G).
This answers the second question.

2. Theorems etc.

The class C once chosen is kept fixed throughout. As we do not want to
complicate our symbols unnecessarily, so in what follows no reference to the
symbol C is given in introducing any of our notations except in places where
we have written C(f) and C(x). We also assume in both Theorem 1 and 2
that our topological group G is having C as a class of compact sets satisfying
conditions given by Definition 3.
Theorem 1. For each x ∈ G, the class C(x) is meager in the topology of
L1(G).

Before we start proving Theorem 1 (which is one of the two main results
of this paper), we introduce the following set of functions and state and
prove a set of propositions.

H(., x) : L1(G)→ (−∞,∞] given by H(f, x) = lim sup
gS→x

∫
gS fdµ

µ(S)
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and

H(., x) : L1(G)→ [−∞,∞) given by H(f, x) = lim inf
gS→x

∫
gS fdµ

µ(S)

where lim sup
gS→x

∫
gS fdµ

µ(S) (resp. lim inf
gS→x

∫
gS fdµ

µ(S) ) expresses the quantity

sup

{
lim sup
n→∞

∫
gnSn

fdµ

µ(Sn)

}
(resp. inf

{
lim inf
n→∞

∫
gnSn

fdµ

µ(Sn)

}
), the supremum (resp.

infimum) being taken over all sequences {gnSn}∞n=1 (gn ∈ G, Sn ∈ C) such
that x ∈ gnSn and lim

n→∞
µ(Sn) = 0.

We also denote their common value (in case when it exists) by H(f, x)
which is obviously finite.
Moreover, for those n ∈ N, for which there exists S ∈ C such that

1
n+1 < µ(S) ≤ 1

n , let H
(n)

(., x) : L1(G)→ R be given by

H(n)
(f, x) = sup

{∫
gS
fdµ

µ(S)
: x ∈ gS where g ∈ G,S ∈ C and

1

n+ 1
< µ(S) ≤ 1

n

}
.

(Note that for any f ∈ L1(G), |H(n)
(f, x)| ≤ (n+ 1)

∫
G

|f |dµ)

Now fix a sequence {S(0)
n }∞n=1 ⊆ C such that lim

n→∞
S

(0)
n = 0, and define a

function H(n)(., x) : L1(G)→ R by the formula H(n)(f, x) =

∫
xS

(0)
n

fdµ

µ(S
(0)
n )

.

Along with this, let us also define the following classes

G(x) = {f ∈ L1(G) : H(f, x) + H(1− f, x) = 1}

A(x) =
{
f ∈ L1(G) : H(f, x) <∞

}
Aγ(x) = {f ∈ A(x) : H(f, x) = γ}.

It may be observed that Aγ(x) ⊆ A(x) ⊆ G(x). Likewise, upon interchang-
ing the roles of f and x, let
G(f) = {x ∈ G : H(f, x) + H(1− f, x) = 1},
A(f) = {x ∈ G : H(f, x) exists }
Aγ(f) = {x ∈ A(f) : H(f, x) = γ}.
Before we proceed to prove the following propositions, we may note that
H(f, x) = lim sup

n→∞
H(n)

(f, x) the proof of which is only a routine exercise.

Proposition 1. Aγ(x) is a Gδ subset of A(x).
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Proof. We first claim that for any n ∈ N and x ∈ G,H(n)(., x) ∈ C(L1(G)).
This follows since for any f, g ∈ L1(G),

∣∣∣H(n)(f, x)−H(n)(g, x)
∣∣∣ =

∣∣∣∣∣
∫
xS

(0)
n
fdµ

µ(S
(0)
n )

−

∫
xS

(0)
n
gdµ

µ(S
(0)
n )

∣∣∣∣∣ ≤ 1

µ(S
(0)
n )

∫
G
|f −g|dµ.

Also note that for f ∈ A(x), H(f, x) = lim
n→∞

H(n)(f, x). So the assertion
follows from well-known facts on limits of sequences of continuous functions.

�

Proposition 2. For each n ∈ N, H(n)
(·, x) ∈ C(L1(G)) and A(x) = G(x).

Proof. We first claim that for each n ∈ N, H(n)
(., x) ∈ C(L1(G)).

This follows since for any f, g ∈ L1(G)∣∣∣H(n)
(f, x)−H(n)

(g, x)
∣∣∣ =

∣∣∣∣sup

{∫
gS fdµ

µ(S) : x ∈ gS and 1
n+1 < µ(S) ≤ 1

n

}
− sup

{∫
gS gdµ

µ(S) : x ∈ gS and 1
n+1 < µ(S) ≤ 1

n

}∣∣∣∣
≤ sup

{∫
gS |f−g|dµ
µ(S) : x ∈ gS and 1

n+1 < µ(S) ≤ 1
n

}
≤ (n+ 1)

∫
G |f − g|dµ.

