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A MODIFIED H OLM ’S STEPWISE REJECTIVE M ULTIPLE TEST
PROCEDURE

Abstract. In the case o f Holm’s stepwise rejective procedure we consider the multiple test
problem where there are n hypotheses H u  H 2.......H0 and corresponding p-values K ,........  R„.
The procedure is said to control strongly the familywise error rate when the property P (H ,se l,  
are accepted |(H „ s e i  true) >  1 — a holds. In this paper the modification of this procedure is 
presented. The refinement retains strong control of familywise error rate. There is a cost in 
calcalational simplicity, but a substantial improvement in actual error rate, according to 
simulations.
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1. INTRODUCTION

We consider the multiple test problem where are n hypotheses 
H j, H 2, ..., Hn and corresponding p-values R lt R 2, Rn, assuming the test 
statistics X y, ..., X„ are from a continous distribution. Suppose that in 
a multiple test procedure the property

P(H„ s e i ,  are accepted \HS, s e i  true) > 1 —a (1)

holds, for prespecified size o f test (familywise error rate) a, where I is any 
non-null subset o f {1, 2, n}, and thus contains m items, 1 < m ^ n .  Then 
the procedure is said to control strongly the familywise error rate (e.g. 
Hochberg, Tamhane, 1987).

Let Rw , R {2), ..., R (n) be the ordered p-values, and Я (1), H (2), ..., Н(я) the 
corresponding hypotheses. The “Bonferroni” multiple test procedure rejects 
the composite hypothesis {Я (1), H{2), H (n)} if Я(1) <  a/n, and accepts it 
otherwise. This procedure was refined by Holm (1979) as follows.
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Examine whether Я(1)<а / л :  if not, accept H (i), i =  1, ..., n as with 
Bonferroni; if so, reject / / (1) and examine whether ß (2) a/(n — 1). If the 
inequality is not satisfied accept H(2), ..., Я (я); otherwise reject Hm . Continue 
in this way.

Го summarize: а/(л — i +  1), i ^ j — l then at step j  the remaining 
hypotheses are H U), H(n) and the inequality next to check is 
R(j)^  а/(п ~J  +  !)• 1 process may run at most until a decision is made 
on the basis of whether Л(я)^ а  or not. Holm showed that his procedure 
strongly controls the family wise error rate. Inasmuch as it essentially depends 
on Boole’s (first Bonferroni) inequality, which is a degree 1 bound (e.g. 
Seneta 1997), Holm’s procedure retains an elegant simplicity.

There have been a number o f improvements on the Boonferroni- 
Holm degree 1 procedures, all o f which are aimed at increasing power 
while retaining a simple structure o f critical points (such as a / (n— y + 1 )  
above).

In Seneta and Chen (1997), a degree 2 step-down procedure is proposed 
which retains familywise control o f error rate. This procedure is adaptive 
in that calculation at each step is determined by the joint outcome o f all 
pairs o f  statistics in the experiment involved until the procedure stops. In 
view o f the continuing interest in a general procedure with famylywise 
control o f error rate, we present here a substantial refinement o f this 
procedure, procedure M in a from which resembles Holm’s. Specifically, 
the values a f t n - j + \ ) , j >  1, are replaced by large ones, thus increasing 
the power. We present, using simulation, a crude power comparison with 
the Bonferroni/Holm procedure and with the Hochberg procedure in the 
setting o f multivariate t.

Write for the moment R(i) =  Rtl, i(, tt is a random variable from the 
set {1, 2, n}. Using the ordered p-values R,t, i =  1, n observed, define 
the index sets K(-)  by

These may be calculated for successive p  as far as required in what 
follows.

2. PROCEDURE M

(J) n - p + 1 n - p +  1

for l < p < n — 1, with y(n) =  0.

a
I H „ s e K ( p ) ,  true)

(2)



Step 1:

. (  a. a +  y ( l ) \  
-------— j i

If yes, reject / / (1) and go to Step 2. If no, accept Я (1), H(2), Я (п) 
and top. Continue in this way.

Step i:

. /  a a +  y ( 0 \ „R, ^rntnl  ----- ;» ------;-----  )?
\ n - i  n - i + l j

If yes, reject H(i) and go to Step i +  1. If no, accept H(i), H1+1, Я (я) 
and stop. If the n-th Step is reached:

Step n:

<  “■

If yes, reject Я (п) and stop. In no, accept Я (я) and stop.

3. STRONG CONTROL OF FAMILYWISE ERROR RATE

A key feature o f the proof o f the theorem is the use of the inequality 
(from which (2) derives) of Kounias (1968)

p (  U ^ U  £ р ( Л () -  max Z P ( A t n A j )
\i = l /  i=X }= 1.... AJ+)

a second-degree inequality.
Lemma. Let I, o f  fixed size m, ony non-null subset o f {1, ..., n}. Define

у =  max £  P(Rt ^  s e i ,  true), (3)
I  m  m

where у =  0 when m =  1. Then

р | я ; > т ш  OTg i ^ ) | -  (Я», s6jr> are ^  accepted}.

