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Dear Collegues,

The international conference Foliations 2016 is in the series of conferences on fo-
liations organized in Poland (1990, 1995, 2000, 2005, 2012). This time we celebrate one
of the most recognizable person in the field Professor Paweł Walczak from Uniwersy-
tet Łódzki who coorganized all the previous events. The conference is hosted by the
Research and Conference Centre in Będlewo, Poland – a part of Mathematical Institute
which belongs to the Polish Academy of Sciences, and takes place in the period of July
11-17, 2016. Foliations 2016 is a satellite of the 7th European Congress of Mathematics
(July 18-22, 2016, Berlin, Germany). We wish you a pleasant stay in Będlewo.

Organizers
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PAWEŁWALCZAK’S 50 YEARS IN MATHEMATICS

List of publications

1. P. Walczak, A proof of some theorem on the C∞-functions of one variable which
are not analytic, Demonstratio Math. 4 (1972), 209–213.

2. P. Walczak, A theorem on diffeomorphisms in the category of differential spaces,
Bull. Acad. Polon. Sci. 21 (1973), 325–329.

3. P. Walczak, On restriction of the differential structures coinduced by a mapping,
Bull. Acad. Polon. Sci. 21 (1973), 417–420.

4. P. Walczak, On a class of differential spaces satisfying the theorem on diffeomor-
phisms, I, II, Bull. Acad. Polon. Sci. 22 (1974), 805–820.

5. P. Walczak, On F-connections, Colloq. Math. 32 (1975), 261–265.

6. P. Walczak, Polynomial structures on principal fibre bundles, Coll. Math. 35 (1976),
73–81.

9



i
i

“booklet”  2016/6/30  9:28  page 10  #10 i
i

i
i

i
i

7. P. Walczak, Riemannian metrics of non-negative curvature on fibre bundles, Bull.
Acad. Polon. Sci. 24 (1976), 987–991.

8. P. Walczak, Invariant metrics on the tangent bundle of a homogeneous space, Coll.
Math. 39 (1977), 297–300.

9. P. Walczak, The Hamiltonian bundle of a symplectic Lie group, Demonstratio
Math. 10 (1977), 671–677.

10. P. Walczak, On totally geodesic submanifolds of tangent bundles with Sasaki me-
tric, Bull. Acad. Polon. Sci. 28 (1980), 161165.

11. P. Walczak & W. Waliszewski, Geometria różniczkowa w zadaniach (Differential
geometry in problems; in Polish), PWN, Warsaw 1981.

12. P. Walczak, Mean curvature functions for foliations of codimension one, Proc.
Sem. on Foliations, Krakow 1983.

13. P. Walczak, On continuous mappings between non-negatively and non-positively
curved manifolds, Differential geometry, Banach Center Publ., Warsaw, (1983), pp.
273276.

14. P. Walczak, A note on the volume of balls on Riemannian manifolds of non-
negative curvature, Ann. Polon. Math. 44 (1984), 43–46.

15. P. Walczak, Mean curvature functions for codimension-one foliations with all the
leaves compact, Czech. Math. J. 34 (1984), 146–155.

16. P. Walczak, On balls and totally geodesic submanifolds, Ann. Polon. Math. 44
(1984), 7986.

17. P. Walczak, On minimal Riemannian foliations, preprint IMPAN, Warsaw 1984.

18. F. G. B. Brito & P. Walczak, Totally geodesic foliations with integrable normal
bundles, Bol. Soc. Brasil Mat. 17 (1986), 41–46.

19. E. Ghys, R. Langevin & P. Walczak, Entropie mesurée et partitions de l’unité, C. R.
Acad. Sci. Paris 303 (1986), 251–254.

20. P. Walczak, An example of a codimension-two foliation of non-vanishing mean
curvature, Bull. Soc. Sci. Lettres de Lodz 36 (1986), no. (34).

21. P. Walczak, Local stability of holomorphic and transversely holomorphic folia-
tions, Bull. Soc. Sci. Lettres de Lodz 36 (1986), no. (28).

22. F. G. B. Brito & P. Walczak, Total curvature of orthogonal vector fields on three-
manifolds, Bull. Acad. Polon. Sci. 35 (1987), 553–556.

23. P. Walczak, Mean curvature functions for foliated bundles, Coll. Math. Soc. Janos
Bolyai 46 (1987), 1309–1317.

10
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24. E. Ghys, R. Langevin & P. Walczak, Entropie géométrique des feuilletages, Acta
Math. 160 (1988), 105–142.

25. P. Walczak, Dynamics of the geodesic flow of a foliation, Ergodic Th. and Dyn. Sys.
8 (1988), 637–650.

26. P. Walczak, An estimate for the second fundamental tensor of a foliation, Proc. VI
Int. Coll. Diff. Geom., Santiago de Compostela, Cursos y Congressos, vol. 61, (1989),
pp. 247–252.

27. P. Walczak, On the geodesic flow of a foliation of a compact manifold of negative
constant curvature, Suppl. Rend. Circ. Mat. Palermo 21 (1989), 349–354.

28. P. Walczak, An integral formula for a Riemannian manifold with two orthogonal
complementary distributions, Coll. Math. 58 (1990), 243–252.

29. R. Langevin & P. Walczak, Entropie d’une dynamique, C. R. Acad. Sci. Paris 312
(1991), 141–144.

30. P. Walczak, On quasi-Riemannian foliations, Ann. Global Anal. Geom. 9 (1991),
71–82.

31. P. Walczak, A finiteness theorem for Riemannian submersions, Ann. Polon. Math.
57 (1992), 283–290.

32. P. Walczak, Foliations invariant under the mean curvature flow, Illinois J. Math.
37 (1993), no. 4, 609–623.

33. P. Walczak, Jacobi operator for leaf geodesics, Coll Math. 45 (1993), 213–226.

34. R. Langevin & P. Walczak, Entropy, transverse entropy and partitions of unity,
Ergodic Th. & Dynam. Sys. 14 (1994), 551–563.

35. R. Langevin & P. Walczak, Some invariants measuring dynamics of codimension-
one foliations, Geometric Study of Foliations, World Sci., Singapore 1994, pp. 345–
358.

36. P. Walczak, Existence of smooth invariant measures for geodesic flows of foliations
of Riemannian manifolds, Proc. Amer. Math. Soc. 120 (1994), 903–906.

37. T. Inaba & P. Walczak, Transverse Hausdorff dimension of codimension-one fo-
liations, Fund. Math. 149 (1996), 239–244.

38. J. Kalina, B. Orsted, A. Pierzchalski, P. Walczak & G. Zhang, Elliptic gra- dients
and highest weights, Bull. Pol. Acad. Sci. 44 (1996), 511–519.

39. P. Walczak, Hausdorff dimension of Markov invariant sets, J. Math. Soc. Jap. 48
(1996), 125–133.

40. P. Walczak, Loosing Hausdorff dimension while generating pseudogroups, Fund.
Math. 149 (1996), 211–237.

11
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41. J. Kalina, A. Pierzchalski & P. Walczak, Only one of generalized gradients can be
elliptic, Ann. Polon. Math. 67 (1997), 111–120.

42. A. Biś & P. Walczak, Pseudo-orbits, pseudoleaves and geometric entropy of folia-
tions, Ergodic Th. & Dynam. Sys. 18 (1998), 1335–1348.

43. P. Walczak, A virtual leaf, Int. J. Bifurc. and Chaos 9 (1999), 1845–1853.

44. F. Brito & P. Walczak, On the energy of unit vector fields with isolated singularities,
Ann. Polon. Math. 73 (2000), 269–274.

45. A. Biś & P. Walczak, Entropies of hyperbolic groups and some foliated spaces, Fo-
liations - Geometry and Dynamics, World Sci., Singapore 2002, pp. 197–211.

46. R. Langevin & P. Walczak, Transverse Lusternik-Schnirelmann category and non-
proper leaves, Foliations – Geometry and Dynamics, World Sci., Singapore 2002, pp.
351–354.

47. P. Walczak, L. Conlon, R. Langevin & T. Tsuboi (eds.), Foliations – Geometry and
Dynamics, World Sci., Singapore 2002.

48. A. Biś, H. Nakayama & P. Walczak, Locally connected exceptional minimal sets of
surface homeomorphisms, Ann. Inst. Fourier 54 (2004), 711–732.

49. P. Schweitzer & P. Walczak, Prescribing mean curvature vectors for foliations,
Illinois J. Math. 48 (2004), 21–35.

50. P. Walczak, Dynamics of foliations, groups and pseudogroups, Birkhäuser, 2004.

51. P. Walczak, R. Langevin, S. Hurder & T. Tsuboi (eds.), Foliations 2005, World Sci.,
Singapore 2006.

52. M. Czarnecki & P. Walczak, Extrinsic geometry of foliations on negatively curved
manifolds, in ”Foliations 2005”, World. Sci., Singapore 2006, 149–167.

53. P. Walczak, Conformally defined geometry on foliated manifolds, in ”Foliations
2005”, World. Sci., Singapore 2006, 431–439.

54. A. Biś, H. Nakayama & P. Walczak, Modelling minimal foliated spaces with positive
entropy, Hokkaido Math. J. 36 (2007), 283–310.

55. A. Bartoszek & P. Walczak, Foliations by surfaces of a peculiar class, Ann. Polon.
Math. 94 (2008), 89–95.

56. R. Langevin& P. Walczak, Conformal geometry of foliations, Geom. Dedicata 132
(2008), 135–178.

57. R. Langevin & P. Walczak, Holomorphic maps and pencils of spheres, Amer. Math.
Monthly 116 (2008), 690–700.

12
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58. V. Rovenski & P. Walczak, Integral formulae for foliations on Riemannian ma-
nifolds, in Diff. Geom and Appl, Proc. Conf., Olomouc 2007, World Sci., Singapore
2008, 203–314.

