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PROPOSAL OF NEW CLUSTER ANALYSIS ALGORITHM

Abstract. One o f well-known groups of cluster analysis methods is the group o f methods 
based on density estimation. In the paper we propose a new method o f defining dusters 
which consists o f two steps. In the first step we find local maxima of the joint distribution 
thus establishing clusters centres. In the second step we assign observations to  one of existing 
clusters centres. The number o f clusters is assumed to be known. In both steps we use similar 
technique based on the kernel density estimator with the Epanechnikov kernel. The perfor
mance of the method is analyzed in an example o f application to  the G ordon (1999) data. 
In the analysis the Rousseeuw indices are used to assess clusters cohesion as well as and 
some comparisons with other methods of defining clusters are presented. The results look 
promising.
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1. INTRODUCTION

Let us consider arbitrary set o f n points from d-dimensional Euclidean 
space. Multidimensional kernel estimate based on kernel К  and window 
size h calculated at point x  is given by the formula

o )

The optim al kernel in the sense of minimal m ean square error is the 
Epanechnikov kernel given by the form ula
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The gradient o f  the density estimator i.e.

V / W  =  i | v K ( ^ )  ( 3 ,

will be equal to
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The quantity in the brackets i.e.
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is called the sample mean shift. One may prove (Comaniciu, Meer 2000) 
that the sequence o f consecutive centres o f sample/window is convergent 
to the local maximum o f density function. The convergence is quite fast 
therefore we will use this kernel estimator based on the Epanechnikov 
kernel in both steps on the proposed method.

In the first step we will use the sample mean shift method to find the 
centres o f the predetermined number of clusters. In the second step we 
may also use the sample mean shift method to determine the direction in 
which the window “moves” and, in this way we will find cluster to which 
each point should be assigned. The remaining part o f the paper is devoted 
to the description o f the proposed algorithm and some clustering assessment 
methods are described in a more detailed way. In the third part o f the 
paper the performance of the method is assessed in an example o f ap
plication to the Gordon (1999) data.

2. ALGORITHM DESCRIPTION

The first step is an iterative one. In the first iteration we draw randomly 
к points, where к is the number of clusters that has to be assumed. We 
find the points o f  convergence for each o f the к points in the sequences 
o f consecutive shifts o f windows o f size h (the same size for every point 
for all sequence items). If the number of different points o f  convergence 
is equal to к and any two different limit points meet the condition

d(xt, Xj) >  h for i Ф j, (6)



where jc„ Xj are limit points for /, j  =  1 , 2 ,.. .  /с, we accept these points as 
clusters centres (to be modified in next steps). If there are less than к points 
of convergence (i.e. some sequences converge to the same points) or if 
condition (6 ) is not met, we forget about the drawn к points and we draw 
next к points. Once that we have established some к cluster centres we 
modify them iteratively i.e. at each iterative step we draw randomly к points 
and if we arrive at к different points o f convergence satisfying condition (6 ) 
we take weighted sums o f these points and existing clusters centres i.e. 
centre c, at the y'-th iteration is determined by the formula

where x tJ is the one of the limit points o f к points at the y'-th iteration 
that is closest to the centre c t. Centres modification is performed in natural 
succession i.e. we start with i =  1 then i =  2 and so on. While “adding” 
new limit points to existing cluster centres we do not trouble to insure any 
kind o f optimization i.e. to add limit points to closest centres. Such op
timization would require defining the succession or importance o f centres 
and, thus, another parameter. As it turns out such optimization is not 
necessary because very seldom it takes place that limit points are assigned 
to “wrong” centres.

In the algorithm’s first step described above, the choice o f parameter 
h is crucial to the proper performance of the whole algorithm. Some 
researchers call parameter h “cosmic” as there is no indication o f its value 
that would be suitable for clustering. We applied the following procedure 
of determining the value o f parameter h. All coordinates of h are determined 
in the same way on the basis o f  the projections o f all observations on 
a given coordinate. Let y^-.-.y ,, be the values o f all observations projected 
on a fixed coordinate. Let г be the smallest positive Euclidean distance 
between two values out o f y t i.e.

We will use the well known statistical formulae for the number m o f classes 
in order properly present statistical population consisting o f n observations

Cj =  ((j — l)C j-i +  x tiJ)lj, (7)
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m ^  30 m< 5 1 n n  m =  \Jn m =  1 +  3.322lo g n. (9)

We will accept m to be the greatest o f these three recommendations. We 
calculate the width o f each class (equal for all classes) by dividing the



greatest distance between two values out of y 1, . . . , y n by m. The value of 
parameter h will be equal to half o f  the median of the medians o f distances 
between each two consecutive local maxima o f the classes numbers of 
objects. The set o f medians is constructed in the following way. First 
median o f the set is calculated for the case in which the beginning o f the 
first class is equal to the smallest value o f y if the second median o f the 
set is calculated for the case in which all classes are shifted to the right 
by r, the third median of this set is calculated for the case in which all 
classes are shifted to the right by 2 r, and so on, until the beginnings of 
the classes exceed the ends o f the classes from the first case. The idea 
behind defining parameter h as equal to half o f the average distance between 
local maxima o f the projection distribution density function is that this 
value is the perfect value for the observations lying in the neighbourhood 
o f local minima o f the density function, to decide in which direction (to 
which local maximum) they should be clustered by the density kernel 
estimate based on the window o f size h. By the distance between two 
consecutive local maxima we understand the distance between the centres 
of two consecutive classes strictly more numerous than each o f their two 
neighbouring classes. The value o f parameter h determined in this way may 
fail to give proper clustering only if in some data regions there are many 
local maxima located closely to one another and in some other data regions 
there is a smaller number of local maxima located further from one another. 
In such cases the value of the parameter should be determined locally.

