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APPLICATION OF SIMULATION METHODS
TO ESTIMATION OF VARIANCE OF
NONPARAMETRIC SEQUENTIAL ESTIMATOR OF MEAN

Abstract

Nonparametric sequential methods allow to estimate unknown parameter of random variable
distribution, when the distribution of the variable is unknown. We can apply these methods
to different sampling designs.

This paper contains a proposal of applying simulation methods to estimate the variance
of a nonparametric estimator of mean. An application of bootstrap methods to estimate the
variance of a synthetic estimator of the mean in sequential estimation is also presented.
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I. INTRODUCTION

Nonparametric sequential methods allow to estimate unknown probability
distribution function of random variable under investigation, as well as an
unknown distribution parameter, when the distribution class is unknown.

To estimate distribution parameters e.g. the mean, sequential procedures
of nonparametric point or interval estimation can be applied for different
sequential sampling schemes.

The idea of sequential point estimation of the mean is to determine its
estimator values from random sample with size that minimizes risk function.
If we do not take into account sampling costs connected with the sequential
drawing of elements, the risk function is equal to the mean square error
and, in the case of unbiased estimators, to relevant estimator’s variance.
In such cases we determine the estimation precision through establishing



the number which cannot be exceeded by variance or the mean square
error. Sample size is being increased sequentially until the desired precision
of estimation is achieved.

Calculating the variance of parameter estimator at every stage of the
sequential procedure is not always easy, sometimes even impossible. Due
to the complicated form of some parameter estimators often, we do not
have any information about their variance or about variance estimators.
In the application of the estimators of this kind to sequential estimation
of the mean there appears a problem of defining the stopping procedure
for the sample size increasing process. In this paper we suggest using, in
such cases, simulation methods of estimating variance such as Mahalanobis
method, jackknife or bootstraps. An example of applying bootstrap method
to estimate the variance of synthetic estimator of subpopulation mean is
also presented.

I. NONPARAMETRIC SEQUENTIAL POINT ESTIMATION

Let X be random variable and 0 be unknown mean value of this
variable. By dn we denote an estimator of parameter O determined from
sample X I,..., X,,.

At every stage of a sequential process aiming at assessing the value of
0 we face the statistical problem of decision making. We decide about
increasing the sample by drawing one or a few more elements or about
concluding the sampling process and treating the estimator’s value that we
arrived at, as a good enough estimate of 0.

When we make a decision we can define the loss function as follows
(see Sen, 1984):

L,,= 0(|tf,,-0]) + c(n), (1

where g is a nonnegative, nonincreasing function on (0, -I-00), with pro-
perty g(0) = 0, and c(n) is the cost function associated with drawing
sample.

Let us assume that nO(n0> 1) exists, such that for every n> n0
E[3(]0,-O])] exists.
The risk incurred in the estimation of the mean 0 from an n-element sample
is given by the formula:

Rn= ELn= E[g(\On-0\)] + c(n) for n~no. (2)



The quantity Rnmay be viewed as the sum of two functions of argument
n. The function c is nondecreasing (e.g. c¢(n) = pn, where p denotes the
cost of drawing one element), and if 0, is a consistent estimator of 0, the
function E[g(\C)n—0|)] is nonincreasing, monotone and converges to 0 (see
Sen, 1984).

Wc make a decision at such a sample size n for which the function Rn
reaches its minimum. For established functions g and ¢ we define n* as
follows:

n* - min{n > n0: R, = infRm}. 3)
m

The value of estimator f),. is the minimum risk estimate of parameter 0.

If, in the process of the sequential point estimation of 0, we do not
take into account the sampling cost, the risk incurred in the sequential
estimation of the parameter from n-element sample will depend only on
Eto(I*-0O1)].

If g(x) = x2, it implies R,, = E(|0,, —0\2) and for an unbiased estimator
dn, function R,, will be the variance of parameter 0 estimator (Rn= D 2(fin)),
while for a biased estimator On, function Rn will be equal to the mean
square error (Rn= D2(0,)+ E(JE(0J - 0]2).