59. N. C. Saldanha, L. Conlon, R. Langevin, T. Tsuboi & P. Walczak, (eds.), Foliations,
Geometry and Topology, Amer. Math. Soc. 2009.

60. P. Walczak, Orthogonal total foliations: Godbillon-Vey forms via local conformal
invariants, in Foliations, Geometry and Topology, Amer. Math. Soc. 2009, 155–160.

61. V. Rovenski & P. Walczak, Variational formulae for the total mean curvatures of a
codimension-one distribution, in Proceedings of the 8-th International Colloquium,
Santiago-de Compostela, Spain, July 7-11, 2008, World Scientific 2009, 83–93.

62. K. Andrzejewski & P. Walczak, The Newton transformation and new integral for-
mulae for foliated manifolds, Ann. Glob. Anal. Geom. 37 (2010), 103–111.

63. K. Andrzejewski & P. Walczak, Extrinsic curvatures of distributions of arbitrary
dimension, J. Geom. Phys. 60 (2010), 708–713.

64. K. Andrzejewski & P. Walczak, Conformal fields and the stability of leaves with
constant higher order mean curvature, Diff. Geom. Appl. 29 (2011), 723–729.

65. A. Biś & P. Walczak, Entropy of distal groups, pseudogroups, foliations and lami-
nations, Ann. Polon. Math. 100 (2011), 45–54.

66. A. Bartoszek, R. Langevin & P. Walczak, Special canal surfaces of S3, Bull. Braz.
Math. Soc. 42 (2011), 301–319.

67. V. Rovenski & P. Walczak, Topics in Extrinsic Geometry of Codimension-One Fo-
liations, Springer Briefs in Math., Springer 2011.

68. V. Rovenski & P. Walczak, Integral formulae on foliated symmetric spaces, Math.
Ann. 352 (2012), 223–237.

69. R.Langevin & P. Walczak, Canal foliations on S3, J. Math. Soc. Japan, 64 (2012),
659–682.

70. P. Walczak, Expansion growth, entropy and invariant measures of distal groups
and pseudogroups of homeo- and diffeomorphisms, Discrete and Continuous Dy-
namical Systems, 33 (2013), 4731–4742.

71. . Walczak, J. Alvarez Lopez, R. Langevin, S. Hurder & T. Tsuboi (eds.), Foliations
2012, World Sci., Singapore 2013.

72. P. Walczak, Tautness and the Godbillon-Vey class of foliations, in ”Foliations 2012”,
World. Sci., Singapore 2013, pp. 205–214

73. A. Bartoszek, P. Walczak& Sz. Walczak, Dupin cyclides osculating surfaces, Bull.
Braz. Math. Soc., 45 (2014), 179–195.

13
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74. V. Rovenski & P. Walczak (eds.), Geometry and its Applications, Springer, 2014.

75. K. Andrzejewski, V. Rovenski & P. Walczak, Integral formulas in foliation theory,
in ”Geometry and its Applications”, Springer Verlag 2014, pp. 73–82.

76. P. Walczak, Osculation in general: an approach, in ”Geometry and its Applica-
tions”, Springer Verlag 2014, pp. 157–166.

77. R. Garcia, R. Lanevin & P. Walczak, Foliations making a constant angle with prin-
cipal directions on ellipsoids, Ann. Polonici Mat. 113 (2015), 165–173.

78. M. Lużyńczyk & P. Walczak, New integral formulae for two complementary or-
thogonal distributions on Riemannian manifolds, Ann. Global Anal. Geom. (2015),
DOI 10.1007/s10455-015-9465-1.

Ph.D. students:

1. Ryszard Hołubowicz (Uniwersytet Łódzki) 1987
2. Jacek Rogowski (Uniwersytet Łódzki) 1990
3. Mariusz Frydrych (Polska Akademia Nauk) 1991
4. Andrzej Biś (Uniwersytet Łódzki )1995
5. Anna Waliszewska (Uniwersytet Łódzki) 1997
6. Konrad Blachowski (Uniwersytet Łódzki) 2000
7. Maciej Czarnecki (Uniwersytet Łódzki) 2000
8. Marek Badura (Uniwersytet Łódzki) 2002
9. Krzysztof Andrzejewski (Polska Akademia Nauk) 2010

10. Magadalena Lużyńczyk (Uniwersytet Łódzki) 2015
11. Tomasz Zawadzki (Uniwersytet Łódzki) 2015

14
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Distinguished Colleague!
Highly Honorable Professor!
Dearest Paweł!

On the occasion of the 50th anniversary of your collaboration with the Queen of all
Sciences – Mathematics, we wish to thank you with all ours hearts for making the co-
urageous, very important and valuable decision to work in this field, half a century ago.
Owing to this decision, the mathematical community in Łódź gained a mathematician
who has been indispensable for Polish Science, not only due to his research but also
due to his enormous didactic and organizational achievements.

We cordially congratulate you on all of your professional successes. We are proud
of the fact that we have the opportunity to work with you as our Mentor, Director and
a Friend, who knows more than others know, who sees more than others see, who
understands more than others understand, and gives more than others give.

Your great knowledge, and your ability to share that knowledge, are appreciated
by all your colleagues from the Faculty of Mathematics and Computer Science. These
talents are also appreciated by your students, who claim that at the beginning of your
lectures they have a Euclidean vision, then an elliptic vision, and then a projective one,
and by the end they can imagine everything – even great grades on final exams. It’s a
pity that mainly these are only imaginations ...

We wish you many healthy years, full of serenity. We wish that your dreams come
true. We hope for the completion of all your life plans and professional projects, and
energy for further activities.

Personally, I hope that this celebration – the Foliations 2016 conference – will remain
in your memory as a tribute to you; you have the gratitude of the academic community,
in particular the academic community of Łódź. We sincerely and appreciatively reco-
gnize your significant contribution to the development of science, and the creation of
fundamentals for research for many mathematicians.

Ryszard Pawlak
Dean of the Faculty of Mathematics and Computer Science

University of Łódź

15
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PROGRAM

Monday, July 11

13:00 – 14:00 Lunch (optional)
14:00 – 19:00 Arrival

from 19:00 Dinner

Tuesday, July 12

08:00 – 09:00 Breakfast
09:30 – 10:00 Openning
10:00 – 11:00 Remi Langevin, Entropy, a ”functional” viewpoint
11:00 – 11:30 Coffee break
11:30 – 12:30 Kathryn Mann, Group orders, dynamics and rigidity
13:00 – 14:00 Lunch
15:00 – 15:30 Vladimir Rovenski, Integral formulae for codimension-one fo-

liated Finsler manifolds
15:30 – 16:00 Kamil Niedziałomski, Frame bundle approach to generalized

minimal submanifolds
16:00 – 16:30 Coffee break
16:30 – 17:30 Sebastian Hurtado Salazar, Burnside problem on diffeomor-

phism groups
17:30 – 18:00 Vladimir Slesar , Vaisman manifolds, canonical foliations and

the associated spectral sequence
18:00 – 18:30 Tomasz Zawadzki , Variations of total mixed scalar curvature
19:00 – 20:00 Dinner

Wednesday, July 13

08:00 – 09:00 Breakfast
09:30 – 10:30 Daniel Peralta-Salas , Helicity is the only integral invariant

of volume-preserving diffeomorphisms

17
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10:30 – 11:00 Coffee break
11:00 – 11:30 Aleksy Tralle, Smale-Barden manifolds with K-contact and

Sasakian structures
11:30 – 12:00 Takashi Inaba, Producing compact invariant sets in Reeb flows
12:00 – 12:30 Icaro Gonçalves, The Euler class of an umbilic foliation
13:00 – 14:00 Lunch
15:00 – 15:30 Steven Hurder, On the dynamics of derived from Kuperberg

flows
15:30 – 16:00 Yoshifumi Matsuda, Rotation number and lifts of a Fuchsian

action on the circle
16:00 – 16:30 Coffee break
16:30 – 17:30 Juliette Bavard , About a big mapping class group
17:30 – 18:00 Ryszard J. Pawlak, On A-focal entropy points
18:00 – 18:30 Coffee break
18:30 – 19:00 Andrzej Biś, Foliations, fractals and dynamics

from 20:00 Banquet

Thursday, July 14

08:00 – 09:00 Breakfast
09:30 – 10:00 Sergio Fenley, Quasi–geodesic pseudo–Anosov flows in hyper-

bolic 3-manifolds
10:00 – 11:00 Steven Frankel , Quasigeodesic and pseudo-Anosov flows
11:00 – 11:30 Coffee break
11:30 – 12:30 Emmanuel Militon, Distortion and Tits alternative for big map-

ping class groups
13:00 – 14:00 Lunch
14:30 – 18:30 Excursion
19:00 – 20:00 Dinner

Friday, July 15

08:00 – 09:00 Breakfast
09:30 – 10:30 Joaqúin Pérez Muñoz, Minimal laminations in R3 and the

Hoffman-Meeks conjecture
10:30 – 11:00 Coffee break

18
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11:00 – 11:30 Gilbert Hector, Generic properties of foliations and lamina-
tions