The second step o f the algorithm is focused on assigning every obser
vation to one o f the cluster centres determined in the first stage. The 
simplest way is to assign every observation to the cluster represented by 
the closest cluster centre. This way does not work properly which one can 
check on almost any data set to be found in literature. The reasons for 
this behavior are obvious, observation should be assigned to the clusters 
the distance from which, or the distance from the “meaningful” part of 
which is smallest. The distance from the clusters centres is not crucial. 
Another simple way is to assign observations sequentially i.e. in each step 
we assign the observation which has the smallest distance from one o f the 
clusters (i.e. the smallest distance to the closest member o f each o f the 
clusters created up to the current step) to this cluster. This way does not 
work properly as one can check easily in a number o f examples. The reason 
this time is the fact that sequential assigning o f observations may cause 
“approaching” o f clusters to observation not assigned yet independently of 
the distance between an observation and its closest neighbors i.e. an ob
servation may be assigned to an erroneous cluster because the observations 
closest neighbors have not been assigned yet to any o f the clusters created 
up to the current step.



In the second stages o f the algorithm we propose the following procedure 
which seems most natural and gives good results. Every observation is 
assigned to the cluster represented by the centre which is closest to the 
limit o f the mean shift procedure for this observation. Window size (different 
at each step) o f  this procedure is equal (in each dimension) to the Euclidean 
distance between the point generated in the current step o f the procedure 
and the closest o f all the clusters centres.

3. ALGORITHM  APPLICATION AND ASSESSMENT

Let us apply our algorithm to the clustering o f the Gordon (1999) data. 
These data set consists o f 300 observations generated from three different 
two dimensional normal distributions (100 observations from each). The 
centres o f these distributions are located at the midpoints o f  the sides of 
equilateral triangle whose sides are o f length 10. For each o f the three 
distributions, the major axis of its variance-covariance matrix lies along the 
side o f the triangle and has length 4, with the minor axis having length
1. There is a fair amount o f overlap between each pair o f the three 
distributions (cf. Figure 1).

As the number o f observations n is equal to 300 then the imple
mentation o f the first step o f our algorithm was performed for m =  2 0  

classes (according to (9) m should range from 18 to 28, but all these 
values result in very similar values o f  h). The first coordinate (corre
sponding to the horizontal axis) o f the window size h was equal to 
about 1/13 o f the sample width (greatest observation minus smallest) 
on the horizontal axis. The second coordinate o f h was equal to about 
1/12 o f the sample width on the vertical axis. Using this window size 
we arrived at the clusters centres depicted as three big black dots after 
a small number o f iterations -  clusters centres had stabilized after not 
more than 12 iterations. The results o f applying the second step of  
the algorithm are shown in Figure 1. In the same figure the clusters 
find by Gordon are also presented. Gordon used the following method. 
In the first step a subset o f 75 data items was selected from dense 
regions o f the plane by sequentially identifying objects with minimum 
average distance to their fifth nearest neighbor (amongst objects that 
had not yet been selected). This step gave three, as the author puts 
it, “visually-evident” partition classes. In the second step the sample 
variance-covariance matrices o f these three classes were evaluated and 
all 300 objects were assigned to the class whose Mahalanobis distance 
to them was smallest.



We assessed the quality o f the two clustering methods by means of 
cluster cohesion indices proposed by Rousseeuw (see Gordon 1999). For 
each object i for i =  1 ,...,300  we calculated index s(i) following the formula

s(i) =  -— » where a(i) =  У  — and b(i) = m in ,^ ri  У  — 1> 
max{/>(i), a(0} J e f c ' ) n r ~  1 L

(10)

where for dtj we used the Euclidean distance. Positive value o f index s(i) 
suggest that object i belongs to the proper cluster while negative value 
suggests something contrary.

Fig. 1. Example of clustering two dimensional G ordon (1999) data. Crosses represent data, 
thin Unes represent cluster boundaries found with the Gordon method, thick lines are boundaries 

of clusters established with the new method

Gordon clustering gave two negative indices, about -0 .3  in value, and one 
fractionally negative -0.008, while our algorithm gave one slightly negative 
value - . 0 1 .

The overall comparative assessment o f both clustering methods points 
to the fact that the Gordon method is more parametrized because the 
number of 75 observations was chosen arbitrarily, the phrase “visually-



evident” may in some cases be also very questionable and the fifth closest 
neighbor is also an arbitrary choice. In our opinion it is safer and more 
robust to put some more attention to the proper choice o f parameters (or 
exactly one parameter as it is in the case o f the Epanechnikov kernel) for 
methods based on density function estimation to derive methods giving the 
same or better results.
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PRO PO ZY CJA  NOWEGO ALGORYTMU DO ANALIZY SKUPIEŃ

(Streszczenie)

Jedną z dobrze znanych grup metod analizy skupień są metody oparte na szacowaniu 
gęstości. W artykule zaproponowana jest nowa metoda wyszukiwania skupień, która składa 
się z dwóch kroków. W pierwszym kroku znajdujemy maksima lokalne rozkładu łącznego, 
które przyjmujemy jako centra skupień. W drugim kroku każda obserwacja przyłączana jest 
do jednego z centrów. Zakładamy z góry liczbę skupień. W obydwu krokach używamy tej 
samej techniki opartej na estymatorze jądrowym funkcji gęstości z jądrem Epanecznikowa. 
Działanie metody jest przeanalizowane na przykładzie danych G ordona (1999). W analizie 
wykorzystano indeksy Rousseeuwa spoistości skupień, jak również przedstawiono porównanie 
z innymi metodami analizowania skupień. Wyniki wyglądają obiecująco.