Next note that the inclusion A(x) ⊆ G(x) is obvious. Conversely, as for

any f ∈ L1(G), the identity
∫
gS fdµ

µ(S) +

∫
gS(1−f)dµ

µ(S) = 1 implies the inequality
H(f, x) ≥ 1−H(1− f, x), so for those f ∈ L1(G) for which H(f, x) +H(1−
f, x) = 1 is satisfied, H(f, x) ≥ H(f, x) ≥ 1−H(1− f, x) = H(f, x) +H(1−
f, x)−H(1− f, x) = H(f, x). Therefore f ∈ A(x). Hence G(x) ⊆ A(x). �

Proposition 3. Both A0(x) and A1(x) are dense in L1(G).

Proof. Let f ∈ L1(G) and ε > 0 be given. Since the class{
n∑
i=1

λiχAi : λi ∈ R, Ai are µ−measurable of finite µ measure, n ∈ N

}

of simple functions is dense in L1(G), there exist m ∈ N, λ′i ∈ R and µ-

measurable sets A′i for i = 1, 2, . . . ,m such that the simple function
m∑
i=1

λ′iχA′i

belongs to the above class and
∫ ∣∣∣∣∣f −

m∑
i=1

λ′iχA′i

∣∣∣∣∣ dµ < ε/2. We now choose
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an open set V1 such that x ∈ V1 and

µ(V1) <

ε/2−
∫ ∣∣∣∣f − m∑

i=1
λ′iχA′i

∣∣∣∣ dµ(
1 +

m∑
i=1
|λ′i|
) .

The choice of the set V1 is justified by virtue of the fact that µ being diffused,
we can choose an open set containing e of sufficiently small measure.

Set C ′i = A′i \ V1, and define g =
m∑
i=1

λ′iχC′i and h =
m∑
i=1

λ′iχC′i + χV1 .

Clearly τ(f, g) < ε, τ(f, h) < ε, where τ denotes the usual metric induced
by the standard norm on L1(G). It is also easy to note that g ∈ A0(x),
h ∈ A1(x) which follows from Definition 3. �

Proof of Theorem 1. We know that L1(G) is a topologically complete metriz-
able space and therefore is of second category by Baire’s theorem. Now if
possible, let G(x) be a set of second category in L1(G). Then G(x) is also a
second category subspace of itself (by Th 1, pg 83, [7]). Since by Propositions
1 and 2 both A0(x) and A1(x) are Gδ subsets of A(x) and A(x) = G(x), so
both are Gδ subsets of G(x). Moreover, both these sets are dense in L1(G),
so they are also dense inG(x). Consequently, bothG(x)\A0(x), G(x)\A1(x)
and so also their union are meager in G(x). Therefore some f exists such
that f ∈ A0(x) ∩ A1(x) which is absurd.

Now as C(x) ⊆ G(x), the class C(x) is meager in the topology of L1(G).
This proves Theorem 1. �

Remark 1. Here we may note that not only C(x) is meager but it is also
contained in an Fσδ meager set. Indeed,

L1(G) \G(x) = {f ∈ L1(G) : H(f, x) > 1−H(1− f, x)} =

=
∞⋃
k=1

({f ∈ L1(G) : H(f, x) > rk} ∩ {f ∈ L1(G) : H(1− f, x) > 1− r′k}).

Therefore

L1(G) \G(x) =
∞⋃
k=1

([ ∞⋂
n=1

∞⋃
p=n

{
f ∈ L1(G) : H(p)

(f, x) > rk

}]
∩

∩

[ ∞⋂
n=1

∞⋃
p=n

{
f ∈ L1(G) : H(p)

(1− f, x) > 1− r′k
}])

where {(rk, r′k) : k ≥ 1} is the set of all pairs (p, q) of rationals such that
p > q, which is Gδσ (in L1(G)) by virtue of Proposition 2, and consequently
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G(x) is Fσδ (in L1(G)). But it is also meager as shown in the proof of the
above theorem.

Our next Theorem 2, answers our first question.

Theorem 2. If G is second countable, then the class of all functions (in
L1(G)) for which C(f) is meager in the topology (of G) is co-meager in the
topology of L1(G).

By (th. 3.3.1, [5]) locally compact spaces are completely regular (or Ty-
chonoff or 31

2) and by (th. 4.2.9, [5]) second countable regular spaces are
metrizable. Hence if a topological group is a second countable locally com-
pact space then it is completely metrizable. But as assumed in the beginning,
since the topological group we are considering in this article is equipped with
a class C of compact sets satisfying conditions given by Definition 3, it fol-
lows (by virtue of the deduction laid down in remark 3) that our topological
group G is always metrizable, irrespective of whether it is second countable
or not.

