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Abstract

In 2015, A.V. Figallo and G. Pelaitay introduced tense n×m-valued  Lukasiewicz-

Moisil algebras, as a common generalization of tense Boolean algebras and tense

n-valued  Lukasiewicz-Moisil algebras. Here we initiate an investigation into

the class tpLMn×m of tense polyadic n × m-valued  Lukasiewicz-Moisil alge-

bras. These algebras constitute a generalization of tense polyadic Boolean al-

gebras introduced by Georgescu in 1979, as well as the tense polyadic n-valued

 Lukasiewicz-Moisil algebras studied by Chiriţă in 2012. Our main result is a rep-

resentation theorem for tense polyadic n×m-valued  Lukasiewicz-Moisil algebras.

1. Introduction

In 1962, polyadic Boolean algebras were defined by Halmos as algebraic
structures of classical predicate logic. One of the main results in the theory
of polyadic Boolean algebras is Halmos representation theorem (see [22]).
This result is the algebraic counterpart of Gödel’s completeness theorem for
predicate logic. This subject caused great interest and led several authors
to deepen and generalized the algebras defined by Halmos, to such an extent
that research is still being conducted in this direction. For instance, the
classes of polyadic Heyting algebras ([25]), polyadic MV-algebras ([30]),
polyadic BL-algebras ([12]), polyadic θ-valued  Lukasiewicz-Moisil algebras
([1]), polyadic GMV-algebras ([23]), to mention a few.
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Tense classical logic is an extension of the classical logic obtained by
adding to the bivalent logic the tense operators G (it is always going to
be the case that) and H (it has always been the case that). Taking into
account that tense algebras (or tense Boolean algebras) constitute the al-
gebraic basis for the tense bivalent logic (see [4]), Georgescu introduced in
[21] the tense polyadic algebras as algebraic structures for tense classical
predicate logics. They are obtained by endowing a polyadic Boolean alge-
bra with the tense operators G and H. On the other hand, the study of
tense  Lukasiewicz-Moisil algebras (or tense LMn-algebras) and tense MV-
algebras introduced by Diaconescu and Georgescu in [11] has been proven of
importance (see [2, 5, 7, 8, 9, 15, 6, 16, 19]). In particular, in [8], Chiriţă,
introduced tense θ-valued  Lukasiewicz-Moisil algebras and proved a rep-
resentation theorem which allowed to show the completeness of the tense
θ-valued Moisil logic (see [7]). In [11], the authors formulated an open prob-
lem about representation of tense MV-algebras, this problem was solved in
[26, 3] for semisimple tense MV-algebras. Also, in [2], were studied tense
basic algebras which are an interesting generalization of tense MV-algebras.

Tense MV-algebras and tense LMn-algebras can be considered the alge-
braic framework for some tense many-valued propositional calculus (tense
 Lukasiewicz logic and tense Moisil logic). Another open problem proposed
in [11] is to develop the corresponding predicate logics and to study their
algebras. On the other hand, polyadic MV-algebras, introduce in [30]
(resp. polyadic LMn-algebras [1]), constitute the algebraic counterpart
of  Lukasiewicz predicate logic (resp. Moisil predicate logic). Then, we can
define tense polyadic MV-algebras (resp. tense polyadic LMn-algebras [10])
as algebraic structures corresponding to tense  Lukasiewicz predicate logic
(resp. tense Moisil predicate logic).

In 1975 W. Suchoń ([31]) defined matrix  Lukasiewicz algebras so gen-
eralizing n-valued  Lukasiewicz algebras without negation ([24]). In 2000,
A. V. Figallo and C. Sanza ([13]) introduced n×m-valued  Lukasiewicz alge-
bras with negation which are both a particular case of matrix  Lukasiewicz
algebras and a generalization of n-valued  Lukasiewicz-Moisil algebras ([1]).
It is worth noting that unlike what happens in n-valued  Lukasiewicz-Moisil
algebras, generally the De Morgan reducts of n×m-valued  Lukasiewicz al-
gebras with negation are not Kleene algebras. Furthermore, in [28] an im-
portant example which legitimated the study of this new class of algebras is
provided. Following the terminology established in [1], these algebras were
called n×m– valued  Lukasiewicz-Moisil algebras (or LMn×m-algebras for
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short). LMn×m-algebras were studied in [17, 27, 28, 29] and [14]. In par-
ticular, in [17] the authors introduced the class of monadic n × m-valued
 Lukasiewicz-Moisil algebras, namely n×m-valued  Lukasiewicz-Moisil alge-
bras endowed with a unary operation called existential quantifier. These
algebras constitute a commom generalization of monadic Boolean algebras
and monadic n-valued  Lukasiewicz-Moisil algebras ([20]).

On the other hand, an important question proposed in [11] is to in-
vestigate the representation of tense polyadic LMn-algebras and the com-
pleteness of their logical system. Taking into acount these problems, in the
present paper, we introduce and investigate tense polyadic n × m-valued
 Lukasiewicz-Moisil algebras, structures that generalize the tense polyadic
Boolean algebras, as well as the tense polyadic n-valued  Lukasiewicz-Moisil
algebras. Our main result is a representation theorem for tense polyadic
n×m-valued  Lukasiewicz-Moisil algebras.

The paper is organized as follows: in section 2, we briefly summarize the
main definitions and results needed throughout the paper. In section 3, we
define the class of polyadic n×m-valued  Lukasiewicz-Moisil algebras. The
main result of this section is a representation theorem for polyadic n×m-
valued  Lukasiewicz-Moisil algebras. In section 4, we introduced the class of
tense polyadic n×m-valued  Lukasiewicz-Moisil algebras as a common gen-
eralization of tense polyadic Boolean algebras and tense polyadic n-valued
 Lukasiewicz-Moisil algebras. Finally, in section 5, we give a representation
theorem for tense polyadic n × m-valued  Lukasiewicz-Moisil algebras. It
extends the representation theorem for tense polyadic Boolean algebras, as
well as the representation theorem for tense n-valued  Lukasiewicz-Moisil
algebras.

2. Preliminaries

2.1. n×m-valued  Lukasiewicz-Moisil algebras

In this subsection we recall the definition of n × m-valued  Lukasiewicz-
Moisil algebras and some constructions regarding the relationship between
these algebras and Boolean algebras.

In [28], n×m-valued  Lukasiewicz-Moisil algebras (or LMn×m-algebras),
in which n and m are integers, n ≥ 2, m ≥ 2, were defined as algebras

L = 〈L,∨,∧,∼, (σij)(i,j)∈(n×m), 0L, 1L〉
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where (n×m) is the cartesian product {1, . . . , n− 1}×{1, . . . ,m− 1}, the
reduct 〈L,∨,∧ ∼, 0L, 1L〉 is a De Morgan algebra and (σij)(i,j)∈(n×m) is a
family of unary operations on L verifying the following conditions for all
(i, j), (r, s) ∈ (n×m) and x, y ∈ L :

(C1) σij(x ∨ y) = σijx ∨ σijy,

(C2) σijx ≤ σ(i+1)jx,

(C3) σijx ≤ σi(j+1)x,

(C4) σijσrsx = σrsx,

(C5) σijx = σijy for all (i, j) ∈ (n×m) imply x = y,

(C6) σijx∨ ∼ σijx = 1L,

(C7) σij(∼ x) =∼ σ(n−i)(m−j)x.

Definition 2.1. Let L = 〈L,∨,∧,∼, (σij)(i,j)∈(n×m), 0L, 1L〉 be an
LMn×m-algebra. We say that L is complete if the lattice 〈L,∨,∧, 0L, 1L〉
is complete.

Definition 2.2. Let L = 〈L,∨,∧,∼, (σij)(i,j)∈(n×m), 0L, 1L〉 be an
LMn×m-algebra. We say that L is completely chrysippian if, for every
{xk}k∈K (xk ∈ L for all k ∈ K) such that

∧

k∈K xk and
∨

k∈K xk exist, the
following properties hold: σij(

∧

k∈K xk) =
∧

k∈K σij(xk), σij(
∨

k∈K xk) =
∨

k∈K σij(xk) (for all (i, j) ∈ (n×m)).

Let L = 〈L,∨,∧,∼, (σij)(i,j)∈(n×m), 0L, 1L〉 be an LMn×m-algebra. We
will denote by C(L) the set of the complemented elements of L. In [28], it
was proved that C(L) = {x ∈ L | σij(x) = x, for any (i, j) ∈ (n × m)}.
These elements will play an important role in what follows.

Definition 2.3. Let L1 = 〈L1,∨,∧,∼, (σij)(i,j)∈(n×m), 0L1
, 1L1

〉 and L2 =
〈L2,∨,∧,∼, (σij)(i,j)∈(n×m), 0L2

, 1L2
〉 be two LMn×m−algebras. A mor-

phism of LMn×m-algebras is a function f : L1 −→ L2 such that, for all
x, y ∈ L1 and (i, j) ∈ (n×m), we have

(a) f(0L1
) = 0L2

, f(1L1
) = 1L2

,

(b) f(x ∨ y) = f(x) ∨ f(y), f(x ∧ y) = f(x) ∧ f(y),

(c) f ◦ σij = σij ◦ f,

(d) f(∼ x) =∼ f(x).
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Remark 2.4. Let us observe that condition (d) in Definition 2.3 is a direct
consequence of (C5), (C7) and the conditions (a) to (c).