The sequential point estimation of parameter 0 with the aid of an
unbiased estimator will be characterized with the stopping rule for the
drawing process determined by inequality D2(0,)"2, where £ is a fixed
estimation precision. That means that we will be sequentially adding elements
to the sample as long as estimator’s variance is less or equal €2. In such
cases size n* ensuring the estimation of parameter 0 with precision not
smaller than the fixed one, is defined in the following way:

n* = min{n: D2(0,)sge2}, 4)
where D2(0,) is an estimator of variance D2(0,). The value of estimator

0,. is the estimate of parameter O with precision not exceeding f£.

Ul. SIMULATION METHODS OF VARIANCE ESTIMATION

We use simulation methods in estimating the variance of estimators of
the mean, when we do not know neither the variance nor any variance
estimator (usually due to the complicated formula of the estimator of the
mean). The use of such estimators in sequential estimation is possible, but



we encounter the problem of defining the stopping rule. If we do not take
into account the sampling costs, the sequential estimation procedure will
be connccted with estimating variance (mean square error), at every stage,
and comparing it with a fixed estimation precision.

To assess the variance of the estimators of the mean the following
simulation methods for every stage of the sequential procedure are proposed:

- the Mahalanobis method;

- the jackknife method;

- the bootstrap method.

Mahalanobis method. In the first step of the Mahalanobis procedure in
the sequential estimation of parameter O from the drawn /*-element sample
we create s disjoint subsamples (s> 2), containing I[ elements, for
/=1,2, s. If sample size kn (m= 1,2,...) can be dcvidcd by a fixed
number s, the subsample .sizes are determined from the formula:

1], = for i=1, .., s (5)

B
In other case the sizes of particular subsamples are given by the formula:

v #-1 for 1=1,..., C
ii (6)

for i=c+ 1, .., s

where ¢ = k. —s

From each of the s subsamples we determine the value of estimator

(i=1, .., 5s), then from all samples containing ky elements we calculate
the value of estimator 0, for n = 1. The variance of this estimator is assessed
with the formula:

1— 5
D209,)=s(s. A 2Z0C - i)2 for «= 1.2, .., @

where N denotes the population size.

If the assessed variance value is less or equal to a fixed number <2, the
value of estimator 01, determined from kt elements, constitutes a good
estimate of the mean of the random variable considered. In other case we
enlarge the sample by d elements (d = 1,2, ...,). At the n-th stage sample



will have k,, = kt + (n —1)d elements. The subsample sizes are determined
from formula (5) or (6). The value of estimator 0, is determined from
/c,,-element sample and its variance from s values of the estimator determined
from /j,-element subsamples. The sequential point estimation procedure is
repeated until the value of the variance estimator of the estimator used is
less or equal to e2.

Jackknifc method. In the first step (n = 1) we draw according to an
arbitrary scheme, but not the layer one, kI population elements and similarly
as in the Mahalanobis method we create s subsamples. However, these
subsamples are created in different way. We randomly remove from the
k!-element sample I[ elements from formula (5) or (6), respective to fc,
being divisible by s or not.

The variance of the mean estimator is estimated from the subsamplcs
consisting of kn—I1h elements on the basis of the formula (see Bracha, 1998):

02(* = ¢ b ) w
where
0;; = s<?,,-(5-i)fy, 9)

where O and Osy, are the estimators of the mean determined from the
A,-element proper sample and (kn—/j,)-element i-th subsample (i= 1, ..., s),
respectively.

If D20,) is greater then e2, we enlarge the sample by d elements and
repeat the above procedure.

When we apply the Mahalanobis or jackknife method to assess the
variance of the estimator considered we are encountered with the problem
of the number s of subsamples determined at the begining and the following
steps of sequential estimation. If the sample size at a certain stage of the
sequential procedure grows considerably with respect to the initial sample
then s should be changed. In such cases the use of the Mahalanobis and
jackknife method is more problematic.

Another method that may be useful to assess the variance of the estimator
in sequential estimation is the bootstrap method.

