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ROBUST BAYESIAN PREDICTION
WITH ASYMMETRIC LOSS FUNCTION
IN POISSON MODEL OF INSURANCE RISK

Abstract. In robust Bayesian analysis a prior is assumed to belong to a family instead
of being specified exactly. The multiplicity of priors leads to a collection of Bayes actions. It
is clearly essential to be able to recommend one action (estimate, predictor) from this set.

We consider the problem of robust Bayesian prediction of a Poisson random variable
under LINEX loss. Some uncertainty about the prior is assumed by introducing three
classes of conjugate priors. The conditional -minimax predictors and posterior regret
I-minimax predictors are constructed. The application to the collective risk model is pre-
sented.
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1. INTRODUCTION

We consider a Bayesian risk model. Our objective is to predict the
number of future claims in order to calculate an appropriate premium. We
will use the Bayesian forecasting, which combines the knowledge about
characteristics in the whole portfolio with knowledge about an individual
contract. The knowledge about an individual is given in the form of
a random sample X = (Xi,X 2,...,X,,). The probability distribution of its
sample and a predicted random variable Y depends on an unknown para-
meter (characteristic) 0. The knowledge about the whole portfolio is presen-
ted by using a prior distribution of 0.

The standard Bayesian analysis in the risk theory has been considered
in many papers, for examples see Makov et al. (1996) and Klugman et al.
(1998). In classical credibility (cf. Gooverts 1990, Klugman 1992) we find
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the predictor g(X) of random variable ¥ by minimizing the mean square
error i.e.

E(Y —9(X))2,

where the operator E emphasizes the expectation with respect to the joint
probability distribution of all random variables O X, Y. For square loss
function positive and negative deviations have the same weight. In insurance
the penalty for underestimation should not be the same as for overes-
timation. In contrast with the classical results we choose an asymmetric
loss function, LINEX loss function (cf. Zellner 1986), equal

Uy,d) = *»-»-c(y-d)- 1,

where ¢ ®o is a known parameter and y is a value of a predicted random
variable and d is a value of a predictor. If ¢ > 0 then underestimation gives
greater error than overestimation (for ¢ <o overestimation gives greater
error than underestimation). Without loss of generality we will assume
c> 0. The LINEX loss is connected with the premium calculated according
to the well-known “exponential principle”, (cf. Goovaerts 1990). Note that
the square loss gives the net premium.

The obtained predictor depends on a choice of a prior distribution I.
In most Bayesian analysis the elicitation of a prior is quite difficult and
can be uncertain. The robust Bayesian inference uses a class I of prior
distributions, which model uncertainty of the prior information. It deals
with the problem of measuring the range of a posterior quantity (for
example: the range of a Bayes estimator, a predictor, a posterior risk) while
a prior distribution runs over the class I'. Its aim is also finding robust
procedures. The general references on robust Bayesian methods are Berger
(1990, 1994), Insua and Ruggeri (2000). In insurance models the range of
a premium, when priors run over a class I', has been considered in many
papers, for examples see Insua et al. (1999), GOomez-Déniz et al. (1999,
2002), and references therein.

We introduce two measures of robustness of a predictor and find the
optimal solutions (the most robust predictors of number of future claims)
with respect to these measures. The next section presents a general definition
of a Bayes predictor under LINEX loss and definitions of robust predictors:
the conditional -minimax predictor and the posterior regret '-minimax
predictor. Section 3 gives the robust predictors in the Poisson model with
three classes of conjugate priors and presents the application in the collective
risk model.



2. BAYESIAN PREDICTION UNDER LINEX LOSS

Let X be an observed random variable with a probability distribution
Pe indexed by a real parameter 0, with a density pe with respect to some
er-finite measure. Let ¥ be a real random variable with a probability
distribution Fe indexed the same parameter 0 with density f 0 with respect
to the cr-finite measure L, Variables X and Y are conditionally independent
given 0. Suppose that 0 has a prior distribution TIl.

Our goal is to predict ¥ under LINEX loss. We are to find a Bayes
predictor, i.e. a statistic gn(X), which minimizes the quantity EnL(Y,g(X))
with respect to g. The subscript I in the operator En denotes that the
prior I is and EnL(Y, g(X)) is an expected value of a function L with
respect to the joint probability distribution of O X and V.

We have

£MY, g(X)) = EnEn[L(Y, g(X))\X].