11:30 – 12:00 Jesús A. Álvarez López, Topological Molino’s theory
12:00 – 12:30 Ramón Barral Lijó, Leaves of laminations and colorings of

graphs
13:00 – 14:00 Lunch
15:00 – 15:30 Shigenori Matsumoto, Dynamics of the geodesic and horocyc-

le flows for laminations by hyperbolic surfaces
15:30 – 16:00 Antoni Pierzchalski, A short story on the ellipticity of the Stein-

Weiss gradients
16:00 – 16:30 Coffee break
16:30 – 17:30 Joanthan Bowden, ApproximatingC0-foliations by contact struc-

tures
17:30 – 18:00 Wojciech Kozłowski, Natural boundary value problems for

weighted form Laplacians
18:00 – 18:30 Anna Kaźmierczak, Some estimates for the product of modules

of foliations
19:00 – 20:00 Dinner

Saturday, July 16

08:00 – 09:00 Breakfast
09:30 – 10:30 Olga Lukina, Invariants for equicontinuous group actions on

Cantor sets
10:30 – 11:00 Coffee break
11:00 – 11:30 Taro Asuke, A Chern–Weil construction for derivatives of cha-

racteristic classes
11:30 – 12:00 Hiraku Nozawa, Independent variation of secondary charac-

teristic classes of Riemannian foliations
12:00 – 12:30 Yuri A. Kordyukov, A trace formula for codimension one fo-

liations with simple foliated flows
13:00 – 14:00 Lunch
15:00 – 15:30 Robert Wolak, Geometric structures on foliated manifolds
15:30 – 16:00 Yoshihiko Mitsumatsu, Reeb components with complex leaves

and their symmetries
16:00 – 16:30 Coffee break

19
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16:30 – 17:30 Hirokazu Maruhashi, Parameter rigidity of the action of AN
on Γ\G for higher rank semisimple Lie groups

17:30 – 18:00 Paul A. Schweitzer, S.J., Exotic open 4-manifolds which are
non-leaves

18:00 – 18:30 Closing
19:00 – 20:00 Dinner

Sunday, July 17

08:00 – 09:00 Breakfast
09:00 – 13:00 Departure
13:00 – 14:00 Lunch (optional)

20
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ABSTRACTS

Topological Molino’s theory

Jesus A. Alvarez Lopez

Universidade de Santiago de Compostela

e-mail: jesus.alvarez@usc.es

Molino’s description of Riemannian foliations on compact manifolds is generalized
to the setting of compact equicontinuous foliated spaces, in the case where the leaves
are dense. In particular, a structural local group is associated to such a foliated space. As
an application, we obtain a partial generalization of results by Carrière and Breuillard-
Gelander, relating the structural local group to the growth of the leaves.

This is joint work with Manuel F. Moreira Galicia.

21



i
i

“booklet”  2016/6/30  9:28  page 22  #22 i
i

i
i

i
i

A Chern–Weil construction for derivatives of characteristic classes

Taro Asuke

University of Tokyo

e-mail: asuke@ms.u-tokyo.ac.jp

Secondary characteristic classes for foliations are usually constructed by using Bott
connections via the Chern–Weil (and the Chern–Simons) construction. Given an in-
finitesimal deformation of a foliation, we can define the derivatives of characteristic
classes with respect to it [6], [7]. They are defined by means of differential forms, howe-
ver, the construction involves combinatorial arguments and seemingly different from
that of their primitives, namely, usual characteristic classes [7], [2]. In this talk, I will
introduce a certain vector bundle which is an analog of 2-tangent bundles TTM for
manifolds. Once an infinitesimal deformation is given, one can define a connection on
the bundle with which a characteristic homomorphism can be constructed in the usual
way. The homomorphism gives not only derivatives but some exotic classes such as
the Fuks–Lodder–Kotschick class ‘ḣ1h1cq1’ [5], [9], [8]. If we deal with the Godbillon–Vey
class or the Bott class, the derivatives are known to be represented by projective Schwa-
rzians [10], [1]. This is also explained in a similar framework as above [3]. I will discuss
it if the time allows.

1. T. Asuke, Infinitesimal derivative of the Bott class and the Schwarzian derivatives, Tohoku
Math. J. (2) 61 (2009), 393–416.

2. T. Asuke, Godbillon-Vey class of transversely holomorphic foliations, MSJ Memoirs, 24, Ma-
thematical Society of Japan, Tokyo, 2010.

3. T. Asuke, Transverse projective structures of foliations and infinitesimal derivatives of the
Godbillon-Vey class, Internat. J. Math. 26 (2015), 1540001, 29pp.

4. T. Asuke, Derivatives of secondary classes and 2-normal bundles of foliations, J. Math. Sci.
Univ. Tokyo 22 (2015), 893–937.

5. D. B. Fuks, Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathema-
tics, Consultants Bureau, New York, 1986. Translated from the Russian by A. B. Sosinskĭı.

6. J. Heitsch, A cohomology for foliated manifolds, Comment. Math. Helv. 15 (1975), 197–218.

7. J. Heitsch, Derivatives of secondary characteristic classes, J. Differential Geometry 13 (1978),
311–339.

8. D. Kotschick, Godbillon–Vey invariants for families of foliations, Symplectic and contact to-
pology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001), Fields Inst. Commun.,
vol. 35, Amer. Math. Soc., Providence, RI, 2003, 131–144.

9. J. M. Lodder, Rigidity of secondary characteristic classes, Differential Geom. Appl. 12 (2000),
207–218.

10. T. Maszczyk, Foliations with rigid Godbillon-Vey class, Math. Z. 230 (1999), 329–344.
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Leaves of laminations and colorings of graphs

Ramón Barral Lijó

Universidade de Santiago de Compostela

e-mail: ramon.barral@usc.es

Consider triples (M,f, x), where M is an n-dimensional manifold, x ∈ M and
f ∈ C∞(M,H), where H a separable Hilbert space. Two triples (M,f, x) and (N, g, y)

are declared to be equivalent if there is an pointed isometry φ : (M,x) → (N, y) such
that f = φ∗g. The set of equivalent classes of these triples can be endowed with a
Polish topology such that certain subspaces are canonically foliated. Using these foliated
structure, it is shown that any Riemannian manifold M of bounded geometry can be
isometrically realized as a leaf of a compact Riemannian foliated space X with trivial
holonomy groups. Moreover X can be chosen to be minimal if M is repetitive. The
reciprocal statements are elementary. To get the trivial holonomy groups of X and its
minimality, an appropriate C∞ function f : M → H must be chosen. The properties of
bounded geometry allow to discretize this problem, reducing it to the following result
about graph colorings. For any graph with an upper bound of its vertex degrees, it is
proved that there is a limit-aperiodic vertex coloring by finitely many colors. Moreover
the coloring can be chosen to be repetitive if the graph is repetitive.

About a big mapping class group

Juliette Bavard

Université Paris 6

e-mail: juliette.bavard@imj-prg.fr

The mapping class group of the complement of a Cantor set in the plane arises
naturally in dynamics. More precisely, the study of this group is motivated by potential
obstructions that it could give on group actions on the plane. To get informations about
this ”big mapping class group”, we can look at its action on a Gromov-hyperbolic space:
the ray graph. In this talk, I will give general motivations and explain why this ray graph
has infinite diameter and is Gromov-hyperbolic.
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Foliations, fractals and dynamics

Andrzej Biś

Universytet Łódzki

e-mail: andbis@math.uni.lodz.pl

One of the most fundamental invariants of the dynamics of a continuous map f :

X → X is its topological entropy which measures the complexity of f. When the
entropy is positive, it reflects some chaotic behavior of the map f. There exists a cor-
responding notion of the topological entropy for a group or pseudogroup action. For
any foliated space (M,F ), the action of the holonomy pseudogroup H on the complete
transversal T contains complete information about the dynamics of (M,F ).

Ghys, Langevin and Walczak in the celebrated paper [4] proved that a foliation can
be considered as a generalized dynamical system. A codimension one foliation with
positive geometric entropy admits a resilient leaf with very complicated geometry and
its exceptional minimal set is a Cantor set.

The theory of foliations of codimension greater than one starts with the paper by
Thurston [5], there are many particular foliations in higher codimension studied by
Molino, Epstein, Blummental and others. However for foliations of codimension greater
than one there are very few results on its dynamics (see [1], [2], [3]) and much more
open problems. From the dynamical point of view there are many differences between
codimension one and higher codimension foliations.

Most fractals can be realized as minimal sets of codimension greater than one fo-
liated spaces. The geometry of leaves, fractals being transversals and dynamics are in-
terrelated. In the talk I will present old and new results related with the dynamics of
codimension greater than one foliated spaces.

1. A. Biś, H. Nakayama & P.Walczak, Modelling minimal foliated spaces with positive entropy,
Hokkaido Math. J. 36 (2007), 283-310.

2. A. Biś, S. Hurder & J. Shive, Generalized Hirsch foliations, in Foliations 2005 ed. by P. Walczak
et al., World Scientific 2006, 71-108.

3. A. Biś, Dynamics of Foliated Spaces inCodimension Greater than One, Fields Institute Com-
munications, Volume 51, 2007, 249-268.

4. E. Ghys, R. Langevin & P. Walczak, Entropie géométrique des feuilletages, Acta Math. 160
(1988), 105-311.

5. W. Thurston, The theory of foliations of codimension greater than one, Comment. Math. Helv.
49 (1974), 214-231.
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Approximating C0-foliations by contact structures

Jonathan Bowden
LMU

e-mail: Jonathan.Bowden@mathematik.uni-muenchen.de

There is fundamental relationship between foliation theory and contact topology
that was discovered by Eliashberg and Thurston in the late 90’s: they showed that any
cooriented foliation F (of class C2) on an orientable, closed 3-manifold can be appro-
ximated by contact structures. More precisely, the tangent distribution TF can be ap-
proximated by contact structures in the C0-sense. Amongst other things this played
a central role in Mrówka and Kronheimer’s proof of the Property P conjecture, which
shows that surgery on a knotK yields a homotopy sphere if and only ifK is the unknot,
the surgery coefficient is P(M)1 and the trace of the surgery is S3.