Bootstrap method. In the first step of the sequential estimation of sample
we draw kt elements from the population. These sample observation allow
to determine the value of estimator 0, for n= 1. Then from the existing
sample we generate J (e.g. J — 1000) realizations of the bootstrap sample
i.e. the sample generated according to the bootstrap distribution:



P(X,=xj =— for m=1 ,kn and b=1,2,...,] (20)
Kn

Wc determine the value of the estimator 6h, for n= 1 and b= 1,2
The estimator’s variance is assessed with the formula:

I
m
>
<

01)

(in the first stage we assume n = 1).

If the condition D2(0J<£2 does not hold, we draw the fixed number
d of elements, pool them and the sample together, arriving at the sample
consisting of kn+1 = kn+ d elements, for n = 1,2, 3,... For the pooled sample
we determine J realizations of the bootstrap sample and we assess the
estimator’s variance. We go on with the described process until the variance
assessment does not exceed e2.

IV. NONPARAMETRIC SEQUENTIAL ESTIMATION
OF SUBPOPULATION MEAN

Let us consider the problem of the estimation of the mean in some
distinguished subpopulations of the whole population, when we do not
know its distribution. If we have some information about the values of the
random variable in the whole population as well as about an auxiliary
variable correlated with the variable considered, we may use it in synthetic
estimators, which are more effective than direct estimators i.e. determined
from the subpopulation sample (see Dol, 1991).

Synthetic estimators are constructed on assumption that the parameters
of the distribution of the variable investigated in subpopulation are very
close to the parameters of the distribution of this variable in the whole
population.

Let us denote the variable investigated by X and the auxiliary variable
by ¥. Moreover, let us assume that the population and subpopulation are
divided into G layers.

One of synthetic estimators of the mean 0Oo of variable X for sub-
population is given by the formula:



where N O is the subpopulation size, TYQg - the global value of the auxiliary
variable Y in the o-th layer of the subpopulation,ﬂ_yy- the mean value of
variable ¥ in the g-th layer of the population, Xg - the mean value of
variable X in the o-th layer of the population estimated from /c,-element
sample of the whole population.

We start estimation from the /c,-element sample. We calculate the
value of the estimator given by formula (12) and by means of the
bootstrap method wc estimate its variance. If the variance does not exceed
e2 we conclude the estimation procedure judging the value of estimator
(12) we got as a good enough estimate of the subpopulation mean of
variable X. Otherwise, we draw new elements and we repeat the whole
procedure.

V. EXAMPLE OF THE APPLICATION OF BOOTSTRAP METHOD
TO VARIANCE ESTIMATION OF SYNTHETIC ESTIMATOR OF MEAN

In order to present some possible applications of the sequential estimation
of the mean with bootstrap variance estimation at every sequential step,
a population of 60 000 elements and its subpopulation of 3000 elements
arc generated in the following way:

1. We generate N, = 20000 values according to the N(4, 1) distribu-
tion; we get values x1(...,x2000 and first = 1000 values are transformed
following the formula: x, = x(+ £, where £, is generated from the N(1, 3)
distribution. The elements xIt..., x1000. * 1001»%>+*20000 constitute the first
layer of the population and the elements x1i,...,x1000 are the first small
area layer.

2. We generate N 2= 20000 values according to the N(e, 2) distribution
and we get values x2000t. «>X4.0000 ar*d fust k2= 1000 values are transfor-
med following the formula from previous point. The elements
X20001.-.X 21000. X21001, X40000 constitute the second layer of the population
and elements x2000b =>+*21000 are the second small area layer.

3. Wc generate N3 = 20000 values according to the N (8, 3) distribution
and we get values, Xs0001»ee>x600000 an™ f*rst ~3 = 1000 are transformed
following the formula from point 1. The elements X40001, s>
*41000; X4.100i»—>x 60000 constitute the third layer of the population and
elements x4000i>..., x41000 are the third small area layer.

4. We arrange sequence yu ..., ¥Y6oooo following the formula y, — 3x,+ <,
where are generated from the N(O, a) distribution for a = 1,3,5,7.

5. From the whole population we draw dependently a sample of size
1000 and we determine the subpopulation mean estimator value given by
formula (12).



6. From the drawn sample we generate 1000 bootstrap samples and we
assess the variance of estimator (12) with formula (11).