Example 2.5. Let B = 〈B,∨,∧,¬, 0B , 1B〉 be a Boolean algebra. The
set B ↑(n×m)= {f | f : (n ×m) −→ B such that for arbitraries i, j if r ≤
s, then f(r, j) ≤ f(s, j) and f(i, r) ≤ f(i, s)} of increasing functions in
each component from (n×m) to B can be made into an LMn×m-algebra

D(B) = 〈B ↑(n×m),∨,∧,∼, (σij)(i,j)∈(n×m), 0B↑
(n×m) , 1B↑

(n×m)〉

where 0B↑
(n×m) , 1B↑

(n×m) : (n×m) −→ B are defined by 0B↑
(n×m)(i, j) = 0B

and 1B↑
(n×m)(i, j) = 1B , for every (i, j) ∈ (n × m), the operations of the

lattice 〈B ↑(n×m),∨,∧〉 are defined pointwise and (σijf)(r, s) = f(i, j) for
all (r, s) ∈ (n ×m), (∼ f)(i, j) = ¬f(n − i,m − j) for all (i, j) ∈ (n ×m)
(see [28, Proposition 3.2.]).

Let B,B′ be two Boolean algebras, g : B −→ B′ be a Boolean morphism
and D(B) and D(B′) be the corresponding LMn×m-algebras. We define the
function D(g) : D(B) −→ D(B′) in the following way: D(g)(u) = g ◦u, for
every u ∈ D(B). Then, the function D(g) : D(B) −→ D(B′) is a morphism
of LMn×m-algebras. We will denote by B the category of Boolean algebras
and by LMn×m the category of LMn×m-algebras. Then, the assignment
B 7→ D(B), g 7→ D(g) defines a covariant functor D : B −→ LMn×m .

Definition 2.6. Let L=〈L,∨,∧,∼, (σij)(i,j)∈(n×m), 0L, 1L〉 be an LMn×m-
algebra. A non-empty subset M of L is an n×m-ideal of L, if M is an ideal
of the lattice 〈L,∨,∧, 0L, 1L〉 which verifies this condition: x ∈ M implies
σ11(x) ∈ M .

2.2. Tense Boolean algebras

Tense Boolean algebras are algebraic structures for tense classical propo-
sitional logic. In this logic there exist two tense operators G (it is always

going to be the case that) and H (it has always been the case that). We
will recall the basic definitions of tense Boolean algebras (see [21, 9]).

Definition 2.7. A tense Boolean algebra is a triple (B, G,H) such that
B = 〈B,∨,∧,¬, 0B , 1B〉 is a Boolean algebra and G and H are two unary
operations on B such that:



160 A. V. Figallo and G. Pelaitay

1. G(1B) = 1B , H(1B) = 1B ,

2. G(x ∧ y) = G(x) ∧G(y), H(x ∧ y) = H(x) ∧H(y).

Definition 2.8. Let B = 〈B,∨,∧,¬, G,H, 0B , 1B〉 and B′ = 〈B′,∨,∧,¬, G′,

H ′, 0B′ , 1B′〉 be two tense Boolean algebras. A function f : B −→ B′ is a
morphism of tense Boolean algebras if f is a Boolean morphism and it satis-
fies the following conditions: f(G(x)) = G′(f(x)) and f(H(x)) = H ′(f(x)),
for any x ∈ B.

2.3. Tense Polyadic Boolean algebras

The tense polyadic Boolean algebras were introduced in [21] as algebraic
structures for tense classical predicate logic.

Let U be a non-empty set throughout this paper.

Definition 2.9. A tense polyadic Boolean algebra is a sextuple (B, U, S, ∃,
G,H) such that the following properties hold:

(i) (B, U, S, ∃) is a polyadic Boolean algebra (see [22]),

(ii) (B, G,H) is a tense Boolean algebra (see Definition 2.7),

(iii) S(τ)(G(p)) = G(S(τ)(p)), for any τ ∈ UU and p ∈ B,

(iv) S(τ)(H(p)) = H(S(τ)(p)), for any τ ∈ UU and p ∈ B.

We shall recall now the construction of the example of tense polyadic
Boolean algebra from [21].

Definition 2.10. A tense system has the form T = (T, (Xt)t∈T , R,Q, 0),
where

(i) T is an arbitrary non-empty set,

(ii) R and Q are two binary relations on T,

(iii) 0 ∈ T,

(iv) Xt is a non-empty set for every t ∈ T, with the following property:

If tRs or tQs, then Xt ⊆ Xs for every t, s ∈ T .

Recall that the algebra 2 = ({0, 1},∨ = max,∧ = min,¬, 0, 1) =
({0, 1},→,¬, 1), where ¬x = 1 − x, x → y = max(¬x, y), for x, y ∈ {0, 1}
is a Boolean algebra, called the standard Boolean algebra (see [21]).
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Let T be a tense system and 2 be the standard Boolean algebra with
two elements. We denote by

FU
T = {(ft)t∈T | ft : XU

t −→ 2, for every t ∈ T}.

On FU
T we will consider the following operations:

(pb1) (ft)t∈T → (gt)t∈T = (ft → gt)t∈T , where (ft → gt)(x) = ft(x) →
gt(x),

for all x ∈ XU
t ,

(pb2) ¬(ft)t∈T = (¬ft)t∈T , where (¬ft)(x) = ¬(ft(x)), for all x ∈ XU
t ,

(pb3) 1T = (1t)t∈T , where 1t : XU
t −→ 2, 1t(x) = 1, for all t ∈ T and

x ∈ XU
t .

Lemma 2.11. (Georgescu [21]) FU
T = (FU

T ,→,¬, 1T ) is a Boolean algebra.

On FU
T we consider the tense operators G and H, by:

(pb4) G((ft)t∈T ) = (gt)t∈T , gt : XU
t −→ 2, gt(x) =

∧

{fs(i ◦ x) | tRs, s ∈
T},

(pb5) H((ft)t∈T ) = (ht)t∈T , ht : XU
t −→ 2, ht(x) =

∧

{fs(i ◦ x) | tQs, s ∈
T},

where i : Xt −→ Xs is the inclusion map.

Lemma 2.12. (Georgescu [21]) (FU
T , G,H) is a tense Boolen algebra.

On FU
T we shall consider now the following functions.

(pb6) For any τ ∈ UU , we define S(τ) : FU
T −→ FU

T by S(τ)((ft)t∈T ) =
(gt)t∈T , where gt : XU

t −→ 2, gt(x) = ft(x ◦ τ), for every t ∈ T and
x ∈ XU

t ,

(pb7) For any J ⊆ U, we consider the function ∃(J) : FU
T −→ FU

T , defined
by

∃(J)((ft)t∈T ) = (gt)t∈T , where gt : XU
t −→ 2 is defined by:

gt(x) =
∨

{ft(y) | y ∈ XU
t , y |U\J= x |U\J}, for every x ∈ XU

t .

Lemma 2.13. (Georgescu [21]) (FU
T , U, S, ∃, G,H) is a tense polyadic Boolean

algebra.
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Definition 2.14. Let (B, U, S, ∃, G,H) be a tense polyadic Boolean alge-
bra. A subset J of U is a support of p ∈ B if ∃(U \J)p = p. The intersection
of the supports of an element p ∈ B will be denoted by Jp. A tense polyadic
Boolean algebra is locally finite if every element has a finite support. The
degree of (B, U, S, ∃, G,H) is the cardinality of U .

Theorem 2.15. (Georgescu [21]) Let (B, U, S, ∃, G,H) be a locally finite

tense polyadic Boolean algebra of infinite degree and Γ be a proper filter of

B such that Jp = ∅, for any p ∈ Γ. Then there exist a tense system T =
(T, (Xt)t∈T , R, Q, 0) and a morphism of tense polyadic Boolean algebras

Φ : B −→ FU
T , such that, for every p ∈ Γ, we have: Φ(p) = (ft)t∈T implies

f0(x) = 1, for all x ∈ XU
t .

2.4. Tense n×m-valued  Lukasiewicz-Moisil algebras

The tense n × m-valued  Lukasiewicz-Moisil algebras were introduced by
A. V. Figallo and G. Pelaitay in [18], as a common generalization of tense
Boolean algebras [21] and tense n-valued  Lukasiewicz-Moisil algebras [10].