The power of their theory comes from the following corollary to their approximation
theorem (which does not require any regularity of the foliation):
Corollary 1. LetF be a taut coorientable foliation on a closed orientable 3-manifiold.
Then any sufficiently close contact structure is (universally) tight.

The regularity assumption in Eliashberg-Thurston’s result is a priori quite strong
and many constructions (surgery, blow-up, gluing...) yield foliations that are only of
class C0, in the sense that the leaves are smooth, but the tangent distribution is only
continuous. For example on rational homology spheres that are not graph manifolds it
is not known in general that any taut foliations of class C2-exist, in the case that there
are taut C0-foliations. Moreover, one cannot approximate C0-foliations by ones of class
C2 in general, with obstructions coming from Kopell’s Lemma for example.

Eliashberg and Thurston already noted in their book on Confoliations that one can
approximate foliations that are smooth away from a finite collection of compact leaves
and they also write

“However it is feasible that the result holds without any assumptions about
the smoothness of the foliation.”

In this talk we will discuss the following generalisation of Eliashberg-Thurston result to
C0-foliations, which confirms Eliashberg and Thurston’s comment above and was also
independently proven by Kazez-Roberts:
Theorem 2 (Bowden, Kazez-Roberts). Let F be a C0-foliation on a closed 3-manifold
that is neither the foliation by spheres on S2 × S1 nor a non-minimal foliation by
planes on T 3. Then TF can be C0-approximated by positive and negative contact
structures.
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Quasi–geodesic pseudo–Anosov flows in hyperbolic 3-manifolds

Sergio Fenley

Florida State University

e-mail: fenley@math.princeton.edu

We obtain a simple topological and dynamical systems condition which is neces-
sary and sufficient for an arbitrary pseudo-Anosov flow in a closed, hyperbolic three
manifold to be quasigeodesic. Quasigeodesic means that orbits are efficient in measu-
ring length up to a bounded multiplicative distortion when lifted to the universal cover.
We prove that such flows are quasigeodesic if and only if there is an upper bound, de-
pending only on the flow, to the number of orbits which are freely homotopic to an
arbitrary closed orbit of the flow.

Quasigeodesic and pseudo-Anosov flows

Steven Frankel

Yale University

e-mail: steven.frankel@yale.edu

We will discuss two kinds of flows on 3–manifolds: quasigeodesic and pseudo–
Anosov. Quasigeodesic flows are defined by a tangent condition, that each flowline is
coarsely comparable to a geodesic. In contrast, pseudo–Anosov flows are defined by a
transverse condition, where the flow contracts and expands the manifold in different
directions.

When the ambient manifold is hyperbolic, there is a surprising relationship between
these apparently disparate classes of flows. We will show that a quasigeodesic flow
on a closed hyperbolic 3-manifold has a ”coarsely contracting–expanding” transverse
structure, and use this to show that every such flow has closed orbits. We will also
illustrate an approach to Calegari’s conjecture, that every quasigeodesic flow can be
deformed into a pseudo-Anosov flow.
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The Euler class of an umbilic foliation

Icaro Gonçalves

IME-USP

e-mail: icarog@ime.usp.br

The main idea of this manuscript is to compute the Euler class of a foliation F ,
assuming it admits a compact and umbilic leaf. Besides the umbilicity of the leaf, the
geometrical assumptions considered are the sectional curvatures of the ambient ma-
nifold restricted to the leaves of F , and they are the key to write explicitly this class.
Translating geometrical hypothesis into topological ones implies obstructions to the exi-
stence of these foliations by looking at the cohomology of the ambient manifold as well
as by asking for positiveness of sectional curvatures of M along F .

Theorem A. Let D2k be a distribution on a Riemannian manifold M2k+p with
pure curvature form. Let L be a compact umbilic submanifold of M , with dimension
2k, and suppose the sectional curvatures ofM are nonnegative alongL. IfD is tangent
to L, then ε(D) 6= 0.

In order to remove the ”pure curvature form” hypothesis, we consider Milnor’s proof
of Hopf conjecture on dimension four,

Theorem [Milnor]. Let M be a compact orientable Riemannian manifold of di-
mension 4. If its sectional curvatures always have the same sign, χ(M)  O. If the
sectional curvature is always positive or always negative, χ(M) > 0.

Theorem B. Let D4 be a distribution on a Riemannian manifold M4+p. Let L be
a compact umbilic submanifold of M , with dimension 4, and suppose the sectional
curvatures of M are positive along L. If D4 is tangent to L, then ε(D) 6= 0.

On the other hand Alain Connes introduced the Euler characteristic χ(F , ν) for a fo-
liation endowed with a transverse measure. The particular case where F is determined
by a closed and global form ν of its normal distribution, which is called SL-foliation,
χ(F , ν) is shown to be nonnegative, provided the sectional curvatures of the leaves of
F always have the same sign. It reads

Theorem C. Let F be a SL-foliation of dimension 4 on a closed Riemannian
manifold M4+p. If the sectional curvatures of the leaves always have the same sign,
then χ(F , ν) =

∫
M
ε(F) ∧ ν  0.

Applications of characteristic classes to foliations date back to theorems of J. Milnor
and J. Wood, dealing with the Euler class as an obstruction to the existence of folia-
tions transverse to the fibers of overly twisted circle bundles over surfaces. Regarding
obstructions to integrability, a theorem of R. Bott asserts that given a codimention p
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distribution on the tangent bundle, a necessary condition for its integrability is the vani-
shing of all Pontryagin classes (associated to the normal bundle) of degrees higher than
2p. In addition, J. Pasternack lowered the condition to degrees above p, assuming that
the distribution is tangent to a Riemannian foliation.

Foliations are integrable subbundles of the tangent bundle, and although in the lite-
rature characteristic classes are constructed on the normal bundle, there are interesting
consequences when they are computed on the tangent distributions themselves. In this
context, geometrical and topological hypothesis on the foliations and on the ambient
manifold are assumed in order to explicitly determine properties of the classes.

For example, if the foliation is totally geodesic and of odd dimension n, a theorem
of A. Naveira asserts the (n + p)-th Pontryagin class of F vanishes. If the leaves are
surfaces, and the normal distribution is a minimal foliation, then from F. Brito, the Euler
class of F is different from zero when Ric(M) > 0.

Umbilic foliations were studied from the perspective of conformal geometry by R.
Langevin and P. Walczak. Their approach includes properties of local and global inva-
riants, the question whether a Riemannian manifold admits an umbilic or a foliation
with weaker conditions, such as Dupin foliations, as well as asking how far from umbi-
lic a foliation is by defining a conformal invariant quantity. In dimension 3, they were
classified in the light of transversely holomorphic fields by M. Brunella and E. Ghys.

Euclidean spheres do not admit totally geodesic nor umbilic foliations of codimen-
sion one. However, for codimention greater than one, those are far from being geometri-
cally classified. The geometrical abundance is made explicit already in the codimension
2 case of S3,

Theorem [Gluck-Warner]. A submanifold of G̃2(R) ∼= S2 × S2 corresponds to
a fibration of S3 by oriented great circles if and only if it is the graph of a certain
distance decreasing map f : S2 → S2.

Umbilic foliations of S3 and other odd spheres S2k+1 are obtained by taking a smo-
oth positive function f constant on the leaves of a totally geodesic foliation and making
a conformal change of the induced metric, 〈·, ·〉 7→ f〈·, ·〉, or by considering small
deformations of all planes which give great circle fibrations, in order to obtain affine
nonlinear planes intersecting the sphere.

This work is part of I. Gonçalves’ thesis. Supported by a scholarship from CNPq,
number 141113/2013-8. This is a joint work with Fabiano G.B. Brito.

1. I. Gonçalves & F. Brito, The Euler class of an umbilic foliation, C. R. Acad. Sci. Paris, Ser. I
354 (6) (2016) 614–618.
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Generic properties of foliations and laminations

Gilbert Hector

Université Lyon 1

e-mail: gilberthector@orange.fr

TBA

On the dynamics of derived from Kuperberg flows

Steven Hurder

University of Illinois at Chicago

e-mail: hurder@uic.edu

We consider the dynamical properties of C∞-variations of the flow on an aperiodic
Kuperberg plug K. Our main result is that there exists a smooth 1–parameter family of
plugs Kε for ε ∈ (−a, a) and a < 1, such that:

1. The plug K0 = K is a generic Kuperberg plug;

2. For ε < 0, the flow in the plug Kε has two periodic orbits that bound an invariant
cylinder, all other orbits of the flow are wandering, and the flow has topological
entropy zero;

3. For ε > 0, the flow in the plug Kε has positive topological entropy, and an abun-
dance of periodic orbits.
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Burnside problem on diffeomorphism groups

Sebastian Hurtado Salazar

University of Chicago

e-mail: shurtados@math.uchicago.edu

Suppose G is a finitely generated group such that every element has finite order.
Must G be a finite group?

This is known as the burnside problem, it was formulated around 1902 by Burnside
himself and it was central in the development of group theory during the 20th century.
The answer in general turned out to be negative, G might be infinite. Nonetheless, if
one restricts G to be a linear group (group of matrices), the answer is positive (Schur,
1911).