7. The variance value we got is compared with fixed value e2and we
conclude the procedure or we draw 10 new elements from the population
and wc start all over again from point 5.

The estimates of the mean of the subpopulation considered, computed
with the help of sequential estimation with bootstrap estimation of variance,
are presented in Table 1

Table 1. I'ne sizes of samples for sequential subpopulation mean estimation for fixed precisions e

Number Standard Value of .
. L Value of £ . . o Sample size
of experiment deviation a estimator 9j

1 1 0.03 7.0636 0.0281 1000

2 0.01 7.0381 0.0026 1500

3 0.06 7.0823 0.0468 1000

0.03 7.0536 0.0284 1540

5 0.01 7.0423 0.0068 3750

6 5 0.09 7.1178 0.0823 1000

7 0.06 7.0399 0.0533 1190
0.03 7.0721 0.0366 4160

9 7 0.09 7.1342 0.0987 1000

10 0.08 7.0928 0.0773 1180

1 0.06 7.0641 0.0586 3230

Source: Author’s calculations.

The actual value of 0Q was 7.0355. In most of experiments carricd out
(apart from experiment 8 and 9) an estimate of parameter actual value Oo
with accuracy not exceeding a fixed value was received. This means that
the use of bootstraps to assess the variance of the mean estimator used,
was successful in the cases analysed. The sequential sample size was strictly
connected with the prefixed accuracy of estimation and, obviously, it grew
with the growing estimation accuracy.

VI. FINAL REMARKS

The estimation of the mean, with the help of sequential methods, is
connected with establishing a criterion of stopping the sequential sampling
and, in consequence, with the variance or the mean square error of the
estimator applied.



In the paper some simulation methods of variance estimation, among
other, of the estimators of the mean, that can used in sequential estimation
were presented. Particular attention was devoted the bootstrap method.
This method was used to estimate the variance of the synthetic estimator
of subpopulation mean. In the cases studied, the use of the bootstrap
method in sequential estimation led to the estimates of subpopulation mean
with precision not exceeding a prefixed number.
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Dorota Pekasiewicz

ZASTOSOWANIE METOD SYMULACYIJNYCH DO SZACOWANIA WARIANCII
sfrkwencyjnego ESTYMATORA NIEPARAMETRYCZNEGO SREDNIEJ

Streszczenie

Nieparametryczne metody estymacji sekwencyjnej pozwalaja, przy réznych schematach
losowania préby, oszacowaé nieznany parametr rozktadu zmiennej losowej, gdy klasa rozktadu
tej zmiennej jest nieznana.

Sekwencyjna estymacja punktowa $redniej zmiennej losowej polega na wyznaczeniu wartosci
estymatora $redniej na podstawie préoby losowej, ktérej liczebno$¢ jest odpowiednio zwigkszana
tak, aby funkcja ryzyka osiggneta minimum. Jedli nie uwzgledniamy kosztéw zwigzanych
z pobieraniem elementéw do préby, to funkcja ryzyka jest rowna btedowi $redniokwadratowemu,
a w przypadku estymatoréw nieobcigzonych wariancji stosowanego estymatora.

Wyznaczenie wariancji estymatora szacowanego parametru nie zawsze jest tatwe, a czasami
nawet okazuje sie niemozliwe. W statystyce matych obszar6w czesto stosuje sie estymatory
posrednie, ktére sa bardziej efektywne niz bezposrednie, ale ich skomplikowana posta¢ sprawia,
ze czesto nie mamy informacji ani o ich wariancji, ani o estymatorze wariancji (lub btedzie
Sredniokwadratowym). Przy zastosowaniu lego typu estymatoréw w estymacji sekwencyjnej
$redniej pojawia sie problem ze sformutowaniem procedury zatrzymania procesu powigkszania
proby. W pracy proponowane jest stosowanie, w takich przypadkach, symulacyjnych metod
szacowania wariancji, m.in. metody Mahalanobisa, jackknife i metody bootstrapowej. Ponadto
w pracy przedstawiony jest przyktad zastosowania metody bootstrapowej do szacowania wariancji
syntetycznego estymatora $redniej dla podpopulacji.



