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1. Introduction

We deal with a nonlinear parabolic system of the form

(1) ut = D∆u+ f(u),

with Neumann homogeneous boundary condition

(2)
∂u

∂ν
|∂Ω = 0

or, incidentally, Dirichlet homogeneous boundary condition

(3) u |∂Ω = 0,

in a bounded domain Ω ⊂ R
m with boundary ∂Ω being m− 1-dimensional

sufficiently smooth manifold. Here, we consider only classical solutions
u : Ω → R

n (we emphasize that we have vector-valued functions, since
(1) is, in fact, a system of n parabolic equations. We denote by D :=
diag(d1, . . . , dn) a diagonal matrix with positive diagonal entries di, i =
1, . . . , n, and by f : Rn

+ → R
n a continuous function defined on the cone

of nonnegative vectors x = (x1, . . . , xn) ∈ R
n, where xi ≥ 0, i = 1, . . . , n.

Such parabolic systems are largely investigated since they model kinetics
of chemical reactions – each coordinate of u measures density one of inter-
acting components, or they model development of several biological species
living on the same area Ω and interacting in different ways (preys and preda-
tors, symbiosis, competition). We keep in mind the second application that
causes Neumann condition is more natural (comp. [2]). System (1-2) defines
a semiflow Φt, t ≥ 0, on an appropriate space Xα, if one uses the theory
of sectorial operators (comp. [6, 9]) or a semiflow on a cone of nonnegative
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continuous functions, if one applies the theory of monotone dynamical sys-
tems (comp. [18]). We work in spaces of continuous functions, since our
main example of f = (f1, . . . , fn) is

(4) fi(u) = ui

(

1−
n
∑

j=1

aijuj

)

,

where all coefficients aij are positive. If f is a C1-function such that

fi(u) = 0 for ui = 0, i = 1, . . . , n,

and

(5)
∂fi
∂uj

≤ 0, for i 6= j,

then (1) defines a semiflow Φt, t ≥ 0, on the cone of nonnegative continuous
functions u : Ω → [0,∞)n which is competitive in the sense of Hirsch (see
[18, 19]). In particular, it means that all solutions of the system starting with
nonnegative functions ϕ = u(·, 0) ≥ 0 are global in time and nonnegative
for any t > 0. Moreover, if

u(·, T ) ≤ ū(·, T )
are two such solutions comparable at any time T > 0, then

u(·, t) ≤ ū(·, t) for t < T.

2. Steady-state solutions, single species

First, we are interested in steady-state solutions, i.e. time independent
solutions. They satisfy elliptic system:

(6) ∆u = −D−1f(u),
∂u

∂ν
|∂Ω = 0 .

The obvious examples of such functions are zeros of the nonlinear term f. An
important question is if there are not exist other steady-state solutions. They
correspond nonuniform distributions of populations on the environment Ω
which do not change in time. We can exactly investigate the case of one
species (n = 1). If Ω ⊂ R, the analysis is standard and rather simple.

(7) u′′ = −D−1u(1− u) in (0, L), u′(0) = 0 = u′(L), u ≥ 0.

The second order ODE is an example of a conservative system with one
degree of freedom so it has a first integral (energy)

E(u, u′) =
u′2

2
+
u2

2D
− u3

3D
.

It enables to find the phase portrait of the system:
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u

u’

One can see that there is no nonnegative solutions for any diffusion co-
efficient D and any length L of the environment. On the other hand, if
one use the Dirichlet boundary condition u(0) = 0 = u(L), then a priori
such solutions can exist. They will correspond trajectories cutting axe u′

twice. One can compute the time (we use standard notions from the theory
of dynamical systems however, here, the independent variable is interpreted
as a spatial one) between two passes of this axe. Denote (after [12]) by F
the real function F (u) = u2/2− u3/3 and let µ be the value of u where the
trajectory cut axe u. Then this time equals

L(µ) =
√
2D

∫ µ

0

du
√

F (µ)− F (u)
=

∫ 1

0

µdz
√

F (µ)− F (µz)
.

It is obvious that µ changes between 0 and 1, that L is an increasing function
of µ tending to ∞ as µ→ 1−. One can also compute the limit

lim
µ→0+

L(µ) = 2
√
D

∫ 1

0

dz√
1− z2

= π
√
D.