To find the Bayes predictor for X = x it is enough to minimize the
posterior risk
Rx(11,d) = En[L(Y, d)\x] = e-c'Enir*|x) + cd- c£n(¥Y|x) - 1

over de\R Thus the Bayes predictor at a point x is
gn(x) = -Cln £ n(ec» .
Let M (|x) denote the posterior distribution of 0 if X = x. Then
gn(x) = *Inj«j* ecf e{y)ndy)U(dO\x) = - Jin En(M Y(c\0) |x),

where M Y(t\0) denotes the moment generation function of the random
variable ¥ at a point t given 0, and En(h(0)\x) denotes the expected value
of a function h, when 0 has a posterior distribution.

Now assume that a prior I is not specified exactly and consider a class
I of priors. Consider two functions as two measures of robustness of
a predictor g at the point x:

* (%, 9(x)) -+ suprur Ax(n -g())\

(X, g(x)) -* supner nx(I, g(x)), where

Ux(n,d) = Rx(n,d)-Rx(Tl,gn(x))

is called the posterior regret of a decision d if a prior is equal to IM.



Definition 1. The predictor g is called the conditional '-minimax pre-
dictor iff

sup A*(M, g(x)) = inf supRx(l1,d)

ner deR ne6r

for every value x of the random variable A"

Definition 2. lhe predictor gPR is called the posterior regret M-minimax
predictor iff

sup t/x(n, gPR(x)) = inf sup Ux(11,d)

ner deR ne6r

for every value x of X.

The definitions arc connected with the problem of efficiency of a predic-
tor when a prior runs over a class T.

From now on we will suppress x wherever possible in formulas for
predictors.

Theorem 1. Let X = x. Suppose d = d(x) = infgn(x) and

ner

I = I(x) = supgn(x) are finite and d<1. Then
MNelr
o c(d —d)

and grRre (d, d).

Proof. For given X = x let h= h(U,x) = EnC”Ix). Then gn= - Inh and
c

Ux(U,d) = he~ad—Inh+ cd —1

Now proof is similar to the proof of Theorem 1 (Boratyriska 2002).

3. ROBUST PREDICTORS IN POISSON MODEL

Let X1, X2 ...,.Xn Y be iid. random variables with a Poisson dist-
ribution Pe, where 0> 0 is unknown. Write X = (Xu X 2,..., Xn). The vector
X is observed. A random variable Y is predicted. Let Gamma(a,b) denote
a Gamma distribution with a density function



nab(0) = - b*.B*-1le-8 for 0> o,
()

where a, b> o are parameters.
Assume that 0 has a prior distribution Meao @ = Gamma(ao0,R0). If XI‘T X

then the posterior distribution is Gamma(ao+ T, 30+ n), where T = £ xt,
i=t
and the Bayes predictor of the random variable ¥ under LINEX loss is

gaRa= - INEmM{c\p(0(¢ - 1)x) =

, , ,’: Bo+ K
= E)(«O+ In ﬁ0+In+ | —e
Note that for a square loss function the value of the Bayes predictor
of the random variable ¥ is equal to the value of the Bayes estimator

of the parameter 0. Here, under LINEX loss, the Bayes estimator of
0 at a point x is

03&° = —C(«o + ]'Ilrl—Bd'SQ 0

Now suppose that the prior distribution is not exactly specified and
consider three classes of priors of O:

ri = {MaoP:M1lop= Gamma(tx0,8), Re\Bu R2]},
where 0 <R 1 <B2 are fixed and R0e(BuR2),
r2= {N«A:M«A>= Gamma(a,R0), ael[ai,a2]},
where o <al!<a2 are fixed and aoe(a1,a2),
r = {NM :n, A= Gamma(tx,R), aefa”~aj, RelB™Bj],

where 0 <aj <a2 and 0<RBI <R 2 are fixed and aoe(a1,a2) and R0e(RLR 2).
The classes M5 2 and '3 express three types of uncertainty about the
elicited prior.
If a prior is Gamma(a,/?) then the Bayes predictor of the random variable
Y is equal



éap= -(« +r)in— P+ -
B+n+ I —ec

and it is an increasing function of a and a decreasing function of 8. Note
that the Bayes predictor exists if e*<f+ n+ 1. Thus from now on we will
assume that ce(o,In”™ + n+ 1)).

Applying Theorem 1 we obtain the following theorem.