Definition 2.16. A tense n × m-valued  Lukasiewicz-Moisil algebra

(or tense LMn×m-algebra) is a triple(L, G,H) such that L = 〈L,∨,∧,∼,

(σij)(i,j)∈(n×m), 0L, 1L〉 is an LMn×m-algebra and for all x, y ∈ L,

1. G(1L) = 1L, H(1L) = 1L,

2. G(x ∧ y) = G(x) ∧G(y), H(x ∧ y) = H(x) ∧H(y),

3. G(σij(x)) = σij(G(x)), H(σij(x)) = σij(H(x)), for any (i, j)∈(n×m).

Definition 2.17. Let (L, G,H) and (L′, G,H) be two tense LMn×m-
algebras. A function f : L −→ L′ is a morphism of tense LMn×m-

algebras if f is a LMn×m-morphism and it satisfies the following conditions:
f(G(x)) = G′(f(x)) and f(H(x)) = H ′(f(x)), for any x ∈ L.

3. Polyadic n×m-valued  Lukasiewicz-Moisil algebras

In this section we will introduce the polyadic LMn×m-algebras as a common
generalization of polyadic Boolean algebras and polyadic LMn-algebras.
We will recall from [17] the definition of monadic n×m-valued  Lukasiewicz-
Moisil algebras which we will use in this section.



Tense Polyadic n×m-Valued  Lukasiewicz-Moisil Algebras 163

Definition 3.1. A monadic n × m-valued  Lukasiewicz-Moisil algebra

(or monadic LMn×m-algebra) is a pair (L, ∃) where L = 〈L,∨,∧,∼,

{σij}(i,j)∈(n×m), 0L, 1L〉 is an LMn×m-algebra and ∃ is a unary operation
on L verifying the following conditions for all (i, j) ∈ (n×m) and x, y ∈ L :

(E1) ∃0 = 0,

(E2) x ∧ ∃x = x,

(E3) ∃(x ∧ ∃y) = ∃x ∧ ∃y,

(E4) σij(∃x) = ∃(σijx).

Remark 3.2. These algebras, for the case m = 2, they coincide with
monadic n-valued  Lukasiewicz-Moisil algebras introduced by Georgescu
and Vraciu in [20].

Definition 3.3. A polyadic n × m-valued  Lukasiewicz-Moisil algebra

(or polyadic LMn×m-algebra) is a quadruple (L, U, S, ∃) where L = 〈L,∨,∧,
∼, {σij}(i,j)∈(n×m), 0L, 1L〉 is an LMn×m-algebra, S is a function from UU

to the set of endomorphisms of L and ∃ is a function from P(U) to LL,

such that the following axioms hold:

(i) S(1U ) = 1
LL

,

(ii) S(ρ ◦ τ) = S(ρ) ◦ S(τ), for every ρ, τ ∈ UU ,

(iii) ∃(∅) = 1
LL

,

(iv) ∃(J ∪ J ′) = ∃(J) ◦ ∃(J ′), for every J, J ′ ⊆ U,

(v) S(ρ) ◦ ∃(J) = S(τ) ◦ ∃(J), for every J ⊆ U and for every ρ, τ ∈ UU

such that ρ |U\J= τ |U\J ,

(vi) ∃(J)◦S(ρ) = S(ρ)◦∃(ρ−1(J)) such that J ⊆ U and for every ρ ∈ UU

such that ρ |ρ−1(J) is injective,

(vii) for every J ⊆ U, the pair (L, ∃(J)) is a monadic LMn×m-algebra.

Definition 3.4. Let (L, U, S, ∃) and (L′, U, S, ∃) be two polyadic LMn×m-
algebras. A function f : L −→ L′ is a morphism of polyadic LMn×m-

algebras if f is a morphism of LMn×m-algebras and f ◦ S(ρ) = S(ρ) ◦ f ,
f ◦ ∃(J) = ∃(J) ◦ f, for every ρ ∈ UU and J ⊆ U .

Remark 3.5. If (L, U, S, ∃) is a polyadic LMn×m-algebra, then C(L) can
be endowed with a canonical structure of polyadic Boolean algebra. Every
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polyadic LMn×m-morphism f : (L, U, S, ∃) −→ (L′, U, S, ∃) induces a mor-
phism of polyadic Boolean algebras C(f) : (C(L), U, S, ∃)−→(C(L′), U, S, ∃).
In this way we have defined a functor from the category PLMn×m of
polyadic LMn×m-algebras to the category PB of polyadic Boolean alge-
bras.

Remark 3.6. The notion of polyadic LMn×m-subalgebra is defined in
a natural way.

Definition 3.7. Let (L, U, S, ∃) be a polyadic LMn×m-algebra and a ∈ L.
A subset J of U is a support of a if ∃(U \ J)a = a. A polyadic LMn×m-
algebra is locally finite if every element has a finite support. The degree of
(L, U, S, ∃) is the cardinality of U .

Lemma 3.8. Let (L, U, S, ∃) be a polyadic LMn×m-algebra, a ∈ L and J ⊆
U . If card(U) ≥ 2, then the following conditions are equivalent:

(i) J is a support of a,

(ii) ∀(U \ J)a = a, where ∀ :=∼ ◦∃◦ ∼,

(iii) ρ |U\J= τ |U\J implies S(ρ)a = S(τ)a,

(iv) ρ |U\J= 1U\J implies S(ρ)a = a,

(v) for every (i, j) ∈ (n × m), J is a support of σij(a) in the polyadic

Boolean algebra C(L).

Proof: It is routine.

In the rest of this section, by polyadic LMn×m-algebra we will mean
a locally finite polyadic LMn×m-algebra of infinite degree.

Example 3.9. Let L = 〈L,∨,∧,∼, {σij}(i,j)∈(n×m), 0L, 1L〉 be a complete
and completely chrysippian LMn×m-algebra, U an infinite set and X 6= ∅.

The set L(XU ) of all functions from XU to L has a natural structure of
LMn×m-algebra. For every J ⊆ U and τ ∈ UU define two unary operations

∃(J), S(τ) on L(XU ) by putting:

• ∃(J)(p(x)) =
∨

{p(y) | y ∈ XU , y |U\J= x |U\J},

• S(τ)(p(x)) = p(x ◦ τ),
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for any p : XU −→ L, τ ∈ UU and J ⊆ U . We can show that L(XU ) is a
polyadic LMn×m-algebra.

Definition 3.10. A polyadic LMn×m-subalgebra of L(XU ) will be called
a functional polyadic LMn×m-algebra. Denote by F(XU , L) the functional

polyadic LMn×m-algebra of all elements of L(XU ) having a finite support.

Remark 3.11. F(XU , L) is locally finite.

Proposition 3.12. Let (L, U, S, ∃) be a complete and completely chrysip-

pian LMn×m-algebra. For every a ∈ L, p ∈ UU and J ⊆ U the following

equality holds: S(τ)∃(J)a =
∨

{S(ρ)a | ρ |U\J= τ |U\J}

Proof: By [1, Proposition 4.24, pag. 50] we have

σijS(τ)∃(J)a = ∃(J)S(τ)σija

=
∨

{S(ρ)σija | ρ |U\J= τ |U\J}

=
∨

{σijS(ρ)a | ρ |U\J= τ |U\J}

= σij

(
∨

{S(ρ)a | ρ |U\J= τ |U\J}
)

for every (i, j) ∈ (n×m). Applying (C5) we get the equality required. ⊏⊐

Remark 3.13. Let (L, U, S, ∃) be a polyadic LMn×m-algebra. Set Eo(L) =
{a ∈ L | ∅ is support of a }. Then, we can prove that Eo(L) is an LMn×m-
subalgebra of L.

Theorem 3.14. Let (L, U, S, ∃) be a polyadic LMn×m-algebra and M

a proper n × m-filter of Eo(L). Then there exist a non-empty set X and

a polyadic LMn×m-morphism Φ : L −→ F(XU , D(2)) such that Φ(a) = 1,
for each a ∈ M .

Proof: Consider the polyadic Boolean algebra (C(L), U, S, ∃) and denote
by Eo(C(L)) the Boolean algebra of all elements of C(L) having ∅ as sup-
port in C(L), that is, Eo(C(L)) = {a ∈ C(L) : ∅ is support of a}. It is
obvious that Eo(C(L)) = Eo(L) ∩ C(L) and Mo = M ∩ C(L) is a proper
filter of the Boolean algebra Eo(C(L)). By [1, Theorem 4.28, pag.51] there
exists a non-empty set X and a morphism of polyadic Boolean algebras
Ψ : C(L) −→ F(XU ,2) such that Ψ(a) = 1 for each a ∈ Mo.

Define a map Φ : L −→ F(XU , D(2)) by putting Φ(a)(x)(i, j) =
Ψ(σija)(x), for every a ∈ L, x ∈ XU and (i, j) ∈ (n × m). It is easy



166 A. V. Figallo and G. Pelaitay

to prove that Φ is a morphism of LMn×m-algebras. For every a ∈ L,

J ⊆ U, ρ ∈ UU , x ∈ XU and (i, j) ∈ (n×m) we have:

(a) Φ(∃(J)a)(x)(i, j) = Ψ(σij∃(J)a)(x)

= Ψ(∃(J)σija)(x)

= ∃(J)Ψ(σija)(x)

=
∨

{Ψ(σija)(y) | y |U\J= x |U\J}

=
∨

{Φ(a)(y) | y |U\J= x |U\J}

= (∃(J)Φ(a))(x)(i, j),

(b) Φ(S(τ)a)(x)(i, j) = Ψ(σijS(τ)a)(x)

= Ψ(S(τ)σija)(x)

= (S(τ)Ψ(σija))(x)

= Ψ(σija)(xτ)

= Φ(a)(xτ)(i, j)

= (S(τ)Φ(a))(x)(i, j).