It can be interpreted that there is exactly one nonconstant steady-state so-
lution iff the length of the environment L is greater than this limit LKISS =
π
√
D called the KISS size. If L < π

√
D, then there are only constant

steady-state solutions u ≡ 0 and u ≡ 1. From another point of view, if the
length L is fixed, then nonconstant time-independent solutions exist when
the diffusion coefficient D is sufficiently small.

Now, we study the case, when Ω ⊂ R
m with m > 1. The most interesting

dimension from the biological point of view is m = 2. Ω = B(0, R) (the
disk centered at 0 with radius R) is the simplest set and we can easily look
for radial solutions of (6). Our analysis can be repeated in larger dimension
without troubles. If we denote by u′ the derivative with respect to the radial
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coordinate, then we get the following boundary value problem:

(8) u′′ +
1

r
u′ = − 1

D
u(1− u) in (0, R), u′(0) = 0 = u′(R).

For Dirichlet’s boundary condition u|∂Ω = 0, we have for radial solutions:
u′(0) = 0 = u(R). For both problems, we look at solutions of the second
order ODE with initial values u(0) = c, u′(0) = 0, where c > 0. It is easy
to see that for c > 1 the right hand side of ODE (8) is positive, thus the
solution increase to infinity in finite time and cannot satisfy the Dirichlet
nor Neumann conditions at R. If c ∈ (0, 1), then the solution is concave
near 0, u decreases but, by comparison with equation (7), slowler then in
the last system. It means that, for any c, u(r1) = 0 when r1 > LKISS/2.
Thus, for Dirichlet’s boundary condition, we have the same phenomenon as
in dimension 1, but with larger KISS size. Similarly, there is no nonconstant
solutions for Neumann’s problem. Below, we present numerical solutions for
initial problems

u′′ +
1

r
u′ = − 1

D
u(1− u), u(0) = c, u′(0) = 0

with several c > 0 and D = 0.1.
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3. Steady-state solutions, two species

For two species the situation is completely different. Consider the system

(9)

{

ut = d1∆u+ u(1− u− bv), ∂u
∂ν |∂Ω = 0, u(·, 0) = ϕ

vt = d2∆v + v(1− cu− v), ∂v
∂ν |∂Ω = 0, v(·, 0) = ψ,

where interspecies-competition coefficients b, c are positive constants, diffu-
sion coefficients d1, d2 are positive and Ω is an open bounded set in R

m with
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smooth boundary. We study only nonnegative solutions. There are always
three equilibria constant in space and time:

P0 = (0, 0), Pu = (1, 0), Pv = (0, 1),

and if b, c < 1 or b, c > 1, the fourth equilibrium

P1 =

(

1− b

1− bc
,
1− c

1− bc

)

.

If d1 = d2 = 0, there is no diffusion and we have the standard Lotka-Volterra
ODE with the above equilibria. The dynamical system given by this ODE
is easily investigated: P0 is its repeller, Pu is an attractor if c > 1, Pv is
an attractor if b > 1, P1 is global attractor (for nonnegative solutions) if
b, c < 1. More exactly, if both b and c are greater than 1, then P1 is a saddle
point and its stable manifold W s(P1) is the sum of a heteroclinic trajectory
from P0 to P1 and a trajectory from infinity to P1. This manifold cuts the
set u, v ≥ 0 in two sets: all trajectories starting from the set containing Pu

tend to Pu, trajectories starting from the second set tend to Pv. The method
of monotone dynamical systems enables us to state a similar result for full
parabolic system (9):

(i) if b, c < 1, then all solutions with nontrivial ϕ,ψ ≥ 0 tend to P1 as
t→ ∞;

(ii) if b < 1 and c > 1, then all solutions with nontrivial ϕ,ψ ≥ 0 tend to
Pu as t → ∞;

(iii) if b > 1 and c < 1, then all solutions with nontrivial ϕ,ψ ≥ 0 tend to
Pv as t→ ∞;

(iv) if b, c > 1, then the stable manifold W s(P1) is again one-dimensional,
Pu attracts solutions with ϕ ≥ u0, ψ ≤ v0 for some (u0, v0) ∈ W s(P1), and
Pv attracts solutions with ϕ ≤ u0, ψ ≥ v0 for some (u0, v0) ∈W s(P1).