Theorem 2. If the class of priors is equal to 2 then the posterior regret
M-minimax predictor of Y is equal to

1 1 1

9PR= gakhv+ in .
g c (az—aj)inz

Bo~'n+ 1 —e*
If the class of priors is equal to Tj then the posterior regret '-minimax
predictor of Y is equal to

R Fl+l.| mn—1
= - n_
¢ g c Inn
n A R\ M r and
L<A + " + 1- <n)(®2+ n)J v
/ \»+T
. , F e ) -
gPRR™N In s if —%o0 and R, —
0o+ B In-— -
@ n-k1- ec

If the class of priors is equal to '3 then the posterior regret I'-minimax
, predictor of ¥ is equal to

R ]'I."ﬁl_'_ll. w—1
= ga -In-— |
gp g MW

where w= tfi + »)*+,tfa+ « + | -0 «+r
(B1+n+ 1-e0 ‘I+r@?22 + n)ei+r
The next two theorems present the conditional M-minimax predictors.
Theorem 3. If the class of priors is equal to 2 then the conditional
M-minimax predictor of Y is equal to



BO+ n
® otherwise,

wherez= a>t»
BO+ n¥f 1 —se
Proof. For a given x a posterior risk of a predictor d is equal to

Ar(MN)A<O=/(M) = e @*+r-|-ci/-c - 1

/"0

where z = -—---—-- —> 1. The first and the second derivatives are
RO+ n+1l-ee
equal to
ja Bo+n
and
a2

Thus / is a convex function of a and

cd+ In
9/(g<Q _o ~ (Qo+ n)inz T
3a Inz

Hence

Frax(/{a1,”),/(a2,™)) if dl<d<d2

sup /(a,d) =i (a2, A if d~rdt

[ /(an™d) if d>d2

where d, = g*-P—-In—-—-—--—- i=1,2. The function

¢ (0o+ n)inz’
/(A =f(altd) -f(a2d) is an increasing, continuous function of d and

1 (zai+T-z a+T)(R2+ n)
- In? 7 -=>
c c(az2 —ax)

)= o iff d=d' =

hence

Z T No o« if d>d.



If i/<oai'i,° then f(<x2,d) is a decreasing function of d. Similarly, /(a,, d) is
increasing for d>fia'Po. Thus

ri(az,d*),/(«i.O if 0a"~d*izoU'®°
inf sup f(x,d) =\ /(a2,gai'*) if d*>0ai'h
deWaelajaZ . .
[(*Xx»1*"10) if d*<ga'-R

The inequality
d*>g*"p° (1)
is equivalent to
72 - c

«2 - al YO+ «

Consider a function g(a) = za Then h’(a) = z“~a and there exists a0>al
such that

zv2-1—1 1 e?—\ c
----- = hf{a0d)> Inz= In-——-——=- > ——-> v
a2 al j_ &—1 Bo+n Ro+ Tl
20+ n

Hence, the inequality (1) is always true.
The inequality d*~gai'fo is equivalent to the inequality

Po+ n

thus we obtain the assertion.

Note that the condition 1-z a““2<--~— (at-a x) does not depend on
Po + n
observations.

Theorem 4. If the class of priors is equal to '\ then the conditional
M-minimax predictor of ¥ is equal to

fg*'R+ - In-—- if 1--<r<mbl-1
C r n
a={ gao8 if r<i—m
n
re-gl if r>un—i.

ﬁ}j *rand T'=" oy 2+ )



Proof. Let b=R+n and b =M+ u, i=1,2, then h is an increasing
function of B and for a given x a Bayes predictor B is a decreasing
function of h and

i I( b \VO+r ao+ T
Rt(n aoif, d) = p(b,d) = e-‘db+1_ A +cd-c b
The first derivative is
and !
dp(b, d) b ( erdc \’\+T+|
- - > 00 - <vVv, where v=(—r
db b+\-<r ’ —1

If v—K 0 then p is decreasing for b>o. If v- 1> 0 then p has minimum

v(ec—1)
at the point b0 = -------- . We have
1 ec—1
v—1>00 d>-1In .
c c
Hence
ima\(p(bu d),p(b2,d) if d2<d<dl
sup p(b,d) =i p(b2, d) if d> di
beilx ] p(bv d) if dn~d2
where d’1: glot, + élng-?- —I_\_—- ) for i= 1,2 and d2>éln
The function 1(d) = p(bl,d)~ p(b2,d) is decreasing and

b,b2(u—1)

@ = 00d = (r=g*-han ) 0oy

Of course d*e[d2,dj. Hence

jp(bud) if dAd*

Now, analysis similar to that in the proof of Theorem 3 and some cal-
culations give the assertion.