By (a) and (b) we obtain that Φ is a polyadic LMn×m-morphism. If
a ∈ M then σija ∈ Mo, therefore Ψ(σija) = 1 for each (i, j) ∈ (n × m).
Thus Φ(a)(x)(i, j) = Ψ(σija)(x) = 1 for every x ∈ XU and (i, j) ∈ (n×m).

⊏⊐

4. Tense polyadic LMn×m-algebras

In this section we will introduce the tense polyadic LMn×m-algebras as
a common generalization of tense polyadic Boolean algebras and tense
polyadic LMn-algebras.

Definition 4.1. A tense polyadic LMn×m-algebra is a sextuple (L, U, S, ∃,
G,H) such that

(a) (L, U, S, ∃) is a polyadic LMn×m-algebra,

(b) (L, G,H) is a tense LMn×m-algebra,

(c) S(τ)(G(p)) = G(S(τ))(p)), for any τ ∈ UU and p ∈ L,

(d) S(τ)(H(p)) = H(S(τ))(p)), for any τ ∈ UU and p ∈ L.

Definition 4.2. Let (L, U, S, ∃, G,H) and (L′, U, S, ∃, G,H) be two tense
polyadic LMn×m-algebras. A function f : L −→ L′ is a morphism of tense

polyadic LMn×m-algebras if the following properties hold:
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(i) f is a morphism of polyadic LMn×m-algebras,

(ii) f is a morphism of tense LMn×m-algebras.

We are going to use the notion of tense system to give an example of
tense polyadic LMn×m-algebra.

Definition 4.3. Let T = (T, (Xt)t∈T , R,Q, 0) be a tense system and L be
a complete and completely chrysippian LMn×m-algebra. We denote by:

F
U,n×m
T,L = {(ft)t∈T | ft : XU

t −→ L, for all t ∈ T}.

We will denote F
U,n×m
T,L by F

U,n×m
T for L = D(2).

On F
U,n×m
T,L we will consider the following operations:

• (ft)t∈T ∧ (gt)t∈T = (ft ∧ gt)t∈T , where (ft ∧ gt)(x) = ft(x) ∧ gt(x),
for all t ∈ T and x ∈ XU

t ,

• (ft)t∈T ∨ (gt)t∈T = (ft ∨ gt)t∈T , where (ft ∨ gt)(x) = ft(x) ∨ gt(x),
for all t ∈ T and x ∈ XU

t ,

• ∼T ((ft)t∈T ) = (∼ ◦ft)t∈T , where (∼ ◦ft)(x) =∼ (ft(x)), for all
t ∈ T and x ∈ XU

t ,

• σT

ij((ft)t∈T ) = (σij ◦ ft)t∈T , where (σij ◦ ft)(x) = σij(ft(x)), for all

(i, j) ∈ (n×m), t ∈ T and x ∈ XU
t ,

• 0T = (0t)t∈T , where 0t : XU
t −→ L, 0t(x) = 0L, for all t ∈ T and

x ∈ XU
t ,

• 1T = (1t)t∈T , where 1t : XU
t −→ L, 1t(x) = 1L, for all t ∈ T and

x ∈ XU
t .

Lemma 4.4. FU,n×m
T ,L = 〈FU,n×m

T ,L ,∨,∧,∼T , (σT

ij)(i,j)∈(n×m), 0
T , 1T 〉 is an

LMn×m-algebra.

Proof: First, we will prove that 〈FU,n×m
T ,L ,∨,∧,∼T , 0T , 1T 〉 is a De Mor-

gan algebra. It is easy to see that 〈FU,n×m
T,L ,∨,∧, 0T , 1T 〉 is a bounded

distributive lattice.
(a) ∼T ∼T ((ft)t∈T ) =∼T ((∼ ◦ft)t∈T ) = (∼ ◦ ∼ ◦ft)t∈T , where (∼ ◦ ∼
ft)(x) =∼ (∼ (ft(x))) = ft(x), for all t ∈ T and x ∈ XU

t , so ∼T ∼T

((ft)t∈T ) = (ft)t∈T .

(b) ∼T ((ft)t∈T ∧ (gt)t∈T ) =∼T ((ft ∧ gt)t∈T ) = (∼ ◦(ft ∧ gt))t∈T , where
(∼ ◦(ft ∧ gt))(x) =∼ ((ft ∧ gt)(x)) =∼ (ft(x)∧ gt(x)) =∼ ft(x)∨ ∼ gt(x),
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for all t ∈ T and x ∈ XU
t , so, ∼T ((ft)t∈T ∧ (gt)t∈T ) =∼T (ft)t∈T∨ ∼T

(gt)t∈T .

Now we will prove that F
U,n×m
T ,L verify the conditions (C1)-(C5).

(C1) Let (i, j) ∈ (n×m) and (ft)t∈T , (gt)t∈T ∈ F
U,n×m
T,L . Then, σT

ij((ft)t∈T∨

(gt)t∈T ) = σT

ij((ft ∨ gt)t∈T ) = (σij ◦ (ft ∨ gt))t∈T . Since L is an LMn×m-
algebra we obtain that: (σij ◦ (ft ∨ gt))t∈T = ((σij ◦ ft) ∨ (σij ◦ gt))t∈T =
(σij ◦ ft)t∈T ∨ (σij ◦ gt)t∈T = σT

ij((ft)t∈T ) ∨ σT

ij((gt)t∈T ).

(C2) Let (i,j)∈(n×m). We will to prove that σT

ij((ft)t∈T )≤σT
(i+1)j((ft)t∈T),

for all (ft)t∈T ∈ F
U,n×m
T,L . Let (ft)t∈T ∈ F

U,n×m
T,L . Then, σT

ij((ft)t∈T ) =

(σij ◦ft)t∈T and σT

(i+1)j((ft)t∈T ) = (σ(i+1)j ◦ft)t∈T . Let t ∈ T and x ∈ XU
t .

Since L is an LMn×m-algebra we obtain that: σij(ft(x)) ≤ σ(i+1)j(ft(x)),
so, σT

ij((ft)t∈T ) ≤ σT

(i+1)j((ft)t∈T ). In a similar way we can prove that:

σT

ij((ft)t∈T ) ≤ σT

i(j+1)((ft)t∈T ).

(C4) Now, we will prove that σT

ij ◦ σT

rs = σT

rs, for all (i, j), (r, s) ∈ (n×

m). Let (i, j), (r, s) ∈ (n × m) and (ft)t∈T ∈ F
U,n×m
T,L . Proving condition

(σT

ij ◦σ
T

rs)((ft)t∈T ) = σT

rs((ft)t∈T ) is equivalent proving (σij ◦σrs ◦ft)t∈T =

(σrs◦ft)t∈T . Let t ∈ T and x ∈ XU
t . Then, we have (σij◦σrs◦ft)(x) = (σij◦

σrs)(ft(x)) = σrs(ft(x)) = (σrs◦ft)(x), so (σij ◦σrs◦ft)t∈T = (σrs◦ft)t∈T .

(C5) Let (ft)t∈T , (gt)t∈T ∈ F
U,n×m
T,L such that σT

ij((ft)t∈T ) = σT

ij((gt)t∈T ),
for every (i, j) ∈ (n×m). Then, (σij ◦ ft)t∈T = (σij ◦ gt)t∈T , for all (i, j) ∈
(n×m). It follows that for every t ∈ T, σij◦ft = σij◦gt, that is, σij(ft(x)) =
σij(gt(x)), for every t ∈ T and x ∈ XU

t . Using (C5) for the LMn×m-
algebra L, we obtain that ft(x) = gt(x), for every t ∈ T and x ∈ XU

t , so
(ft)t∈T = (gt)t∈T .

(C6) σT

ij((ft)t∈T )∨ ∼T (σT

ij((ft)t∈T ) = (σij ◦ ft)t∈T ∨ (∼ ◦σij ◦ ft)t∈T =
((σij ◦ ft) ∨ (∼ ◦σij ◦ ft))t∈T , where ((σij ◦ ft) ∨ (∼ ◦σij ◦ ft))(x) =
σij(ft(x))∨ ∼ σij(ft(x)) = 1, for every t ∈ T and x ∈ XU

t . So, σT

ij((ft)t∈T )∨

∼T (σT

ij((ft)t∈T )) = 1T .