As in Theorem 1, here also, we state and prove a set of propositions and
then finally give a proof of the Theorem.

The following result is the dual of the second part of Proposition 2, a
proof of which may be given on the same lines as before.

Proposition 4. For any f ∈ L1(G),

A(f) = {x ∈ G : H(f, x) + H(1− f, x) = 1}.

Let π = {(x, f) ∈ G × L1(G) : H(f, x) + H(1 − f, x) = 1}. Then π(x) =

G(x) and π(f) = G(f), are the two sections of π in G × L1(G). We now
show that π is a set with the Baire property by showing that it is Borel.

For any n ∈ N, let us define two functions F(n) : G × L1(G) → R and
J(n) : G× L1(G)→ R by setting

F(n)(x, f) = H(n)
(f, x) and J(n)(x, f) = H(n)

(1− f, x).

It follows by our first claim (Proposition 2) that for each x ∈ G both
F(n)(x, .), J(n)(x, .) ∈ C(L1(G)).

Proposition 5. For each f ∈ L1(G), both F(n)(., f) and J(n)(., f) are lower
semi-continuous.

Proof. We prove this fact for F(n)(., f) only.
The case for J(n)(., f) = F(n)(., 1− f) will follow similarly.

Let ε > 0 be given. Then by the absolute continuity of µ-integral there
exists δ > 0 such that

∫
E |f |dµ < ε/4(n + 1) whenever E is µ-measurable

with µ(E) < δ.
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Now let x ∈ G be chosen arbitrarily. Then from the definition of F(n)(x, f)
it follows that there exists gS with 1

n+1 < µ(S) ≤ 1
n such that x ∈ gS and

F(n)(x, f)− ε
2 <

∫
gS f(z)dµ(z)

µ(S) .
Since gS is compact, by the regularity of µ it follows that an open set W
exists such that gS ⊆W and µ(W \ gS) < δ. Let V be any symmetric open
neighbourhood (i.e., V = V −1) of the identity element e such that V gS ⊆
W . If yx−1 ∈ V , then µ(yx−1gS \ gS) ≤ µ(V gS \ gS) ≤ µ(W \ gS) < δ.
Also µ(gS \ yx−1gS) ≤ µ(W \ yx−1gS) = µ(W )− µ(gS) = µ(W \ gS) < δ.
Hence ∣∣∣∣∣

∫
yx−1gS f(z)dµ

µ(S)
−
∫
gS f(z)dµ

µ(S)

∣∣∣∣∣ <
< (n+ 1)

{∫
yx−1gS\gS

|f |dµ+

∫
gS\yx−1gS

|f |dµ

}
< ε/2

whenever yx−1 ∈ V and therefore F(n)(x, f) − ε < F(n)(y, f) whenever
yx−1 ∈ V . �

The argument behind the following proposition runs similar to the argu-
ment for a Carathéodory function of two variables (see [1], pg 156, Th 20.15
and [7], pg 378, Th 2).

Proposition 6. Both F(n) and J(n) are Borel measurable.

Proof. As in Proposition 5, we prove this fact for F(n) only. Since G is second
countable, the space of all continuous real valued functions with compact
support is separable. Again as this space is also dense in L1(G), it follows
that L1(G) is also separable. Let {f1, f2, f3, . . . , fm, . . .} be a countable
dense subset of L1(G). Now for any a ∈ R, (x, f) ∈ (F(n))−1[a,∞) if and
only if F(n)(x, f) ∈

(
a− 1

k ,∞
)
for each k ∈ N. But this is again equivalent

to the assertion that for each k ∈ N, there exists fm with f ∈ Bτ (fm,
1
m)

such that F(n)(x, fm) ∈
(
a− 1

k ,∞
)
(since F(n)(x, .) ∈ C(L1(G)) by the first

claim of Proposition 2) where Bτ (fm,
1
m) is the open ball in L1(G) with

center at fm and radius 1
m . Thus we may write

(F(n))−1[a,∞) =

∞⋂
k=1

∞⋃
m=1

[{
x ∈ G : F(n)(x, fm) ∈

(
a− 1

k
,∞
)}
×Bτ

(
fm,

1

m

)]
Now F(n)(., fm) being lower semi-continuous and therefore Borel measur-

able, the Proposition follows. �

Proof of Theorem 2. From Proposition 6, it follows that the functions
F : G × L1(G) → R and J : G × L1(G) → R defined by F(x, f) =
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lim sup
n→∞

F(n)(x, f) and J(x, f) = lim sup
n→∞

J(n)(x, f) are both Borel measur-

able, and so π is a Borel measurable subset of G× L1(G) because from the
identities F(n)(x, f) = H(n)

(f, x), J(n)(x, f) = H(n)
(1− f, x) it follows that

π can be expressed as π = {(x, f) : F(x, f) + J(x, f) = 1}. Hence it has the
property of Baire.