The problem remains open if we assume G is a group of homeomorphisms of a
surface or a manifold in general. I will talk about the case where G is a group of diffe-
omorphisms of a surface.
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Producing compact invariant sets in Reeb flows

Takashi Inaba

Chiba University

e-mail: inaba@math.s.chiba-u.ac.jp

Let (M, ξ) be a contact manifold. Then for each contact form α with Kerα = ξ one
can associate a unique flow, say ψα, on M called the Reeb flow of α. I am interested
in the following question: Given (M, ξ), to what extent can we vary the dynamics of
the Reeb flow by a change of α? In this talk, I exclusively consider (R2n+1, ξstd), where
ξstd = Kerαstd and αstd = dz + 1

2

∑n
j=1 rj

2dθj . Remark that the Reeb flow of αstd
is generated by ∂/∂z. I want to modify it so that it contains a compact invariant set of
various type. Recently, Geiges-Röttgen-Zehmisch [2014] have realized an n-dimensional
torus (n  2) with an irrational linear flow as an invariant set of a Reeb flow of ξstd. We
generalize their result as follows.

Theorem. Let ϕ be any flow on Tn which is obtained by a suspension of a diffe-
omorphism of Tn−1, and letA ⊂ Tn be any compact invariant set of ϕ. Then, we can
find an embedding Tn ⊂ R2n+1 and a contact form α on R2n+1 with Kerα = ξstd

such that :

(1) α = αstd outside a small neighborhood of A.

(2) The Reeb flow ψα restricted to A is orbit equivalent to ϕ.

(3) All orbits of ψα outside A are unbounded.

For instance, when n  2, one can take as A a transversely Cantor minimal set etc.
Some subsets of R2n+1 other than subsets of Tn are also realizable:

Proposition. The generalized Hopf flows on S2n−1 are realizable in the sense that
S2n−1 (instead of A ) satisfies the three properties in the above theorem. S2k1−1 ×
· · · × S2kp−1 ( k1 + · · ·+ kp = n ) and S2n−1 × I2 are also realizable.

Problem. What flows on what manifolds can be realized as a compact invariant
sets of a Reeb flow in (R2n+1, ξstd)? Find many more examples, or, develop a powerful
method of realization.

This is a joint work with T. Arai and Y. Kano.
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Some estimates for the product of modules of foliations

Anna Kaźmierczak

Uniwersytet Łódzki

e-mail: akaz@math.uni.lodz.pl

Referring to the recent results obtained by A. Romanov for pairs of planar con-
densers defined by opposite arcs of a curvilinear quadrilateral and then to the pair of
foliations defined by the external functions of such condensers, we investigate on which
conditions the product of modules of a pair of orthogonal foliations is greater, equal or
less than one. We also formulate sufficient conditions that enable us to obtain similar
estimates for the product of modules of more than two mutually orthogonal foliations
on a Riemannian manifold of any dimension.

This is a joint work with Antoni Pierzchalski.

1. M. Ciska & A. Pierzchalski, On the modulus of level sets of conjugate submersions, Differential
Geometry and its Applications, 36, 90-97 (2014).

2. Fuglede B, Extremal length and functional completion, Acta Math. 98, 171-219 (1957).

3. A. Kaźmierczak, PhD thesis (in polish) (2013)

4. A. Romanow, A remark on the properties of nonlinear capacity in R3, Siberian Mathematical
Journal, Vol.53, No.4, 732-738 (2012)

5. A. Romanow, Capacity relations in a flat quadrilateral, Siberian Mathematical Journal, Vol.49,
No.4, 709-717 (2008)

6. M. Vuorinen, Conformal geometry and quasiconformal mappings, Springer-Verlag, 1988

7. W. Ziemer, Extremal length and p-capacity, Michigan Mathematical Journal, 16, No. 1, 43-51
(1969).
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A trace formula for codimension one foliations with simple foliated
flows

Yuri A. Kordyukov
Russian Academy of Sciences

e-mail: ykordyukov@yahoo.com

Let F be a smooth, transversely oriented, codimension one foliation on a compact
smooth manifold M and φ a foliated flow on (M,F). Denote by Fix(φ) the fixed point
set of φ. Let M0 be the F -saturation of Fix(φ), and M1 = M \M0. We will assume
that φ is simple, which means that all of its fixed points and closed orbits are simple,
and its orbits in M1 are transverse to the leaves. In this case, M0 is a finite union
of compact leaves, and M1 has finitely many connected components, denoted by Ml.
One can construct a bundle-like metric g1 onM1 such that eachMl with respect to this
metric is a manifold of bounded geometry, and the restrictionFl ofF toMl is a foliation
of bounded geometry. In addition, without loss of generality, we can assume that g1

has a particular form in a neighborhood of M0. Denote by dFl and δFl , respectively,
the leafwise derivative and the leaf- wise coderivative, acting in C∞ (

∧
TF∗l ), and set

DFl = dFl + δFl . Let A be the Fréchet algebra of functions ψ : R → C that can be
extended to entire functions on C such that, for each compact subset K of R, the set
{x 7→ ψ(x + iy)|y ∈ K} is bounded in the Schwartz space S(R). For any ψ ∈ A
and f ∈ C∞c (R), consider the operator P : C∞c

(
M1;

∧
TF1∗

)
→ C∞

(
M1;

∧
TF1∗

)
,

whose restriction to C∞c (Ml;
∧
TF∗l ) is given by

Pl =
∫ ∞
−∞

φt∗ψ (DFl) f(t)dt.

One can show that the Schwartz kernel of P extends to a smooth function on M ×
M1 ∩M1 ×M and has singularity at M0 ×M0. In particular, the operator P is not of
trace class in L2 (M ;

∧
TF∗) . To define a trace of P , we use the machinery of pseu-

dodifferential b-calculus on manifolds with boundary developed by R. Melrose in his
book on the Atiyah-Patodi-Singer theorem. For each l,Ml is the interior of a connected
compact manifold M c

l with boundary and the foliation Fl extends to a smooth folia-
tion Fcl on M c

l tangent to the boundary. We prove that each Pl defines an operator of
the class Ψ−∞b (M c

l ;
∧
TFc∗l ) of b-pseudodifferential operators of order −∞. R. Mel-

rose constructed an extension bTr of the trace functional Ψ−∞b (M c
l ;
∧
TFc∗l ), called

b-trace. These facts allow us to introduce the Lefschetz distribution of φ and study the
associated trace formula. In my talk, I will report on the recent progress in this direction.
This is joint work with Jesús A. Álvarez López and Eric Leichtnam.
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Natural boundary value problems for weighted form Laplacians

Wojciech Kozłowski
University of Łodź

e-mail: wojciech@math.uni.lodz.pl

Gradients in the sense of Stein and Weiss are O(n)-irreducible parts of ∇, the co-
variant derivative of an Riemannian manifold M of dimension n and of Riemannian
metric g. For example, the bundle of differential p-forms is O(n)-irreducible. But the
target bundle of ∇ acting p-forms splits.

As a result, we obtain three O(n)-gradients: d, δ and S. The first two are the fami-
liar exterior derivative and coderivative. The third operator S completing the list, and
defined just by the splitting, seems to be at least equally important. It is the only one of
the three that has, like ∇, an injective symbol. And that means the ellipticity. Roughly
speaking, we can say that S is carrying the ellipticity of ∇. S is called to be the Ahlfors
operator.

In the particular case p = 1, the operator S, being the symmetric and trace free part
of ∇, is one of the most important operators in conformal geometry: conformal Killing
forms, or - by duality- vector fields, constitute its kernel. It is worth to notice that, in the
case of M = R2 = C, the Ahlfors’ operator becomes the Cauchy-Riemann one, so S
may be treated as its higher (even odd) dimensional extension.

Recall that Ahlfors studied S as an operator acting on vector fields X in Rn:

SX =
1
2

(DX +DXt)− 1
n

trace (DX)I,

where DX = (∂Xi/∂xj), DXt is the transpose of DX and I = (δij).
The adjoint operator is

(S?φ)i =
n∑
j=1

∂

∂xj
φij .

So, the resulting differential operator S?S maps vector fields into vector fields.
In the case of an arbitrary Riemannian manifold it is more convenient to replace

vector fields by their duals: one forms. S?S may be then written in its invariant shape

S?S =
n− 1
n

dδ +
1
2
δd− Ric,

where Ric is the Ricci action on one-forms.
S?S is strongly elliptic second order differential operator. In the case of Ricci flat

manifold (and such is M = Rn) it reduces to

La,b = adδ + bδd,
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where a and b are positive constants. The operators of this form will be called the
weighted form Laplacains . These operators give a subclass of the class of so called
non-minimal operators Notice that the last formula enables getting an extension of the
action of La,b onto skew-symmetric forms of any degree p.

The extended operator La,b is just the subject of the talk. It would seem that La,b
theory were just a version of that one for the Laplace-Beltrami operator ∆ = δd+dδ =

L1,1. But, when a 6= b, this is not the case. In contrast to the situation which pertains for
∆, the symbol of La,b, is no longer given by the metric tensor, so the situation is more
subtle.