(C7) σT

ij(∼T (ft)t∈T ) = (σij◦ ∼ ◦ft)t∈T , where (σij◦ ∼ ◦ft)(x) =
σij(∼ ft(x)) =∼ σn−im−j(ft(x)) = (∼ ◦σn−im−j ◦ ft)(x), for every t ∈ T

and x ∈ XU
t . It follows that σT

ij(∼T (ft)t∈T ) =∼T (σT
n−im−j(ft)t∈T ). ⊏⊐

On F
U,n×m
T,L we define the operators G and H by

G((ft)t∈T ) = (gt)t∈T , where gt : XU −→ L, gt(x) =
∧

{fs(i ◦ x) |
tRs, s ∈ T},
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H((ft)t∈T ) = (ht)t∈T , where ht : XU −→ L, ht(x) =
∧

{fs(i ◦ x) |
tQs, s ∈ T}, where i : Xt −→ Xs is the inclusion map.

Lemma 4.5. (FU,n×m
T,L , G,H) is a tense LMn×m-algebra.

Proof: By Lemma 4.4, we have that FU,n×m
T,L is an LMn×m-algebra. Now,

we have to prove that G and H are tense operators.
(1) G(1T ) = G((1t)t∈T ) = (ft)t∈T , where ft(x) =

∧

{1s(i◦x) | tRs} = 1, for
all t ∈ T and x ∈ XU

t ; hence (ft)t∈T = (1t)t∈T . It follows that G(1T ) = 1T .
Similarly we can prove that H(1T ) = 1T .

(2) Let (ft)t∈T , (gt)t∈T ∈ F
U,n×m
T,L . Then,

(a) G((ft)t∈T ) = (vt)t∈T , where vt(x) =
∧

{fs(i ◦ x) | tRs},

(b) G((gt)t∈T ) = (pt)t∈T , where pt(x) =
∧

{gs(i ◦ x) | tRs},

(c) G((ft)t∈T ∧ (gt)t∈T ) = G((ft ∧ gt)t∈T ) = (ut)t∈T , where ut(x) =
∧

{(fs ∧ gs)(i ◦ x) | tRs}.

Let t ∈ T and x ∈ XU
t . By (a), (b) and (c) we obtain that ut(x) =

vt(x) ∧ pt(x), hence (ut)t∈T = (vt)t∈T ∧ (pt)t∈T , so G((ft)t∈T ∧ (gt)t∈T ) =
G((ft)t∈T )∧G((gt)t∈T ). Similarly we can prove that H((ft)t∈T ∧(gt)t∈T ) =
H((ft)t∈T ) ∧H((gt)t∈T ).

(3) Let (ft)t∈T ∈ F
U,n×m
T,L . Then,

(a) G(σT

ij(ft)t∈T ) = G((σij ◦ ft)t∈T ) = (gt)t∈T , where gt(x) =
∧

{(σij ◦
fs)(i ◦ x) | tRs}.

(b) σT

ij(G((ft)t∈T )) = σT

ij((pt)t∈T ), where pt(x) =
∧

{fs(i ◦ x) | tRs}.

Let t ∈ T and x ∈ XU
t . By (a), (b) and the fact that L is completely

chrysippian, we obtain that gt(x) = σij(pt(x)), hence (gt)t∈T = σT

ij(pt)t∈T .

So, G◦σT

ij = σT

ij ◦G. In a similar way we can prove that H commutes with
σij . ⊏⊐

For any τ ∈ UU , we define the function S(τ) : FU,n×m
T,L −→ F

U,n×m
T,L by

• S(τ)((ft)t∈T ) = (gt)t∈T , where gt : XU
t −→ L is defined by: gt(x) =

ft(x ◦ τ), for every t ∈ T and x ∈ XU
t .

For any J ⊆ U, we define the function ∃(J) : FU,n×m
T,L −→ F

U,n×m
T,L by

• ∃(J)((ft)t∈T ) = (gt)t∈T , where gt : XU
t −→ L is defined by: gt(x) =

∨

{ft(y) | y ∈ XU
t , y |U\J= x |U\J}, for every t ∈ T and x ∈ XU

t .
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Proposition 4.6. For any J ⊆ U, (FU,n×m
T,L , ∃(J)) is a monadic LMn×m-

algebra.

Proof: Let J ⊆ U . We will prove that ∃(J) is an existential quantifier on

F
U,n×m
T,L .

(E1) ∃(J)(0T ) = ∃(J)((0t)t∈T ) = (gt)t∈T , where gt(x) =
∨

{0t(y) | y ∈
XU

t , y |U\J= x |U\J} =
∨

{0} = 0, for every t ∈ T and x ∈ XU
t . We obtain

that (gt)t∈T = 0T , hence ∃(J)(0T ) = 0T .

(E2) Let (ft)t∈T ∈ F
U,n×m
T,L . We will prove that (ft)t∈T ≤ ∃(J)((ft)t∈T ). We

have: ∃(J)((ft)t∈T ) = (gt)t∈T , where gt(x) =
∨

{ft(y) | y ∈ XU
t , y |U\J=

x |U\J}, for every t ∈ T and x ∈ XU
t . We obtain that ft(x) ≤ gt(x), for

every t ∈ T and x ∈ XU
t , hence (ft)t∈T ≤ (gt)t∈T .

(E3) Let (ft)t∈T , (gt)t∈T ∈ F
U,n×m
T,L . We have:

(a) ∃(J)((ft)t∈T ∧ ∃(J)(gt)t∈T ) = ∃(J)((ft)t∈T ∧ (ht)t∈T ) = ∃(J)((ft ∧
ht)t∈T ) = (ut)t∈T ,

(b) ∃(J)((ft)t∈T ) ∧ ∃(J)((gt)t∈T ) = (pt)t∈T ∧ (vt)t∈T = (pt ∧ vt)t∈T ,

where, for every t ∈ T and x ∈ XU
t ,

ht(x) =
∨

{gt(y) | y ∈ XU
t , y |U\J= x |U\J},

ut(x) =
∨

{(ft(z) ∧ ht(z)) | z ∈ XU
t , z |U\J= x |U\J} =

∨

{ft(z) ∧
gt(y) | z, y ∈ XU

t , z |U\J= x |U\J= y |U\J},

pt(x) =
∨

{ft(z) | z ∈ XU
t , z |U\J= x |U\J},

vt(x) =
∨

{gt(y) | y ∈ XU
t , y |U\J= x |U\J}.

It follows that, for every t ∈ T and x ∈ XU
t , pt(x) ∧ vt(x) =

∨

{ft(z) ∧
gt(y) | z, y ∈ XU

t , z |U\J= x |U\J= y |U\J} = ut(x). Hence, ∃(J)((ft)t∈T ∧
∃(J)((gt)t∈T ) = ∃(J)((ft)t∈T ) ∧ ∃(J)((gt)t∈T ).

(E4) Let (i, j) ∈ (n×m) and (ft)t∈T ∈ F
U,n×m
T,L . Then, we have

(a) ∃(J)(σT

ij)((ft)t∈T ) = ∃(J)((σij ◦ ft)t∈T ) = (gt)t∈T , where

gt(x) =
∨

{σij(ft(y)) | y ∈ XU
t , y |U\J= x |U\J}, for all t ∈ T and

x ∈ XU
t .

(b) σT

ij(∃(J)((ft)t∈T ) = σT

ij((ht)t∈T ) = (σij◦ht)t∈T with ht(x) =
∨

{ft(y) |

y ∈ XU
t , y |U\J= x |U\J}, for every t ∈ T and x ∈ XU

t .

Using the fact that L is completely chrysippian we deduce that σij(ht(x)) =
gt(x), for every t ∈ T and x ∈ XU

t , hence ∃(J)(σT

ij((ft)t∈T )) =

σT

ij(∃(J)((ft)t∈T )). ⊏⊐
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The following proposition provides the main example of tense polyadic
LMn×m-algebra.

Proposition 4.7. (FU,n×m
T,L , U, S, ∃, G,H) is a tense polyadic LMn×m-algebra.

Proof: We will verify the conditions of Definition 4.1.

(a): We have to prove that the conditions of Definition 3.3 are satisfied.

(i): Let (ft)t∈T ∈ F
U,n×m
T,L , t ∈ T and x ∈ XU

t . By applying the definition
of S, we obtain: S(1U )((ft)t∈T ) = (gt)t∈T , where gt(x) = ft(x◦1U ) =
ft(x), so S(1U )((ft)t∈T ) = (ft)t∈T , hence S(1U ) = 1

F
U,n×m

T,L

.

(ii): Let ρ, τ ∈ UU , (ft)t∈T ∈ F
U,n×m
T,L , t ∈ T and x ∈ XU

t .

S(ρ ◦ τ)((ft)t∈T ) = (gt)t∈T with gt(x) = ft(x ◦ ρ ◦ τ).

(S(ρ)◦S(τ))((ft)t∈T )=S(ρ)(S(τ)((ft)t∈T ))=S(ρ)((ht)t∈T )=(pt)t∈T,

where ht(x) = ft(x ◦ τ) and pt(x) = ht(x ◦ ρ) = ft(x ◦ ρ ◦ τ).

It follows that S(ρ◦τ)((ft)t∈T )=(S(ρ)◦S(τ))((ft)t∈T ), hence S(ρ◦τ)=
S(ρ) ◦ S(τ).