Corollary. For any given I, y ^ a / ( m -  1), then

P{ HS, s e i ,  are accepted | A}  >  1 — ma(m — 1) -I- y.
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The quantity у defined in the lemma above is required for the proof 
of the theorem following it, which establishes strong control o f the adaptive 
test procedure, but is not needed in the adaptive test procedure itself. Note 
that у <  (m — l)a /m <  a.

4. EXAMPLE AND SIMULATIONS

We shall measure power by

P(Reject at least one Ht, i =  1, n).

This has the advantage that when all of the H t, i =  1, n hold, from 
(1) this value will be ^  a, and its closeness to the nominal error a. will 
measure the actual conservativeness of the error rate. According to the 
corollary above, if we take I =  {1, 2, n} then y > a / ( n — 1) results in 
a bound < a .  This suggests that the degree o f conservativeness of the 
procedure CS is related to the strength o f positive association between 
the К, ’s (and hence of X i ’s) from the definition o f y. This is confirmed 
by Table 1 below.

We take the test statistics to be exchangeable under corresponding null 
hypotheses, so from (2)

y(p) =  (и - p)P(R,  < n _ ap Z \ ’ ^ n

which is thus non-random in this special setting. More specifically we 
consider uppertail tests where . Y , =  |T ,|, i = l , 2 , n  with T l , T 2, . . . , T n 
defined by T ^ W J ^ x 2^ , i = l , 2 , . . . , n  where the W<’s are multivariate 
normal with EWi =  fil, Var(HQ =  1, i =  1,2, . . . ,  n Corr (Wh Wj)p i ŕ j ,  and 
are independently distributed o f x 2- Thus under H i :fii =  0, i =  1 , . . . , n  the 
Г;, i =  l , . . . , n  have jointly a multivariate exchangeable t distribution with 
parameters n, p(/?> — l / ( n— 1), v as in Dunnett’s tests. We take n =  3, 
v =  16, a =  0,005, and consider 0 < p < l .  We can calculate from tables 
giving upper-tail values P i T y ^ a ,  T 2 ^ a )  for various a and p =  0, 
±  0.1,. .. ,  ±  0.9 our values A(l) =  a +  y(\)ln. Some of these are shown in 

Table 1. Notice that in our setting A(l) =  (a +  y(l)/n. Some o f these are 
shown in Table 1. Notice that in our setting A(l)  >  a/2 =  0.025 at p =  1, 
but is <  0.025 for p <  0.9. Our measure o f power when p <  0.9 (in fact 
for p upto approximately 0.95) is thus P(Ra ) ^ct/n),  which is smaller; and 
remains smaller than our measure o f power for p very close to 1 viz.



J°(Ä(i) < a / ( n — 1)). (A more sensitive measure o f power would separate out 
Holm from Bonferroni.). Table 2 displays the power at p =  0.9 when 
p l =  0, p 2 =  2\S\,  =  3 1<5| for the Bonferroni-Holm, Hochberg and CS 
procedures.

Table 1. Value of Д(1) and error rate (ER) 
(n =  3, v =  16, a =  0.05)

p 0 0.5 0.8 0.9 1

A(D 0.0171 0.0183 0.0211 0.0228 0.0278

ER (а/л) 0.049 0.042 0.033 0.028

ER (Д(1) 0.050 0.046 0.042 0.040

Table 2. Power at p = 0.09(n =  3, v =  16, a — 0.05)

S -1 -0.5 0 0.5 1

(а/n) 0.685 0.184 0.028 0.159 0.633

H och berg 0.689 0.187 0.034 0.164 0.634

Д(1) 0.749 0.227 0.040 0.193 0.685

The error rate (ER)  entries in Table 1 were produced from a simulation 
of 20000 independent sets of values o f the triple T t, i =  1 , 2 , 3  at each p. 
These values for p =  0.9 are given again in Table 2 at ô =  0. The other 
values o f Table 2 were also produced from 20000 triples.

Overall, the simulations support a conclusion that our proposed proce­
dure is most effective as regards power when test statistics are strongly 
positively dependent. The error rate is closer to the nominal value a irres­
pective o f  degree o f dependence, and is not much affected by it. The 
indication is that procedure CS controls error rate well, and has significantly 
better power than Hochberg.

While our procedure may be useful only for small n(l) control strongly 
the FER holds without any restriction on the continuous joint distribution 
o f test statistics.

Finally, our computational results on ER are consistent with those of 
Sarkar and Chang (1997, Table 2), inasmuch as
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ZMODYFIKOWANA WIELOKROTNA PROCEDURA TESTOWA 
KROCZĄCEGO ODRZUCENIA HOLMA

(Streszczenie)

Rozważamy przypadek testowania wielokrotnego, w którym istnieje n hipotez Я ,, H 2, ..., H„
i odpowiadające im p-wartości R i , . . . ,R n. Mówimy, że procedura ma mocną kontrolę nad 
błędem na rodzinę, jeżeli prawdopodobieństwo nie odrzucenia hipotezy prawdziwej, pod 
warunkiem że jest nie mniejsze niż a.

W artykule przedstawiono modyfikację kroczącej wielokrotnej procedury Holma. Wpro­
wadzone zmiany zapewniają silniejszą kontrolę nad błędem na rodzinę.