In the dimension three a version of La,b acting on vector fields in a bounded domain
was investigated in the context of an elastic body by H. Weyl. In particular, the boundary
problem under three different, physically motivated, boundary conditions were solved
there. Ahlfors solved the Dirichlet boundary problem for S?S in the n-dimensional
hyperbolic ball. He used there the fact that the group of Möbius transformations of
the unit ball (i.e., the group of isometries with respect to the hyperbolic metric) acts
transitively. A Poisson type centre formula he derived there enabled therefore getting
the value of a solution at any point of the ball. In the case of the Euclidean ball there is
no such a tool. Reimann solved the Dirichlet problem for S?S = 0 on vector fields in
this case. In analogy to the classical procedure for the Dirichlet problem for the Laplace
operator, consisting in expanding the functions on the sphere into a series of spherical
harmonics, he decomposed the space of vector fields into some suitably chosen O(n)-
invariant subspaces. Then he found a nice basis in each of the summands.

We are also going to adopt the Reimann’s method here though his way of defining
the Ahlfors operator of a higher order was passing to the space of trace-free symme-
tric tensors. Our way, in contrast to the Reimann one, is passing the space of skew-
symmetric forms of an arbitrary degree p. The splitting onto O(n)-invariant subspaces
is then essentially different.

It seems to be interesting to find all the solutions for a complete list of some natural
boundary conditions.

All conditions from the list are self-adjoint, and, in the case of elliptic gradients they
constitute so called elliptic boundary conditions in the sense of Gilkey and Smith.

Let us describe shortly that rule. For any gradient G (one can think for a while that
G is, e.g., d, δ or S but the formula is really very general) we have

(G∗Gω1, ω2)− (ω1, G∗Gω2) =
∫
∂M

[
g(ινGω1, ω2)− g(ω1, ινGω2)

]
(1)

where ινGω is the contraction of Gω with the unit vector ν normal to the boundary
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∂M . To make G∗G self-adjoint we have to accept boundary conditions annihilating
the right hand side of (1), or stronger, annihilating each of the summands under the
boundary integral. Now the unit normal ν will play its role. The original bundle we are
dealing with (in our case the bundle of p-forms) is O(n)-irreducible. But, it reduces at
the boundary under the action of the subgroup O(n − 1) of O(n) keeping ν invariant.
As a result, by the Branching Rule, the original bundle splits at the boundary onto, say
s, O(n− 1)-invariant subbundles. Denote by π1, . . . , πs the projections defined by the
splitting. Then, by the orthogonality, g(ω1, ινGω2) is equal to the sum

g(π1ω1, π1ινGω2) + . . .+ g(πsω1, πsινGω2).

Now, there are 2s candidates for elliptic boundary conditions, constructed as follows:
For each b = 1, . . . , s, we choose exactly one of πbω1 and πbινGω2 and require it to
vanish. For example, if we require to vanish the first multiplier in each summand we get
the Dirichlet condition; if we require to vanish the other one we get the Neumann one. By
other choices we get the whole their variety. The boundary conditions obtained that way
seems to be in some sense “basic”, at least from the point of view of the representation
theory. Of course, we realize that the list may not contain some other geometrically or
physically important conditions like Robin one etc. Of course, for different purposes or
for some physical applications, we may always perturb by lower order operators. When
we do so, we need to worry about losing the symmetry condition for the boundary
integrand in (1), i.e., about loosing the self-adjointness. These perturbations will possibly
take the form of order 0 operators, added either to the interior operator G∗G, or to the
boundary operator ω 7→ ινGω.

According to Branson and Pierzchalski, there are four such conditions on the list in
the case of O(n)-gradients acting on the space of differential forms of any degree on a
Riemannian manifold M with an nonempty boundary ∂M :

Dirichlet boundary condition (D):

ωT = 0 and ωN = 0 on ∂M.

Absolute Boundary condition (A):

ωN = 0 and (dω)N = 0 on ∂M.

Relative boundary condition (R):

(δω)T = 0 and ωT = 0 on ∂M.

The fourth boundary condition (B):
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(δω)T = 0 and (dω)N = 0 on ∂M.

Here ωT and ωN denote the tangent and the normal parts of ω at the boundary,
respectively. The first three conditions are known to geometers. The fourth one seems
to be unknown. But, being natural, it should have a geometric or physical meaning.

Observe also a surprising symmetry with respect to the Hodge star operator ?. Na-
mely, by the following known relations:

?? = P(M)1, (?ω)T = P(M) ? (ωN), (?ω)N = P(M) ? (ωT)

and

δω = P(M) ? d ? ω, dω = P(M) ? δ ? ω

it follows easily that the set of all the four boundary conditions {D,A,R,B} is star-
invariant. More precisely, each of the conditions D,B is star-invariant, while the condi-
tions A and R are star-symmetric each to the other.

We are going to solve all the four boundary problems D,A, R,B for the operators
La,b acting onto differential forms of arbitrary degree p in the Euclidean unit ball in Rn.

The talk is based on join paper with Antoni Pierzchalski: Natural boundary value
problems for weighted form Laplacians Ann. Scoula Norm. Sup. Pisa CI Sci (5) Vol. VII
(2008), 343-367.

Entropy, a ”functional” viewpoint
Rémi Langevin

Université de Bourgogne

e-mail: langevin@u-bourgogne.fr

Entropy (with respect to a probability measure µ) is associated to a transformation
preserving the measure µ, topological entropy to a continuous map of a compact space
X into itself. Using a metric defined on a compact foliated space, one can also define the
entropy of a foliation. In the conference I’ll recall some definitions and examples and
present an attempt (work in progress) to obtain a common definition using ε-separated
sets of the intersection of finite dimensional subspaces with unit balls of some spaces of
functions. A by-product will be a definition of the entropy of a foliation with respect to
a measure.
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Invariants for equicontinuous group actions on Cantor sets

Olga Lukina

University of Illinois at Chicago

e-mail: ollukina940@gmail.com

Equicontinuous group actions on compact metric spaces have appeared, in various
contexts, in many areas of dynamics and foliation theory. For example, the transverse
dynamics of a Riemannian foliation is equicontinuous. In continuum theory, actions on
fibres of generalized solenoids provide examples of equicontinuous group actions on
Cantor sets with many counterintuitive properties. Group actions on topological spaces
and, in particular, their enveloping (Ellis) semigroup, have long been a topic of interest
in topological dynamics.

In this talk, we concentrate on equicontinuous group actions on Cantor sets. We
obtain a ‘coordinate representation’ of the Ellis group, associated to such action, and
apply it to the study of geometric and dynamical properties of foliated spaces with totally
disconnected transversals. In particular, for certain classes of such foliated spaces we
obtain results relating the Ellis semigroup, the growth properties of the leaves, and the
automorphism group of the transverse dynamical system.

Based on recent results joined with Clark and Fokkink, Dyer and Hurder.
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Group orders, dynamics and rigidity

Kathryn Mann
University of California

e-mail: kpmann@math.berkeley.edu

1 Introduction
Let G be a group. A left-order on G is a total order invariant under left multiplication,
i.e. such that a < b implies ga < gb for all a, b, g ∈ G. It is well known that a countable
group is left-orderable if and only if it embeds into the group of orientation-preserving
homeomorphisms of R, and each left-order on a group defines a canonical embedding
up to conjugacy, called the dynamical realization. For this reason, left-orders appear
in the study of dynamics and foliations.

A circular order onG is defined by a cyclic orientation cocycle c : G3 → {P(M)1, 0}
satisfying the following conditions:

i) (non degeneracy) c(g1, g2, g3) = 0 if and only if gi = gj for some i 6= j

ii) (cocylce condition)
c(g2, g3, g4)− c(g1, g3, g4)+ c(g1, g2, g4)− c(g1, g2, g3) = 0 for all g1, g2, g3, g4 ∈
G.

iii) (left invariance) c(g1, g2, g3) = c(hg1, hg2, hg3) for all gi, h ∈ G.
For countable groups, there is also a dynamical realization associating to each cir-

cular order a canonical conjugacy class of embedding G → Homeo+(S1). This corre-
spondence is the starting point for a rich relationship between the algebraic constraints
on G imposed by orders, and the dynamical constraints on G–actions on S1 or R.

Spaces of orders and actions. For fixed G, we let LO(G) denote the set of all left-
orders on G, and CO(G) the set of circular orders. These spaces have a natural topo-
logy; that on CO(G) comes from its identification with a subset of the infinite product
{P(M)1, 0}G×G×G. Left orders are a special case of circular orders (degenerate co-
cycles) so LO(G) ⊂ CO(G) can be given the subspace topology. This agrees with the
topology previously studied by Sikora [5] and others. For this reason we focus primarily
on circular orders here, treating left orders as a special case.

Due to the relationship, via dynamical realization, between circular orders on a co-
untable groupG and actions ofG on S1, it is natural to ask about the relationship betwe-
en the two spaces CO(G) and Hom(G,Homeo+(S1)), where Hom(G,Homeo+(S1)) is
the space of actions ofG on S1, with the compact open topology. Similarly, there should
be some relationship between LO(G) and Hom(G,Homeo+(R)). In particular, one ho-
pes to use the topology of CO(G) to study that of Hom(G,Homeo+(S1)), and vice versa.

39



i
i

“booklet”  2016/6/30  9:28  page 40  #40 i
i

i
i

i
i

Following Sikora [5], we have that LO(G) and CO(G) are both compact, totally discon-
nected and, for countable groups G, metrizable. Consequently, if LO(G) or CO(G) has
no isolated points, then it is homeomorphic to a cantor set, and an important first qu-
estion is thus to identify its isolated points. Even this can be highly nontrivial. We propo-
se an approach by studying the realizations of isolated points in Hom(G,Homeo+(S1)).

2 Main results
Dynamical realization gives a map CO(G) → Hom(G,Homeo+(S1))/ ∼, where

∼ is the conjugacy relation. One can also define a partial inverse to this map. To what
extent are these spaces related? As a first guess, one might (naively) propose the follo-
wing.