(iii): Let (ft)t∈T ∈ F
U,n×m
T,L , t ∈ T and x ∈ XU

t . We have: ∃(∅)((ft)t∈T ) =
(gt)t∈T , where

gt(x) =
∨

{ft(y) | y ∈ XU
t , y |U= x |U} =

∨

{ft(x)} = ft(x),

so ∃(∅)((ft)t∈T ) = (ft)t∈T , i.e. ∃(∅) = 1
F

U,n×m

T,L

.

(iv): Let J, J ′ ⊆ U and (ft)t∈T ∈ F
U,n×m
T,L . Then,

(1) ∃(J ∪ J ′)((ft)t∈T ) = (gt)t∈T with

gt(x) =
∨

{ft(y) | y ∈ XU
t , y |U\(J∪J ′)= x |U\(J∪J ′)},

for every t ∈ T and x ∈ XU
t .

(2) (∃(J)◦∃(J ′))((ft)t∈T )=∃(J)(∃(J ′)(ft)t∈T )=∃(J)((ht)t∈T )=(pt)t∈T ,

where ht(x) =
∨

{ft(y) | y ∈ XU
t , y |U\J ′= x |U\J ′} and

pt(x) =
∨

{ht(y) | y ∈ XU
t , y |U\J= x |U\J}, for every t ∈ T and

x ∈ XU
t .

We obtain that

pt(x) =
∨

{ft(z) | z ∈ XU
t , exists y ∈ XU

t : z |U\J ′= y |U\J ′ , x |U\J=
y |U\J}.

We will prove that the sets

A = {ft(y) | y ∈ XU
t , y |U\(J∪J ′)= x |U\(J∪J′)}

and B = {ft(z) | z ∈ XU
t , exists y ∈ XU

t such that z |U\J′= y |U\J ′ ,
x |U\J= y |U\J} are equal.
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Let z ∈ XU
t such that z |U\(J∪J ′)= x |U\(J∪J ′) . We consider y ∈ XU

t ,

defined by

y(a) =

{

z(a), if a ∈ U \ J ′,

x(a), if a ∈ J ′,
.

It follows that y |U\J ′= z |U\J ′ . If a ∈ U \ J, we have two cases:

(I) If a ∈ J ′ then, y(a) = x(a).

(II) If a /∈ J ′ it results that a ∈ U \ (J ∪ J ′), so y(a) = z(a) = x(a).

By (I) and (II), we get that z |U\J ′= y |U\J ′ and x |U\J= y |U\J ,

so A ⊆ B. Conversely, let z ∈ XU
t such that, exists y ∈ XU

t with
z |U\J ′= y |U\J′ and x |U\J= y |U\J . It follows that

z |(U\J ′)∩(U\J)= y |(U\J ′)∩(U\J) and x |(U\J)∩(U\J ′)= y |(U\J)∩(U\J′),

hence z |U\(J∪J ′)= x |U\(J∪J ′) .

We obtain that B ⊆ A, hence A = B. We get that gt(x) = pt(x) for
every t ∈ T and x ∈ XU

t , so ∃(J ∪ J ′) = ∃(J) ◦ ∃(J ′).

(v): Let J ⊆ U, ρ, τ ∈ UU and (ft)t∈T ∈ F
U,n×m
T,L , such that ρ |U\J=

τ |U\J .

We obtain:

(1) (S(ρ) ◦ ∃(J))((ft)t∈T ) = S(ρ)(∃(J)((ft)t∈T )) = (gt)t∈T , where

gt(x) =
∨

{ft(y) | y ∈ XU
t , y |U\J= (x ◦ ρ) |U\J}, for every t ∈ T and

x ∈ XU
t .

(2) (S(τ) ◦ ∃(J))((ft)t∈T ) = S(τ)(∃(J))((ft)t∈T ) = (ht)t∈T , where

ht(x) =
∨

{ft(y) | y ∈ XU
t , y |U\J= (x ◦ τ)U\J}, for every t ∈ T and

x ∈ XU
t . By ρ |U\J= τ |U\J it follows that (x ◦ ρ) |U\J= (x ◦ τ) |U\J ,

for every x ∈ XU
t , hence gt(x) = ht(x), for every t ∈ T and x ∈ XU

t .
It results that S(ρ) ◦ ∃(J) = S(τ) ◦ ∃(J).

(vi): Let J ⊆ U, (ft)t∈T ∈ F
U,n×m
T,L and ρ ∈ UU such that ρ |ρ−1(J) is

injective.

We have:

(1) (∃(J) ◦ S(ρ))((ft)t∈T )) = (gt)t∈T , where

gt(x) =
∨

{ft(y ◦ ρ) | y ∈ XU
t , y |U\J= x |U\J}, for every t ∈ T and

x ∈ XU
t .

(2) (S(ρ) ◦ ∃(ρ−1(J)))((ft)t∈T )) = (ht)t∈T , where

ht(x) =
∨

{ft(y) | y ∈ XU
t , y |U\ρ−1(J)= (x ◦ ρ) |U\ρ−1(J)}, for every

t ∈ T and x ∈ XU
t .
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We must prove that A and B are equal, where

A = {ft(y ◦ ρ) | y ∈ XU
t , y |U\J= x |U\J} y

B = {ft(y) | y ∈ XU
t , y |U\ρ−1(J)= (x ◦ ρ) |U\ρ−1(J)}.

Let y ∈ XU
t such that y |U\J= x |U\J . We consider z = y ◦ ρ.

Let a ∈ U \ ρ−1(J). Then, z(a) = y(ρ(a)) = x(ρ(a)) = (x ◦ ρ)(a),

so z |U\ρ−1(J)= (x ◦ ρ) |U\ρ−1(J) . We get that A ⊆ B.

Conversely, let y ∈ XU
t such that y |U\ρ−1(J)= (x ◦ ρ) |U\ρ−1(J).

Since ρ |ρ−1(J) is injective, we can consider the bijective function

ρ′ : ρ−1(J) −→ J, defined by ρ′(a) = ρ(a) for all a ∈ ρ−1(J).

Let us consider z ∈ XU
t , defined by:

z(a) =

{

y(ρ′−1(a)), if a ∈ J,

x(a), if a ∈ U \ J,

We see that z |U\J= x |U\J . By calculus we get that (z◦ρ)(a) = y(a),

for every a ∈ U , so z ◦ ρ = y. It follows that B ⊆ A, so A = B.

(vii): It follows by Proposition 4.6.

(b): It follows by Lemma 4.5.

(c): Let τ ∈ UU , (ft)t∈T ∈ F
U,n×m
T,L , t ∈ T and x ∈ XU

t . It follows that:

(1) S(τ)(G((ft)t∈T )) = S(τ)((gt)t∈T ) = (ht)t∈T , where

gt(x) =
∧

{fs(i ◦ x) | tRs, s ∈ T} and

ht(x) = gt(x ◦ τ) =
∧

{fs(i ◦ x ◦ τ) | tRs}.

(2) G(S(τ)((ft)t∈T )) = G((pt)t∈T ) = (ut)t∈T , where pt(x) = ft(x ◦ τ)
and

ut(x) =
∧

{ps(i ◦ x) | tRs, s ∈ T}.

By (1) and (2) we obtain that ht(x) = ut(x), for all t ∈ T and x ∈ XU
t ,

so (ht)t∈T = (ut)t∈T , i.e. S(τ)(G((ft)t∈T )) = G(S(τ))((ft)t∈T )).

(d): Similar with (c). ⊏⊐

Remark 4.8. Proposition 4.7 is an extension of Lemma 2.13, in the sense
that if we take B = C(L), we obtain Lemma 2.13.

Definition 4.9. Let (L, U, S, ∃, G,H) be a tense polyadic LMn×m-algebra.
A subset J of U is a support of p ∈ L if ∃(U \ J)p = p. The intersection of
the supports of an element p ∈ L will be denoted by Jp. A tense polyadic
LMn×m-algebra is locally finite if every element has a finite support.
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Remark 4.10. We consider the tense polyadic LMn×m-algebra (FU,n×m
T,L , U,

S, ∃, G,H). By applying Definition 4.9, M ⊆ U is a support of (ft)t∈T ∈

F
U,n×m
T,L if ∃(U \ M)((ft)t∈T ) = (ft)t∈T . By using the definition of ∃, we

obtain that
∨

{ft(y) | y ∈ XU
t , y |M= x |M} = ft(x), for all t ∈ T and

x ∈ XU
t .

Lemma 4.11. Let us consider the tense polyadic LMn×m-algebra (FU,n×m
T ,

U, S, ∃, G,H), where F
U,n×m
T = {(ft)t∈T | ft : XU

t −→ D(2) for all t ∈ T},

(ft)t∈T ∈ F
U,n×m
T y Q ⊆ U . Then the following conditions are equivalent:

(a) Q is a support of (ft)t∈T ,

(b) for every (xt)t∈T , (yt)t∈T , xt, yt ∈ XU
t , for all t ∈ T we have:

xt |Q= yt |Q, t ∈ T ⇒ ft(xt) = ft(yt), t ∈ T .