Corollary 1. If the class of priors is equal to rt and -> 0 and
B2 —*cc then the conditional N-minimax predictor

Now consider the class IM'3. The derivatives of the posterior risk are as
follows

and there is no solution of the system of equations

8u
dRxjllzj, d) _
di

Thus, for every d supremum of function Rx, when prior runs the class '3
is reached for (a, B) belonging to the boundary of the set [al5s aZ] x [BY,R2]
Analysis similar to that in the proof of Theorem 3 and 4 shows that

Vd>0 sup Rx(TIl,d) = max {Rx(n?,,f,d): i= 1,2, j= 1,2}

MNer

For every d> 0 we obtain four functions, we choose the maximum and
next minimum over d.

Example. Insua et. al. (1999) consider the problem of Bayesian prediction
of the number of accidents under the square loss function. They compute
the Bayes predictor and its oscillation when a prior runs over a class T.
The number of accidents is assumed to follow a Poisson model. The
parameter 0 (representing the accident rate for one policy) is assumed to



have a Gamma distribution. The parameters of a prior were approximated
using the expert knowledge. As a consequence, a Gamma distribution with
parameters ao = 1.59 and B0 = 2.22 is adopted. Since the prior is determined
through approximation the family of priors

I = {Gamma(a,B): ate[0.22,11.1], B f[0.16,7.95]}
is considered. This family corresponds indeed to wide variations in the

parameters. Table 1 presents the data (number of accidents aggregated per
year and number of polices).

Table 1
K Year Number of polices nk  Number of accidents Tk
1 1987 4368 75
2 1988 4281 54
3 1989 4157 68
4 1990 3775 60

Using a prior Gamma(a,R) and data for k= 1, we obtain a posterior
distribution Gamma(oL+ Tu R+ nj), which next becomes a prior for a period
K=2 and so on. Thus, in every year we have a new family of
priors. Table 2 presents the ends of intervals for parameters a and B in
every period.

Table 2

*_j i-1
K Ends of intervals for a  Ends of intervals for R “0o+ E t, Ro X nl

i-i 11
1 0.22 11.1 0.16 7.95 1.59 2.22
2 75.22 86.1 4368.16 4375.95 76.59 4370.22
3 129.22 140.1 8649.16 8656.95 130.59 8651.22
4 197.22 208.1 12806.16 12813.95 198.59 12808.22

Consider the square loss function. If the prior is equal Gamma(oL,R),
and data are T (number of accidents) and n (number of polices) in the
period k—1, then the Bayes predictor of the number of accidents for nk
polices in the next period is



Under LINEX loss function the Bayes predictor is

n?.x = 1a+F n-~~" y---
( ) B+n+)1/—ec

Note that in our consideration above the example, we predict the number
of accidents (claims) for one policy. Thus here we must multiply every
predictor by the number of polices.

From now on let A®* denote the Bayes predictor of number of accidents
in the period k under the square loss function and AfK the Bayes

predictor u_rtld_er LINtEX loss function, both if the prior s
jt-i it-i

Gamma(oLO+ £ Tt,80+ £ n;). Let h.PRk and Ak denote the posterior regret
t=i i=i

M-minimax predictor and the conditional M-minimax predictor under LINEX

loss for nk polices.

Table 3

Square loss function

K T* nr Bounds of predictor Oscillation

1 75

2 54 75.0 73.6 84.4 10.8

3 68 62.7 62.1 67.3 5.2

4 60 58.5 58.1 61.3 3.2
LINEX loss ¢ =0.001

K TK n?'1 Bounds of predictor Oscillation

1 75

2 54 75.1 73.6 84.4 10.8

3 68 62.8 62.1 67.4 5.3

4 60 58.6 58.1 61.4 33
LINEX loss ¢ = 0.01

K TK nr Bounds of predictor Oscillation

1 75

2 54 75.4 73.9 84.8 10.9

3 68 63.1 62.4 67.7 5.3

4 60 58.8 58.4 61.7 33
LINEX loss ¢ = 0.1

K TK AfL Bounds of predictor Oscillation

1 75

2 54 78.9 77.4 88.7 113

3 68 66.0 65.3 70.8 5.5

4 60 61.6 61.1 64.5 3.4



Table 3 presents the values of Bayes predictors Af,K and Af,L for some
values of ¢ and oscillation of Bayes predictors when a prior runs over the
class of priors (see Table 2). The difference between values of predictor
under LINEX loss and under the square loss is an increasing function of
¢, for ¢ > 0. The oscillation decreases if K increases.