The proof can be found in [19].
The last case is the most interesting since we do not know the dynamics

for any (ϕ,ψ) not comparable in the above sense with any function from
W s(P1). For example, some nonconstant equilibria can exist and even they
can be asymptotically stable. However, we can use the following result due
to Conway, Hoff and Smöller [3] in many cases:

Let u be a solution to

ut = D∆u+ f(u),
∂u

∂ν
|∂Ω = 0, u(·, 0) = u0,

where u = (u1, . . . , um), D is a symmetric positively definite matrix, Ω is
an open bounded subset of R

n with smooth boundary, f is a C2 function
and u0 ∈ L2(Ω). Assume that there exists a bounded positively invariant
set Σ ⊂ R

m such that u0 takes values in Σ. Denote by λ the first eigenvalue
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of −∆ with ∂u
∂ν |∂Ω = 0 (here, one can take m = 1, and we mean the first

positive eigenvalue – 0 is also eigenvalue), by d the lowest eigenvalue of
matrix D, M := supu∈Σ ||f ′(u)||, and at last

σ := λd−M.

Then there are four positive constants ci, i = 1, 2, 3, 4 such that

(10) ||∇u(·, t)||L2(Ω) ≤ c1e
−σt,

(11) ||u(·, t) − u(t)||L2(Ω) ≤ c2e
−σt,

where u is a spatial average of u and it satisfies u′ = f(u) + g(t), u(0) =
∫

Ω u0/µ(Ω), g a is a function satisfying |g(t)| ≤ c3e
−σt,

(12) ||u(·, t) − u(t)||L∞(Ω) ≤ c4e
−σt

if D is a diagonal matrix.
In our investigations, Σ = {(u, v) : u, v ≥ 0, u ≤ 1 − bv or v ≤ 1 − cu}

if (ϕ,ψ) takes values in this set or Σ is the smallest triangle with vortices
P0, (a, 0), (0, a) containing (supϕ, supψ). Since the first set attracts all so-
lutions, it contains all equilibria. If one has σ > 0, then limt→∞ u(t) = const
and we the solution u(x, t) tends to this constant as t→ ∞. It follows that
there is no nonconstant in space steady-state solution. After easy though
laborious computations one can find the constant M. We have

f ′(u, v) =

[

1− 2u− bv −bu
−cv 1− 2v − cu

]

,

||f ′(u, v)||2 = (b2 + c2 +4)(u2 + v2) + 4(b+ c)uv− 4(u+ v)− 2(cu+ bv) + 2

and the maximum of the last function on the set Σ equals 2 (it is reached
at the origin). Thus, we have obtained

Theorem 1. If both diffusion constants d1, d2 are sufficiently large, namely

min(d1, d2) >

√
2

λ
where λ is the first positive eigenvalue for −∆ with Neumann homogeneous
condition, then there is no nonconstant steady-state solution. For the case

Ω = (0, L) ⊂ R as in the previous section, we have λ = π2

L2 and we have no
nonconstant equilibrium if

L < 2−1/4πmin(d1, d2).

Compare this number with the KISS size from the previous section and
notice that, here, a priori we have nonconstant equilibria for the Neumann
boundary condition. There is a numerically studied example of Matano and
Mimura [16] where Ω is a set in the plane consisting two squares joined by
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a thin strip and b, c > 1 such that there is a nonconstant positive equilibrium.
Moreover, it is asymptotically stable. If domain Ω is convex all equilibria are
stable (see [11]), hence it is not surprising that in this example the domain is
such. On the other hand, one can understand ecological sense of the shape
of the domain: in the first square the first species wins, in the other the
second one; the thin strip makes migrations between squares more difficult
hence both species can coexist.

Most results from the theory of monotone dynamical systems one used
concern systems in ordered Banach spaces called SOP in the monograph by
H. Smith [18]. Competitive parabolic systems are SOP if we use order:

(u, v) ≺ (ǔ, v̌) ⇔ u(x) ≤ ǔ(x), v(x) ≥ v̌(x) for any x.

The semiflow generated by (9) preserves this order, i.e. if (ϕ,ψ) ≺ (ϕ̌, ψ̌),
then (u(·, t), v(·, t)) ≺ (ǔ(·, t), v̌(·, t)) for any t > 0. It enables us to get some
information on ω-limit sets of our system. This choice of the order is typical
for competition of two species and can be explain qualitatively by ecological
arguments: if the first species dominates the second one and one increases
the population of the first species and decreases of the second one then the
domination conserves.