Naive conjecture 2.1 Let G be a countable group. CO(G) has no isolated points if
(or perhaps if and only if) Hom(G,Homeo+(S1)) is connected.

A supportive example is the case G = Z2. It is not difficult to show both that
Hom(Z2,Homeo+(S1)) is connected and that CO(Z2) has no isolated points. In the
case of the free group F2 on two generators,
Hom(F2,Homeo+(S1)) ∼= Homeo+(S1)×Homeo+(S1), which is also connected. This
may have motivated the following conjecture stated in [1].

Conjecture 2.2. [1] . CO(F2) has no isolated points.
It was also shown by Rivas in [4] that LO(F2) has no isolated points, giving further
evidence. However, we prove the following.

Theorem 2.3. [2] . CO(F2) has has infinitely many isolated points. In fact, for any
n  1, the space CO(F2n) has infinitely many distinct classes of isolated points under
the natural conjugation action of F2n on CO(F2n).

This answers a question of [3] in the negative. The construction of the isolated orders
in Theorem 2.3 is explicit and elementary, especially when described via their dynami-
cal realizations – these are geometrically motivated “ping-pong” actions. The difficulty
is in showing that these orders are indeed isolated points.

We remark that, since dynamical realizations are faithful, one might try to impro-
ve naive conjecture 2.1 by restricting to the subspace of faithful actions of a group
on S1. However, it is possible to show that the subset of faithful representations in
Hom(F2,Homeo+(S1)) is also connected. In fact, the relationship between
Hom(G,Homeo+(S1)) and CO(G) is much more subtle. The aim of our work in [2] is
to bring this relationship to light.

Dynamical characterization of isolated points. Our main theorem is a complete
characterization of isolated points in CO(G) in terms of the dynamics of their dynamical
realization.

40



i
i

“booklet”  2016/6/30  9:28  page 41  #41 i
i

i
i

i
i

Theorem 2.4. [2]. Let G be a countable group. A circular order on G is isolated if
and only if its dynamical realization ρ is rigid in the following strong sense: for every
action ρ′ sufficiently close to ρ in Hom(G,Homeo+(S1)) there exists a continuous,
degree 1 monotone map h : S1 → S1 fixing the basepoint x0 ∈ S1 of the dynamical
realization, and such that h ◦ ρ′(g) = ρ(g) ◦ h for all g ∈ G.
There is an analogous statement for left orders and rigid actions on R.

Theorem 2.4 is the main ingredient in the proof of Theorem 2.3, indeed, the isolated
orders on free groups can be seen as an application. A major tool in the proof of The-
orem 2.4 is an extension of work of Navas [3] on “maximal minimality” of dynamical
realizations of left orders.

Further applications. We also give a detailed description of which faithful actions of
a countable group G on S1 can arise as dynamical realizations, leading to a new notion
of the linear part of a circular order – a maximal, convex subgroup.

One can also move from isolated circular orders to isolated linear orders via central
extensions by Z. As a particular example, lifts of the rigid actions of F2 on S1 to actions
on the real line give isolated left-orderings on the central extension Z× F2, obtaining

Corollary 2.5. The pure braid group P3 ∼= F2 × Z has infinitely many distinct
conjugacy classes of isolated left-orders.

3 Further questions

1. Give examples of other groups with isolated circular orders.

2. For n > 1 odd, do there exist (infinitely many?) isolated circular orders on Fn?

3. Are the examples given in the proof of Theorem 2.3 the only isolated circular orders
on F2n?

This is joint work with Cristóbal Rivas (Universidad de Santiago de Chile).

1. H. Baik & E. Samperton, Spaces of invariant circular orders of groups. Preprint. arXiv:1508.02661
[math.GR] (2015).

2. K. Mann & C. Rivas, Group orderings, dynamics and rigidity. In preparation.

3. A. Navas, On the dynamics of left-orderable groups. Ann. Inst. Fourier (Grenoble) 60 (2010),
1685-1740.

4. C. Rivas, Left-orderings on free products of groups. Journal of Algebra 350 (2012), 318-329.

5. A. Sikora, Topology on the spaces of orderings of groups. Bull. Lon. Math. Soc. 36.4 (2004),
519-526.
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Parameter rigidity of the action of AN on Γ\G for higher rank
semisimple Lie groups

Hirokazu Maruhashi
Max Planck Institute for Mathematics

e-mail: h-maruha@math.kyoto-u.ac.jp

Let M ρ0x S be a C∞ locally free right action of a connected simply connected
solvable Lie group S on a closed C∞ manifold M . Recall that ρ0 is said to be locally
free if the isotropy subgroup of any point of M is a discrete subgroup of S. The set F of
all the orbits of ρ0 is a C∞ foliation of M , which is called the orbit foliation of ρ0. We
say ρ0 is parameter rigid if any C∞ locally free action M ρ

x S whose orbit foliation
coincides with F is parameter equivalent to ρ0, that is, there exist an automorphism
Φ of S and a diffeomorphism F of M such that F (ρ0(x, s)) = ρ(F (x),Φ(s)) for all
x ∈ M and s ∈ S and F preserves each leaf of F and is C0 homotopic to the identity
map of M through C∞ maps preserving each leaf.

For example a linear flow on a torus is parameter rigid if and only if the velocity
vector of the flow at a point satisfies the Diophantine condition.

In two papers published in 1994, A. Katok and R. J. Spatzier proved the following
theorem.

Theorem 1. Let G be a connected semisimple Lie group with finite center of re-
al rank at least 2 without compact factors or simple factors locally isomorphic to
SO0(n, 1) (n  2) or SU(n, 1) (n  2) and Γ be an irreducible cocompact lattice in
G. Let G = KAN be an Iwasawa decomposition. Then the action Γ\Gx A by right
multiplication is parameter rigid.

Recently I proved the following.

Theorem 2. Let G be a connected semisimple Lie group with finite center of re-
al rank at least 2 without compact factors or simple factors locally isomorphic to
SO0(n, 1) (n  2) or SU(n, 1) (n  2) and Γ be an irreducible cocompact lattice in
G. Let G = KAN be an Iwasawa decomposition. Then the action Γ\G x AN by
right multiplication is parameter rigid.

The major difference in the proof comes from the noncommutativity of AN . I will
explain how to prove Theorem 2 in the talk.

The proof is basically a combination of a sufficient condition for parameter rigidity
of Maruhashi, cohomology vanishing results of Katok–Spatzier and Kanai and rigidity
theorems of quasiisometries of symmetric spaces of Pansu, Kleiner–Leeb, Farb–Mosher
and Reiter Ahlin.
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Rotation number and lifts of a Fuchsian action on the circle
Yoshifumi Matsuda

Aoyama Gakuin University

e-mail: ymatsuda@gem.aoyama.ac.jp

TBA

Dynamics of the geodesic and horocycle flows for laminations by
hyperbolic surfaces
Shigenori Matsumoto

Nihon University

e-mail: matsumo@math.cst.nihon-u.ac.jp

Most of the results reported here is taken from a joint work [1] with Matilde Martinez
and Alberto Verjovsky.

Throughout the talk, (M,F) is to be a minimal lamination by hyperbolic surfaces
on a compact metrizable space M . Let M̂ be the leafwise unit tangent bundle of M :
M̂ = ∪x∈MT 1xLx, where Lx is the F -leaf at x. Then M̂ has a 3-dimensional lamination
T 1F obatined by the decomposition M̂ = ∪L∈FT 1L. Since F is minimal, T 1F is
also minimal. In fact, T 1F is the orbit foliation of a right PSL(2,R) action. Let D, U
and B be the subgroups of PSL(2,R) consisiting, respectively, of diagonal, unipotent
upper triangular, and upper triangular matrices. The flow of D (U ) is called leafwise
geodesic (horocycle) flow. We discuss dynamical properties of these flows as well as the
B-actions. Let Π : M̂ →M be the canonical projection, X a closed B-invariant subset
of M̂ , and µ any ergodic harmonic measure of F (a probability measure on M ). Denote
MX,1 = {x ∈ M | ](Π−1(x) ∩ X) = 1} and MX,>1 = M \MX,1. By the ergodicity
either µ(MX,1) = 1 or µ(MX,>1) = 1. By an argument using the leafwise Brownian
motion, suggested by É. Ghys, we get:

Lemma 1. If µ(MX,>1) = 1, then X = M̂

Corollary 2. (1) There is a unique minimal set for the B-action. (2) There is a dense
orbit for the B-action.

Theorem 3. The following (1) and (2) are equivalent. (1) There is a closedB-invariant
subset X for which MX,1 = M . (2) The lamination F is the orbit foliation of a continu-
ous locally free B-action on M .
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It is not the case that µ(MX.1) = 1 impliesMX,1 = M . An example is constructed on
a 4-manifold M , using the Thurston hyperbolization of the mapping torus of a pseudo-
Anosov homeomorphism.

Theorem 4. The B-action is minimal under (1) or (2): (1) F admits a holonomy
invariant transverse measure. (2) (M,F) is the foliated Z bundle over a closed surface
Γ \H2 given by a minimal and indisrete homomorphism φ : Γ→ Homeo(Z) for some
compact metrizable space Z . Here indiscrete means that there are elements gn ∈ Γ\{e}
such that φ(gn)→ idZ .

Theorem 5 ([2]). The U -flow is minimal under (1) or (2): (1) F is a Riemannian fo-
liation which admits a nonplanar leaf. (2) F is a codimension one foliation and the
B-action on M̂ is minimal.