Proof: (a)⇒ (b): We assume that Q is a support of (ft)t∈T . By applying
Definition 4.9 and definition of ∃, it follows that

∨

{ft(y) | y ∈ XU
t , y |Q=

x |Q} = ft(x), for all t ∈ T and x ∈ XU
t . Let t ∈ T, xt, yt ∈ XU

t such that
xt |Q= yt |Q . We have:

ft(xt) =
∨

{ft(y) | y ∈ XU
t , y |Q= xt |Q} ≥ ft(yt)

ft(yt) =
∨

{ft(x) | x ∈ XU
t , x |Q= yt |Q} ≥ ft(xt)

So, ft(xt) = ft(yt).
(b)⇒ (a): Using definition of ∃ we obtain that ∃(U \ Q)(ft)t∈T =

(gt)t∈T , where gt : XU
t −→ D(2), gt(x) =

∨

{ft(y) | y ∈ XU
t , y |Q= x |Q},

for every t ∈ T and x ∈ XU
t . Let t ∈ T and x ∈ XU

t . By (b) it follows
that gt(x) =

∨

{ft(x) | y ∈ XU
t , y |Q= x |Q} = ft(x). We obtain that

(gt)t∈T = (ft)t∈T , so ∃(U \ Q)(ft)t∈T = (ft)t∈T , i.e. Q is a support of
(ft)t∈T . ⊏⊐

Lemma 4.12. Let f : L −→ L′ be a morphism of tense polyadic LMn×m-

algebras, p ∈ L, Q ⊆ U . If Q is a support of p, then Q is a support of

f(p).

Proof: Because Q is a support of p, it follows that ∃(U \ Q)p = p.
By applying the definition of morphism of tense polyadic LMn×m-algebras
we obtain that f(∃(U \Q)p) = ∃(U \Q)f(p) = f(p), hence Q is a support
of f(p). ⊏⊐
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Lemma 4.13. Let (L, U, S, ∃, G,H) be a tense polyadic LMn×m-algebra.

Then,

(i) (C(L), U, S, ∃, C(G), C(H)) is a tense polyadic Boolean algebra.

(ii) If L is locally finite, then C(L) is locally finite.

Proof: We only prove (i). By applying [1, p. 453, Remark 4.2], we obtain
that C(L) can be endowed with a canonical structure of polyadic Boolean
algebra. By [18, Remark 1.15], we have that (C(L), C(G), C(H)) is a tense
Boolean algebra. The conditions (iii) and (iv) of Definition 2.9 are met
for the elements of C(L) as well, hence C(L) is a tense polyadic Boolean
algebra. ⊏⊐

Let (B, U, S, ∃, G,H) be a tense polyadic Boolean algebra. We consider
on D(B) the following operations, for every τ ∈ UU , f ∈ D(B) and J ⊆ U :

• (D(S)(τ))(f) = S(τ) ◦ f,

• (D(∃)(J))(f) = ∃(J) ◦ f,

• (D(G))(f) = G ◦ f,

• (D(H))(f) = H ◦ f.

Lemma 4.14.

(i) (D(B), U,D(S), D(∃),D(G),D(H)) is a tense polyadic LMn×m-algebra.

(ii) If B is locally finite, then D(B) is locally finite.

The assignments B 7→ C(B), B 7→ D(B) establish the adjoint functors
C and D between the category of tense polyadic Boolean algebras and the
category of tense polyadic LMn×m-algebras.

Definition 4.15. Let (L, U, S, ∃, G,H) be a tense polyadic LMn×m-algebra.
We consider the function ωL : L −→ D(C(L)), defined by: for all x ∈ L

and (i, j) ∈ (n×m), ωL(x)(i, j) = σij(x).

Lemma 4.16. ωL is an injective morphism of tense polyadic LMn×m-algebras.

Proof: By [18, Lemma 2.6], ωL is an injective morphism of tense LMn×m-
algebras. We have to prove that ωL commutes with S and ∃.

Let J ⊆ U, τ ∈ UU , x ∈ L and (i, j) ∈ (n×m).

(a) We have: ωL(S(τ)(x))(i, j) = σij(S(τ))(x) = S(τ)(σij(x)).

D(S)(τ)(ωL(x))(i, j) = S(τ)(ωL(x)(i, j)) = S(τ)(σij(x)).
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Hence ωL ◦ S(τ) = D(S)(τ) ◦ ωL.

(b) We have: ωL(∃(J)(x))(i, j) = σij(∃(J)(x)).

D(∃)(J)(ωL(x))(i, j) = ∃(J)(ωL(x)(i, j)) = ∃(J)(σij(x)).

As ∃(J) commutes with σij , we obtain that D(∃)(J)◦ωL = ωL◦∃(J).

⊏⊐

Lemma 4.17. Let T = (T, (Xt)t∈T , R,Q, 0) be a tense system. Then

C(FU,n×m
T ) ≃ FU

T .

Proof: By [19, Lemma 4.5.], we have that 2 ≃ C(D(2)). Let us consider
an isomorphism u : 2 −→ C(D(2)) ⊆ D(2). We will define the function

Φ : FU
T −→ C(FU,n×m

T ), by: Φ((ft)t∈T ) = (gt)t∈T with ft : XU
t −→ 2,

gt : XU
t −→ D(2), gt = u ◦ ft, for every t ∈ T . It is easy to prove that Φ is

an injective morphism of tense polyadic Boolean algebras. Let (ht)t∈T ∈

C(FU,n×m
T ). Then σT

ij((ht)t∈T ) = (ht)t∈T , for every (i, j) ∈ (n × m) iff
σij ◦ ht = ht, for every (i, j) ∈ (n × m) and t ∈ T iff σij(ht(x)) = ht(x),
for every (i, j) ∈ (n×m), t ∈ T and x ∈ XU

t iff ht(x) ∈ C(D(2)) ≃ 2, for
every t ∈ T and x ∈ XU

t , hence Φ is surjective. ⊏⊐

5. Representation theorem

This section contains the main result of this paper: the representation
theorem for tense polyadic LMn×m-algebras (see Theorem 5.2). It extends
the representation of tense polyadic Boolean algebras ([21]), as well as the
representation of tense LMn×m-algebras ([18]). In order to obtain a proof
of this representation theorem we need some preliminary results.

Proposition 5.1. Let T = (T, (Xt)t∈T , R,Q, 0) be a tense system. Then

there exists an injective morphism of tense polyadic LMn×m-algebras

λ : D(FU
T ) −→ F

U,n×m
T .

Proof: We have that D(FU
T ) = {ν : (n × m) −→ FU

T | r ≤ s implies
ν(i, r) ≤ ν(i, s), ν(r, j) ≤ ν(s, j)}. Let ν ∈ D(FU

T ). For every (i, j) ∈

(n × m) we will denote ν(i, j) = (gijt )t∈T , where g
ij
t : XU

t −→ 2, such
that, for all r ≤ s and t ∈ T, girt ≤ gist , g

rj
t ≤ g

sj
t . We will define

λ : D(FU
T ) −→ F

U,n×m
T , λ(ν) = (ft)t∈T , where for every t ∈ T, x ∈ XU

t and

(i, j) ∈ (n × m), ft : XU
t −→ D(2) is defined by: ft(x)(i, j) = g

ij
t (x). As
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g
ij
t are increasing it follows that ft(x) are increasing, so ft(x) ∈ D(2). We

must prove that λ is an morphism of tense polyadic LMn×m-algebras, i.e. λ

is an morphism of tense LMn×m-algebras and it commutes with operations
S and ∃.

Let ν1, ν2 ∈ D(FU
T ) with ν1(i, j) = (gijt )t∈T and ν2(i, j) = (uij

t )t∈T ,

where g
ij
t , u

ij
t : XU

t −→ 2.

We want to prove that λ(0D(FU
T
)) = 0F

TU,n×m
. We have:

(1) 0D(FU
T
) = 0 : (n×m) −→ FU

T , 0(i, j) = (0ijt )t∈T with 0ijt : XU
t −→ 2,

0ijt (x) = 0, for all t ∈ T and x ∈ XU
t .

(2) 0F
TU,n×m

= (0t)t∈T with 0t : XU
t −→ D(2) is defined by 0t(x)(i, j) =

0, for all x ∈ XU
t and (i, j) ∈ (n×m).

By (1) and (2) we obtain that 0t(x)(i, j) = 0ijt (x), for all t ∈ T, x ∈ XU
t

and (i, j) ∈ (n × m), so λ(0D(F
TU )) = 0F

TU,n×m
. In a similar way we can

prove that λ(1D(FU
T
)) = 1F

TU,n×m
.

• We will prove that λ(ν1 ∨ ν2) = λ(ν1) ∨ λ(ν2).