We have already established (in course of proving Theorem 1) that for
each x ∈ G the set G(x) (or, equivalently, the section π(x)) is meager in the
topology of L1(G). Hence (by Theorem 15.4, pg. 57, [9] which is a converse
of the famous Kuratowski-Ulam theorem) it follows that π is meager.

But then (by the Kuratowski-Ulam theorem, pg. 56, [9]), the sections
π(f) can be proved as meager (in G) for all f ∈ L1(G) except those which
constitute a meager subset of L1(G). That we may apply the Kuratowski-
Ulam theorem in the present situation is justified since L1(G) is separable.

This proves Theorem 2. �

Remark 2. The defining condition (Definition 3) for the class C makes
the collection {gS : g ∈ G,S ∈ C} an “indefinitely fine system” of sets in
any locally compact Hausdorff topological group. Further, under the effect
of condition (∗), this indefinitely fine system also turns out to be a “Vitali
system” of sets.

Remark 3. We now prove that under the condition given by Definition 3,
our topological group G becomes first countable and hence metrizable.

Assume that a locally compact group G admits a collection C given by
Definition 3.

Let {Sn}∞n=1 be any sequence of members of C such that lim
n→∞

µ(Sn) = 0.

For each n, let Un be the interior of SnS−1
n .

Claim 1. Un is a neighbourhood of the natural element e of G.

Proof. For simplicity, put S = Sn. By Theorem XII. 61A of [6], the function
g : G→ R given by g(x) = µ(xS \ S) + µ(S \ xS) is continuous. So, the set
V = {x ∈ G : g(x) < µ(S)} is open in G. Notice that e ∈ V . Moreover, if
y ∈ V , then µ(S \xS) < µ(S) which implies that S∩xS 6= ∅. Consequently,
x ∈ SS−1. This shows that V ⊂ SS−1 and we are done. �

Claim 2. There exists a sequence {gn}∞n=1 (gn ∈ G) such that for every open
neighbouhood W of e there is k such that Wk ⊆W , where Wk = gkUkg

−1
k .

Proof. Let V be an open neighbourhood of e for which V V −1 ⊆ W . We
infer from Definition 3 and the non-discreteness of G that there exists a
sequence {gnSn}∞n=1 (gn ∈ G,Sn ∈ C) such that e ∈ gnSn for each n and
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lim
n→∞

µ(Sn) = 0 (see the part within bracket at the end of Definition 3).
Moreover, from the same Definition it follows that there exists k such that
gkSk ⊂ V . But then gkUkg−1

k ⊆ (gkSk)(gkSk)
−1 ⊂ V V −1 ⊆W . Now setting

Wk = gkUkg
−1
k finishes the proof. �

Theorem 1 and 2, which are the two main results of the paper are related
to the notion of C-points. To define C-points and also to prove Theorem 1
(upon which the proof of Theorem 2 also depends heavily), we find from
above that our topological group G should necessarily be first countable
and therefore metrizable. In these circumstances, the condition of second
countability (used in Theorem 2) becomes equivalent to the σ-compactness
of G.
Acknowledgement. The author is thankful to the referee for his valu-

able comments and suggestions that led to an improvement of the paper.
He also owes to Prof. M. N. Mukherjee of the Deptt. of Pure Mathematics,
Calcutta University, for the present linguistically improved version.

References

[1] C. D. Aliprantis and O.Burkinshaw, Principles of real analysis, Academic Press,
1998.

[2] S. Basu, Some results on integration in locally compact groups and a typical extension
of a theorem of Goffman, under preparation.

[3] S. Basu, Generalization of some theorems of Steinhaus in locally compact groups,
Glasnik Matematicki, Vol. 31(51) (1996), pp. 101–107.

[4] W. W. Comfort and H. Gordon, Vitali’s theorem for invariant measures, Trans.
Amer. Math. Soc. 99 (1961), pp. 83.

[5] R. Engelking, General Topology, Translated from the Polish by the author, second
edition, Sigma Series in Pure Mathematics, 6. Heldermann Vrelag, Berlin 1989, pp.
viii+529.

[6] P. R. Halmos, Measure Theory, Van Nostrand, 1950.
[7] K. Kuratowski, Topology, Vol 1, Academic Press, 1966.
[8] B. K. Lahiri, Density and approximate continuity in topological groups, Journal

Indian Mathematical Society 41 (1977), pp. 129–141.
[9] J. C. Oxtoby, Measure and Category, Springer-Verlag, 1980.

S. Basu
Department of Mathematics Govt College of Engg and Textile Technology
12, William Carey Road, Serampore, W.B-712201
E-mail: sanjibbasu08@gmail.com