4. Steady-state solutions, many species

For more than two species the situation is much more complicated. If
n = 3 then, roughly speaking the first species can dominate the second one,
the second one can dominate the third one and this last species can dominate
the first one. The simplest mathematical model of this case is given by May
and Leonard [17] for ODE:

(13)







ẋ = x(1− x− αy − βz)
ẏ = y(1− βx− y − αz)
ż = z(1 − αx− βy − z)

with α, β > 0, α + β = 2. The typical ω-limit set is a limit cycle but there
are three heteroclinic trajectories joining three equilibria (1, 0, 0), (0, 1, 0)
and (0, 0, 1). We have studied a slightly more general case in [10] however
the behavior of the system is very similar.

Consider the parabolic system for three species:

(14)

Ut = D∆U + f(U),

∂U
∂ν |∂Ω = 0,

U(·, 0) = ϕ,
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where U = (u, v, w), D = diag(d1, d2, d3),

(15) f(U) =







u(1− a1u− b1v − c1w)

v(1− a2u− b2v − c2w)

w(1− a3u− b3v − c3w)






,

all constants in the above formulas di, ai, bi, ci are positive, x ∈ Ω ⊂ R
m.

We study the system (14) and its spatially homogeneous ODE system

(16) U ′ = f(U)

in the open set
D := {(u, v, w) : u, v, w > 0}

which is obviously invariant and the same is true for its closure D. Fixed
points of the system (16) can be easily found – four of them always lie in
D :

P0 = (0, 0, 0), Pu = (a−1
1 , 0, 0), Pv = (0, b−1

2 , 0), Pw = (0, 0, c−1
3 ),

next four are

Puv=

(

b2 − b1
a1b2 − a2b1

,
a1 − a2

a1b2 − a2b1
, 0

)

, Puw=

(

c3 − c1
a1c3 − a3c1

, 0,
a1 − a3

a1c3 − a3c1

)

,

Pvw =

(

0,
c3 − c2

b2c3 − b3c2
,

b2 − b3
b2c3 − b3c2

)

and P1 = (α, β, γ) being the solution of the equation

M





u
v
w



 =





1
1
1



 where M =





a1 b1 c1
a2 b2 c2
a3 b3 c3



 .

We assume that W := detM 6= 0 what means that none of two of planes

Hi : aiu+ biv + ciw = 1, i = 1, 2, 3

are parallel.
It is easy to see that f ′(P0) = I and its unique eigenvalue 1 is positive, thus
P0 is a source for (16). Similarly

f ′(Pu) =







−1 −b1/a1 −c1/a1
0 1− a2/a1 0

0 0 1− a3/a1







and if max(a2, a3) < a1, then one eigenvalue −1 is negative and two remain-
ing ones are positive. The corresponding eigenspaces are: {(u, 0, 0) : u ∈ R}
and {(0, v, w) : v,w ∈ R}. The stable manifold of Pu is 1-dimensional:

{(u, 0, 0) : u > 0}
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and by the Stable and Unstable Manifold Theorem all trajectories of (16)
except starting in the stable manifold cannot tend to Pu as t→ +∞. Similar
arguments work for Pv and Pw under conditions:

max(b1, b3) < b2, max(c1, c2) < c3.

In [10], we proved even more:

Lemma 1. If

(17) min(a2, a3) < a1, min(b1, b3) < b2, min(c1, c2) < c3,

then Pu, Pv and Pw do not belong to the ω-limit set ω(P ) of any point P ∈ D.
Dividing the set D into three pieces:

D+ := {(u, v, w) ∈ D : min
i
(aiu+ biv + ciw) > 1},

A := {(u, v, w) ∈ D : min
i
(aiu+ biv + ciw) ≤ 1 ≤ max

i
(aiu+ biv + ciw)},

D− := {(u, v, w) ∈ D : max
i

(aiu+ biv + ciw) < 1}
(D+ (resp. D−) is the set of points sitting under (resp. over) all three planes
Hi, i = 1, 2, 3, A = D \ (D+ ∪ D−)) we got [10] following result for (16):

Lemma 2. The set A is positively invariant and all trajectories in D even-
tually come into A. Moreover, A contains any compact invariant set that
contains no fixed points.

Thus, ω(P ) ⊂ A for any P ∈ D. Notice that Pu, Pv, Pw ∈ A and similarly
Puv, Puw, Pvw if they belong to D.

The last fixed point P1 = (α, β, γ) can lie in D (and then in A) or out-
side this cone. The following theorem excludes the existence of a periodic
trajectory for (16) in D if P1 ∈ D.
Lemma 3 ([18], p. 44, Prop. 4.3). Let Γ be a nontrivial periodic trajectory
of a competitive system in D ⊂ R

3 and

Γ ⊂ [p, q] := {ξ : pi ≤ ξi ≤ qi, i = 1, 2, 3} ⊂ D.