By the definition of λ, we have: λ(ν1∨ν2) = (pt)t∈T , λ(ν1) = (ft)t∈T ,

λ(ν2) = (ht)t∈T , where pt, ft, ht : XU
t −→ D(2), (pt(x))(i, j)(i, j) =

(gijt ∨ u
ij
t )(x), (ft(x))(i, j) = g

ij
t (x), (ht(x))(i, j) = u

ij
t (x), for al t ∈

T, x ∈ XU
t and (i, j) ∈ (n×m).

Let t ∈ T and x ∈ XU
t . The relation (gijt ∨u

ij
t )(x) = g

ij
t (x)∨u

ij
t (x) is

true, so it follows that (pt(x))(i, j) = (ft(x))(i, j) ∨ (ht(x))(i, j), for
all (i, j) ∈ (n×m). Hence λ(ν1 ∨ ν2) = λ(ν1) ∨ λ(ν2).

In the same way we can prove that λ(ν1 ∧ ν2) = λ(ν1) ∧ λ(ν2).

• We must prove that λ ◦ σij = σij ◦ λ.

Let (i, j)∈(n×m). We have: (σij(ν1))(i, j)=σij(ν1(i, j))=σij((g
ij
t )t∈T)

= (σij ◦ g
ij
t∈T ), hence λ(σij(ν1)) = (ft)t∈T with ft(x)(i, j) = (σij ◦

g
ij
t )(x), for all t ∈ T, x ∈ XU

t and (i, j) ∈ (n×m).

σij(λ(ν1)) = σij((ht)t∈T ) = (σij ◦ ht)t∈T , where ht(x)(i, j) = g
ij
t (x).

Let x ∈ XU
t and t ∈ T . It results that ft(x)(i, j) = σij(ht(x)(i, j)),

for all (i, j) ∈ (n×m), so λ(σij(ν1)) = σij(λ(ν1)).

• We will to prove that λ ◦G = G ◦ λ and λ ◦H = H ◦ λ.

Let (i, j) ∈ (n×m). Then D(G)(ν1)(i, j)=G(ν1(i, j))=G((gijt )t∈T )=
(hij

t )t∈T , where h
ij
t (x) =

∧

{gijs (i ◦ x) | tRs, s ∈ T}, for every t ∈ T



178 A. V. Figallo and G. Pelaitay

and x ∈ XU
t . It follows that λ(D(G)(ν1)) = (ft)t∈T with ft(x)(i, j) =

h
ij
t (x), for every t ∈ T and x ∈ XU

t .

G(λ(ν1)) = G((gijt )t∈T ) = (uij
t ) with u

ij
t =

∧

{gijs (i ◦ x) | tRs}, for
every t ∈ T and x ∈ XU

t . We can se that ft(x)(i, j) = u
ij
t (x) for all

t ∈ T, x ∈ XU
t and (i, j) ∈ (n×m), hence λ ◦G = G ◦ λ. In a similar

way we can prove that λ ◦H = H ◦ λ.

• We will to prove that λ commute with S.

Let τ ∈UU and (i,j)∈(n×m). Then D(S)(τ)(ν1)(i,j)=S(τ)(ν1(i,j))=
S(τ)((gijt )t∈T ) = (hij

t )t∈T with h
ij
t (x) = g

ij
t (x ◦ τ). It follows that

(λ ◦ D(S)(τ))(ν1) = λ(D(S)(τ)(ν1)) = (ft)t∈T , where ft(x)(i, j) =
h
ij
t (x).

(S(τ)◦λ)(ν1) = S(τ)(λ(ν1)) = (pt)t∈T , where pt(x)(i, j) = g
ij
t (x◦ τ).

It follows: ft(x)(i, j) = pt(x)(i, j), for all t ∈ T, x ∈ XU
t and (i, j) ∈

(n×m), so λ ◦D(S)(τ) = S(τ) ◦ λ.

• We will to prove that λ commute with ∃.

Let J ⊆ U and (i, j) ∈ (n×m). We have:

D(∃)(J)(ν1)(i, j) = ∃(J)(ν1(i, j)) = ∃(J)((gijt )t∈T ) = (hij
t )t∈T , where

h
ij
t (x) =

∨

{gijt (y) | y ∈ XU
t , y |U\J= x |U\J}, for all t ∈ T and

x ∈ XU
t . It follows: (λ ◦ D(∃)(J))(ν1) = λ(D(∃(J)(ν1))) = (ft)t∈T

with ft(x)(i, j) = h
ij
t (x), for every t ∈ T and x ∈ XU

t .

(∃(J) ◦ λ)(ν1) = ∃(J)(λ(ν1)) = ∃(J)((pt)t∈T ) = (vt)t∈T , where
pt(x)(i, j) = g

ij
t (x) and vt(x)(i, j) =

∨

{pt(y)(i, j) | y ∈ XU
t , y |U\J=

x |U\J}. It results that vt(x)(i, j) = h
ij
t (x) for every t ∈ T, x ∈ XU

t

and (i, j) ∈ (n×m) so (vt)t∈T = (hij
t )t∈T , i.e. λ◦D(∃)(J) = ∃(J)◦λ.

• We will to prove that λ is injective.

Let ν1, ν2 ∈ D(FU
T ), ν1(i, j) = (gijt )t∈T and ν2(i, j) = (pijt )t∈T , for all

(i, j) ∈ (n×m) such that λ(ν1) = λ(ν2). Using the definition of λ, we
obtain that gijt (x) = p

ij
t (x), for all t ∈ T, x ∈ XU

t and (i, j) ∈ (n×m).
It follows that ν1(i, j) = ν2(i, j), for all (i, j) ∈ (n×m), hence ν1 = ν2.
The injectivity of λ was proved. ⊏⊐

The following theorem shows that any tense polyadic LMn×m-algebra
can be represented by means of the tense polyadic LMn×m-algebra F

U,n×m
T

associated with a certain tense system T .
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Theorem 5.2. (Representation theorem) Let (L, U, S, ∃, G,H) be

a tense polyadic LMn×m-algebra, locally finite, of infinite degree and Γ be

a proper filter of L with Jp = ∅ for all p ∈ Γ. Then there exist a tense sys-

tem T = (T, (Xt)t∈T , R,Q, 0) and a morphism of tense polyadic LMn×m-

algebras Φ : L −→ F
U,n×m
T such that, for all p ∈ Γ, the following property

holds:

(P) Φ(p) = (ft)t∈T ⇒ (f0(x))(i, j) = 1, for all x ∈ XU
t and (i, j) ∈

(n×m).

Proof: Let (L, U, S, ∃, G,H) be a tense polyadic LMn×m-algebra and Γ be
a proper filter of L. By Lemma 4.13, we have that (C(L), U, S,∃, C(G),C(H))
is a tense polyadic Boolean algebra and Γ0 = Γ ∩ C(L) is a proper filter
of C(L). Applying the representation theorem for tense polyadic Boolean
algebras, it follows that there exist a tense system T = (T, (Xt)t∈T , R,Q, 0)
and a morphism of tense polyadic Boolean algebras µ : C(L) −→ FU

T , such
that for all p ∈ Γo the following property holds: µ(p)=(gt)t∈T ⇒ g0(x)=1,
for all x ∈ XU

t . Let D(µ) : D(C(L)) −→ D(FU
T ) be the corresponding mor-

phism of µ by the functor D. By using Lemma 4.16, we have an injective
morphism of tense polyadic LMn×m-algebras ωL : L −→ D(C(L)) and
by using Proposition 5.1, we have an injective morphism of tense polyadic
LMn×m-algebras λ : D(FU

T ) −→ F
U,n×m
T . We consider the following mor-

phisms of tense polyadic LMn×m-algebras:

L
ωL−→D(C(L))

D(µ)
−→ D(FU

F )
λ

−→F
U,n×m
T

It follows that λ ◦D(µ) ◦ωL is an morphism of tense polyadic LMn×m-
algebras.

Now, we will verify the condition (P) of the theorem. Let p ∈ Γ and
(i, j) ∈ (n × m). We know that ωL(p)(i, j) = σij(p) and σij(p) ∈ Γ0.
Then D(µ)(ωL(p)) = µ ◦ ωL(p), hence (µ ◦ ωL(p))(i, j) = µ(ωL(p)(i, j)) =
µ(σij(p)). We assume that µ(σijp) = (gijt )t∈T , where g

ij
t : XU

t −→ 2.

As σijp ∈ Γ0, we obtain that g
ij
0 (x) = 1, for every x ∈ XU

t . It results
that: Φ(p) = λ(D(µ)(ωL(p))) = λ(D(µ)(σijp)) = λ(µ(σijp)). It follows
that Φ(p)(i, j) = (ft)t∈T , where, applying the proof of Proposition 5.1,
we have that ft(x)(i, j) = g

ij
t (x), for every t ∈ T and x ∈ XU

t . Then,
f0(x)(i, j) = g

ij
0 (x) = 1. ⊏⊐
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[8] C. Chiriţă, Tense θ–valued  Lukasiewicz-Moisil algebras, J. Mult. Valued

Logic Soft Comput. 17/1 (2011), pp. 1–24.
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