Table 4 presents the values of the posterior regret '-minimax predictor
and the conditional M-minimax predictor. For our data the conditional
M-minimax predictor is equal to the Bayes predictor corresponding to the

prior with parameters a2 = 11.1 and = 0.16.
Table 4
¢ = 0.001 c =001 c=01
K
A. PR, K K ~ PRK K

2 79.0 84.4 79.4 84.8 83.1 88.7
3 64.7 67.4 65.0 67.7 68.0 70.8
4 59.8 61.4 60.0 61.7 62.8 64.5

Now consider the collective risk model. We have a sequence of random
variables: ¥,Zj,Z2,.. A random variable Y describes the number of claims
of a given contract or a portfolio of contracts in a future period. Random

variables Zt, f=1,2,3,... describe sizes of claims. Random variables
Y,Zt,Z2, .. are independent and Zjsi= 1,2,3,... are identically distributed.
r

Assume we know the probability distribution function of Zt. Let S= £ -
i=i

Assume that S is to be predicted by a function G depending on
X = (Xu X2, .. XJ, where Xz, ..., X,, are numbers of claims in previous
periods. Again use the LINEX function as a criterion function. Obtained
predictor can be interpreted as amount of premium.

Assume X and Y satisfy the conditions presented in the beginning of
the Section 3. If X = x and I is a prior distribution of 0 then the Bayes
predictor of S is equal to

Gn = élnﬁn(ecS|x) = " In En (erin&/,(c|x),

where M.(c) denotes the moment generation function of a random variable
Z at the point c. Assume that M2(c) exists and it is finite. For N = Gam-
ma(a,R) we obtain



G*'R= - (a+ T)In-
cv a+n+1_mr()

Assume that c satisfies: M .(c) <Rv+ n+ 1land M.(c)> 1 Then we obtain
the following corollaries. The proofs of corollaries are like proofs of
Theorems 2, 3 and 4. We only remember that if M = Gamma(a,) then

and

T
En(S\x) = EZ
B+ n

Corollary 2. If the class of priors is equal to T2 then the posterior
regret '-minimax predictor of S is equal to

GoR= G“A 1| Z1-*1—1
= “A>+ - In
P ¢ (a2—a”™Inz

BO+ n
where z = —
Jo+ n+ 1—Mz(c)
If the class of priors is equal to Tj then the posterior regret '-minimax
predictor of S is equal to

Gpr=G"M1+-1ln ™,
c Inu

where

u= MM mBi+ n+ 1 —Mr(e)) T
L (2'+ 1M+ 1- Mz(c))(R2+ n)J

If the class of priors is equal to 'z then the posterior regret I'-minimax
predictor of S is equal to



where

Bi +n F>gr” + n+1' - AYIOT T
IBi+ n+1- Mz(c)] | B2+ n

Corollary 3. If the class of priors is equal to 2 then the conditional
M-minimax predictor of S is equal to

if
¢ CcEZ(ok —«J az—ax RO+ n cl—ai
. . . 1— cEZ
o= G A it L P il
“2- «1 Ro+ M
G2A otherwise

where 1= [ & +S T " =
\ Bi+n+ 1—WEKCc)J

If the class of priors is equal to then the conditional M-minimax predictor
of S is equal to

,G«o-*+ iln — if I--~r~u-I
c r "
0 =1 G- if r<| —
"
Gor if r>n—i
where u= W 1+ n)(B2+ n+ | - Mt(c))-+— cEZ(a0+ T)(B2—Rj)
and r (/?i + n)(22 + n)

102+ 1+ 1- Mz(c))(B2+ n)J
Note that for every fixed x there exist priors belonging to the considered
class ' such that the posterior regret '-minimax predictor and the con-
ditional '-minimax predictor are equal to the Bayes predictors with respect
to those priors.
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Agata Boratynska

ODPORNA PREDYKCJA BAYESOWSKA
PRZY ASYMETRYCZNEJ FUNKCJI STRATY
W MODELU POISSONA DLA RYZYKA UBEZPIECZENIOWEGO

(Streszczenie)

W odpornej analizie bayesowskiej rozktad a priori nie jest doktadnie wyznaczony, ale
nalezy do pewnej rodziny I rozktadéw a priori. Przy takim zatozeniu otrzymujemy réwniez
rodzine decyzji bayesowskich. Celem jest natomiast wybér jednej reguty ,,optymalnej”.

W artykule rozwazany jest problem odpornej predykcji bayesowskiej zmiennej losowej
0 rozktadzie Poissona przy lunkcji straty LINEX. Niedoktadno$¢ w wyznaczeniu rozkadu
a priori modeluje sie za pomoca trzech rodzin rozktadéw a priori. Wyznaczamy predyktor
warunkowo [-minimaksowy i predyktor o [-minimaksowej utracie a posteriori. Podajemy
zastosowania w kolektywnym modelu ryzyka.