Then the set K of all points x which are not related to any point y ∈ Γ
(relation x ≤ y means xi ≤ yi for any i) has two components, one of them
is bounded and contains a fixed point.

Hence, if we want to have a nontrivial periodic trajectory, then P1 must
belong to D and we have two options:

(i) W > 0 and three other determinants

Wu := det





1 b1 c1
1 b2 c2
1 b3 c3



 ,
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Wv := det





a1 1 c1
a2 1 c2
a3 1 c3



 ,

Ww := det





a1 b1 1
a2 b2 1
a3 b3 1





are positive or
(ii) W < 0 and the above three determinants are negative.
The main result of [10] is the following

Theorem 2. Assume (17). Let all four determinants W, Wu, Wv, Ww be
positive and p := a1α + b2β + c3γ − 1 < 0. Then, for any point P ∈ D that
does not belong to the half-line







u = αs,
v = βs, s > 0,
w = γs

the ω-limit set ω(P ) for (16) is a periodic trajectory. For P from this half-
line, ω(P ) = P1.

If we combine this theorem with the result [3] cited in the previous section
and a classical result of L. Markus [15] that ω-limit sets of (14) are the same
as corresponding (16), we obtain

Theorem 3. Suppose that inequalities (17) hold, four determinants W, Wu,
Wv, Ww are positive, p < 0 and all diffusion coefficients di are sufficiently
large, then for any continuous, nonnegative function ϕ with all coordinates
nontrivial, either

lim
t→∞

U(x, t) = P1

or there exists a periodic function Ũ : R → A ⊂ D such that

lim
t→∞

|U(x, t)− Ũ(t)| = 0

and in both cases limits are uniform with respect to x. The first case takes
place only if

∫

Ω ϕ belongs to the half-line starting from the origin.

The condition for the diffusion coefficients is given by:

λ1min{di : i = 1, 2, 3} > sup{||f ′(U)|| : U ∈ A}
where λ1 is the first positive eigenvalue of −∆ with Neumann’s boundary
condition, but numerical experiments show that the assertion of the above
theorem holds also for essentially larger these coefficients and even if only one
of them is great and two others are very small. However, for all coefficient
being small there exists spatially heterogeneous steady-state solutions which
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attracts other solutions. Obviously, these functions take values in positively
invariant subset A.

If the number p defined in Theorem 2 is positive, then all eigenvalues of
f ′(P1) have negative real parts – calculations in [10] show that the charac-
teristic polynomial equals

Q(λ) = (λ+ 1)(λ2 + pλ+ αβγW ).

It follows that

lim
t→∞

U(x, t) = P1

uniformly in x ∈ Ω for any starting point ϕ as in the last theorem. The case
p = 0 is difficult for investigations since the behavior of the system near P1

cannot be found by the linearization; P1 is not hyperbolic. In the special
case from the paper of May and Leonard [17] a1 = b2 = c3 = 1, b1 = c2 = a3,
c1 = a2 = b3 if p = 0 there are two first integrals of (16) and trajectories
can be found apparently. The whole triangle spanned by Pu, Pv and Pw is
fulfilled by limit cycles around P1. For sufficiently small diffusion coefficients
these limit cycles describe the asymptotic behavior of the system (14).

If P1 does not belong to D, then all solutions tends to one of the others
steady-state solutions at least for small diffusion coefficients, when there is no
nonconstant steady-state solutions due to the above mentioned arguments.
It means that at least one of the species extincts.

5. Some numerical simulations

The most interesting case considered in the previous section is presented
in the theorem: almost all solutions of (14) tend to periodic functions given
by the system of ODEs (16). We can investigate numerically equation (14)
with Ω = (0, 1) ⊂ R and f of the form from the previous section. Put matrix
M of competition coefficients

M =





2 1.1 3.1
3.1 2 0.9
0.95 2.9 2



 .

This choice ensure the assumptions of Theorem 3 hold. The first positive
eigenvalue of this degenerate Laplacian equals λ1 = π2 and one can compute
the maximal value of the norm of the derivative ||f ′(U)|| on the set A :

||f ′(U)|| ≤
√
3.

Thus the critical value of diffusion coefficients is d̃ :=
√
3

π2 . For min{di :

i = 1, 2, 3} > d̃, almost all trajectories tend to periodic, spatially constant
functions. Since the theorem of Conway, Hoff and Smöller gives only the
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sufficient condition, it is not surprising that even for smaller di’s the assertion
is true.

We have found numerically (by using Maple 10) solutions of (14) with the
above matrix M and

d1 = 10−3, d2 = 2 · 10−3, d3 = 0.5 · 10−3

ϕ(x) =
[

6x2(1− x)3, x4(1− x)2, 2x3(1− x)2
]

.

The type of this initial function is natural if we are seeking classical solutions:
the normal derivative of the initial function should vanish at both boundary
points x = 0, x = 1. Below, we present the plot of the graph of the second
coordinate of U for three values of x : 0.1, 0.5 and 0.9 as the function of
time t for the range [0, 100] :

0

0.1

0.2

0.3

0.4

20 40 60 80 100

t

The plots for three values of x are completely different, hence the solu-
tions of the parabolic system tend as t → ∞ to functions which are not
spatially constant. Nevertheless, they seem to be periodic as functions of
time. Compare this plot with the plot of the second coordinate v of the
solution to ODE (16) with initial point (0.1, 0.0095238, 0.0333333) which is
the spatial average of ϕ.
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6. Stability of steady-state solutions

The stability analysis in the linear approximation for constant solutions
of the parabolic system is standard (see, for example [20, 9]). Consider (14)
not necessarily with U taking values in R

3 but in R
n. If P is a zero of f,

then U ≡ P is a solution both (14) and (16) and it is asymptotically stable
for both systems again if all eigenvalues of f ′(P ) have negative real parts.
Below, we shall study the analogous problem for periodic solutions of (16).

Let t 7→ U(t) be such a solution. Denote by A(t) = f ′(U(t)), by λk,
k = 0, 1, 2, . . . , the sequence of all eigenvalues of −∆ with Neumann bound-
ary conditions (λ0 = 0 < λ1 ≤ λ2 ≤ . . .) and by x 7→ ek(x) correspond-
ing eigenfunctions. Since the spectrum is discrete and the operator is self-
adjoint, the eigenfunctions form a complete orthonormal system in L2(Ω).
One can solve the linearized problem

(18) Ut = D∆U +A(t)U,
∂U

∂ν
|∂Ω = 0, U(·, 0) = ϕ

by using the Fourier method. If we put

U(x, t) =

∞
∑

k=0

ek(x)gk(t)

in (18), we have Neumann’s condition satisfied and vector-valued function
gk should be a solution of the initial problem:

(19) g′k(t) = (−λkD +A(t)) gk(t), gk(0) = ck
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for any k, where ck is a coefficient of the Fourier expansion of ϕ with respect
to the orthonormal system {ek : k = 0, 1, . . .}, i.e.

ck =

∫

Ω
ϕek.

Since matrix D is diagonal, it commutes with A(t) and multipliers (Floquet
theory) of −λkD + A(·) are of the form exp(−λkd)̺, where d belongs to
the interval [min{di},max{di}] and ̺ is a multiplier for matrix A(·). Hence
gk decays exponentially as t tends to +∞, if |̺| < exp(λk min{di}) for
any multiplier ̺. It is well known that one of multipliers for A equals 1,
thus this inequality cannot hold for k = 0 as λ0 = 0. But, in spite of
this, if the remaining multipliers of A sit in the open unit disc and 1 is
simple, then solution U of (14) is orbitally asymptotically stable – see [20]
Theorem 8.2.3, p.251, i.e. there exists a neighborhood of the periodic orbit
Γ := {U(t) : t ∈ R} such that solutions U1 with initial function ϕ taking
values in this nhbd tend to U in the sense

lim
t→+∞

||U1(·, t)− U(t+ t0)|| = 0,

where the above norm means usual one in H1 and t0 is a number depending
on ϕ called asymptotic phase. For 1-dimensional domains Ω, one has the
canonical embedding of H1 and the above limit is uniform in x. For more
natural environments (Ω ⊂ R

2), we cannot use this argument to get the
uniform limit.

7. Concluding remarks

Recently, a lot of important papers on spatial heterogeneity models of
competiting species [4, 5, 7, 8, 13, 14], for instance. They consider mutual
interplay of diffusion and competition which gives many interesting phenom-
ena for such systems. However, most of results are obtained for two species
but spatial heterogeneity is included in the model – some coefficients depend
on variable x. It seems that some new effects can be obtained if we study
interaction of more than two species. The present author hope that some
possible directions of such investigations have been indicated above.
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