Theorem 6. Assume M is a closed manifold. The D-flow (leafwise geodesic flow) is
structurally stable in the sense that any T 1F -leaf preserving leafwise C1-perturbation
is topologically equivalent to the D-flow by a T 1F -leaf preserving homeomorphisms.

1. M. Matilde, S. Matsumoto & A. Verjovsky, Horocycle flows for laminations by hyperbolic
Riemann surfaces and Hedlund’s thoerem, J. Modern Dynamics, 10 (2016) 113-134.

2. S. Matsumoto, Remarks on the horocycle flows for foliations by hyperbolic surfaces, To appear
in Proc. A. M. S.

Distortion and Tits alternative for big mapping class groups

Emmanuel Militon

Université Nice

e-mail: emmanuel.militon@unice.fr

The setting of this talk is the study of actions of finitely generated groups on surfaces.
When such an action has a Cantor set as minimal invariant set, we are naturally led to
study groups of mapping classes which preserve a Cantor set. I will introduce some
results of a joint work with Sebastian Hurtado on these big mapping class groups.
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Reeb components with complex leaves and their symmetries

Yoshihiko Mitsumatsu

Chuo University

e-mail: yoshi@math.chuo-u.ac.jp

Introduction and rough statement of results

We compute the automorphism group of a Reeb component with complex leaves, assu-
ming that the leaves are of complex dimension 1 and the Reeb component is given by
the Hopf construction. After the computation, if the situation allows us, we discuss fur-
ther on the realization of such Reeb components in a Levi flat hypersurface in a complex
surface and also on the extendability of automorphisms to those of ambient complex
surfaces.

For higher dimensional ones, basically we can compute them to a large degree, once
we know the automorphism group of the boundary leaf. e.g., Horiuchi computed them
for complex leaf dimension 2. (He completed the computation when the holonomy is
infinitely tangent to the identity, while in other cases the description becomes quite
complicated,but it is possible.) In this talk the boundary leaf is an elliptic curve, so that
we know its automorpshim group well.

Here an automorpshism means a smooth, foliation preserving diffeomorphism which
is holomorphic between leaves.

The result shows different features depending on the character of the holonomy of
the boundary leaf. We assume that the holonomy diffeomorphism ϕ ∈ Diff∞([0,∞))

of the boundary leaf (i.e., a generator of the holonomy group) is expanding at x = 0 .
We have the following three cases.

Case (1) : The linear part of the holonomy is non-trivial.

Case (2) : The linear part is trivial but the infinite jet is non-trivial.

Case (3) : The holonomy is expanding but is flat to the identity.

Theorem 1 The automorphism group AutR of a Reeb component R with complex
leaves is

Case (1) : a 3 dimensional or 5 dimensional solvable Lie group,

Case (2) : an∞-dimensional solvable Lie group,

Case (3) : an∞-dimensional solvable Lie group or slightly more complicated depending
on the centralizer Zϕ = {exp(tX) | t ∈ R} in Diff∞([0,∞)) for some smooth vector
field X or not.
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1 Structure of the group of automorphisms

Let H = Hλ = C∗/λZ (λ ∈ C∗, |λ| > 1) denote the boundary elliptic curve of the Reeb
component R. We easily see the following.

Proposition 2 AutR admits the following decompositions into extensions.

0→ Aut(R,H)→ AutR→ Aut0H → 0

and
0→ Kλ,ϕ → Aut0H → Zϕ → 0

where Aut0H denotes the identity component ∼= H ∼= T 2 .

Proposition 3 In Case (1), thanks to Sternberg’s linearization, and in Case (2), thanks
to Takens’ normal form, the Szekeres vector field for ϕ is smooth, and the centralizer
Zϕ coincides with {exp(tX) | t ∈ R} ∼= R.

In Case (3) in general we only have ϕZ ⊂ Zϕ ⊂ {exp(tX) | t ∈ R} where X is the
Szekerez vector field which is guranteed only of C1 at the origin.

In the first sequence AutR→ Aut0H is obtained by the restriction to the boundary
and Aut(R,H) is defined to be the kernel. Then Aut0H → Zϕ ⊂ Diff∞([0,∞)) is
looking at the action on the transverse space. The kernel Kλ,ϕ is a translation inside
each leaf in the interior, where all leaves are biholomorphic to the cmplex plane.

As a consequence the problem of determining the automorphism group is reduced
to the computation of Kλ,ϕ.

2 Schröder’s equation on [0,∞)

The computation of the kernel Kλ,ϕ is nothing but solving the following Schröder type
functional equation on the half line [0,∞).

(I) β ◦ ϕ = λβ β ∈ C∞([0,∞);C) .

If we consider this equation on the open half line (0,∞), we easily see that the solution
space Zλ,ϕ ⊂ C∞((0,∞);C) is isomorphic to C∞(S1;C).

Main Theorem
The space Kλ,ϕ of solutions to the equation (I) is as follows.

Case (1) : Kλ,ϕ = {cxp ; c ∈ C} ∼= C if λ = µp and p ∈ N where µ = ϕ′(0),
and otherwise Kλ,ϕ = 0 .

Case (2) and (3) : Kλ,ϕ ∼= Zλ,ϕ, namely any β ∈ Zλ,ϕ extends to [0,∞)

by β(0) = 0 as a smooth function and is flat at x = 0 .
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About the proof of Main Theorem:

For Case (I), by Sternberg’s linearization [4], it is nothing but to look for weighted ho-
mogeneous functions and the resuts is well-known.

For Case (2) and (3) two ways are possible. One allows us to prove two cases together.
This unified treatment relies on the center manifold theorem or Cr-section theorem (cf.
[3]).

Case (2) is also proven by relying on Takens’ normal form [5] and Fourier expan-
sion/series. In this prove, after taking the normal form we compute the solution quite
explicitely for natural ODE’s related to the functional equation (I). A functional equation
is decomposed into a family of ODE’s and then the the solutions are brought together
into those of (I) by Fourier series.

This method does not work for Case (3), to which we can give antoher proof, which is
not applicable to Case (2) in turn. We take higher order derivatives of the equation (I) and
estimate the results in somewhat smart way. This enables us to verify the convergence
of any higher order derivatives of β ∈ Zλ,ϕ to 0 when x→ 0 + 0 .

3 Applications and discussions

Pasting two Reeb components of Case (3) a Reeb foliation on S3 is constructed. Of course
this method is generalized to construct foliations with complex leaves on lens spaces.
In thses cases the boundary is common to two Reeb components R1 and R2.

Theorem 4 In the above cases, the automorphism group of the resultant foliation on
a lens space or S3 is the fibre product of AutR1 and AutR2 over Aut0H .

If we start from a codimension one foliation with complex leaves, we can perform
a usual turbulization and get a new Reeb component R. For this modification, any of
Case (1), (2), or (3) is possible for R.

Theorem 5 For a tubulization wiht the new Reeb component R of Case (2) or (3), any
of manifold as the identity outside R, namely, the automorphism group of the resultant
foliation includes AutR.

If we construct a Hopf surface W by (C2 \ {O})/TZ where T (z, w) = (λ · z, µ ·w)

with λ ∈ C∗ and |λ|, µ > 1, the real hypersurface M3 = (C×R \ {O})/TZ is Levi-flat
and composed of two Reeb components RP(M) with Levi-foliations.

Theorem 6 Any element of AutR+ or of AutR− extends to the ambient Hopf surface
W as a holomorphic automorphism.

47



i
i

“booklet”  2016/6/30  9:28  page 48  #48 i
i

i
i

i
i

Discussions
Theorem 1 and Theorem 6 shows that Reeb components of Case (1) exhibits a cha-

racter simlar to compact complex manifolds.
Still it should be confirmed whether if the automorphism extends to the ambient sur-

face in the case where the Reeb component appears as a part of a Levi-flat hypersurface
which bounds a Stein surface.

On the other hand, some recent works relying on the Ueda theory suggests that Reeb
components of Case (3) can not be realized in Levi-flat real hypersurfaces.

Our results mildly seduces us to imagine that the same might apply to Case (2).

Similar results on 5-dimensional Reeb components with complex 2-dimensional le-
aves are obtained by T. Horiuchi in [2]. There a complete computaion of the automor-
phism groups of all Hopf surfaces is done base on Kodaira’s classification. Combined
with a slight extension of Main Theorem, up to dimension 5 we can compute the auto-
morphism groups of Reeb components.

A detailed exposition of this talk is found in [1]. The author was partially supported
by Grant-in-Aid for Scientific Research (B) No. 22340015. This is a report on a joint work
with Horiuchi Tomohiro.

1. T. Horiuchi & Y. Mitsumatsu, Reeb components with complex leaves and their symmetries I.
The automorphism groups and Schröder’s equation on the half line. Preprint, arXiv:1605.08977.

2. T. Horiuchi, Reeb components of leafwise complex foliations and their symmetries II.
arXiv:1511.03424, to appear in Hokkaido Math. Journal.

3. M. Shub, Global stability of dynamical systems. Springer-Verlag, New York, 1987.

4. S. Sternberg, Local contractions and a theorem of Poincaré. Amer. J. Math., 49-4, (1957), 809
– 824.

5. F. Takens, Normal forms for certain singularities of vectorfields. Ann. Inst. Fourier, 23-2, (1973),
163 – 195.
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Frame bundle approach to generalized minimal submanifolds

Kamil Niedziałomski

Uniwersytet Łódzki

e-mail: kamiln@math.uni.lodz.pl

We extend the notion of r–minimality of a submanifold in arbitrary codimension
to u–minimality for a multi–index u ∈ Nq , where q is the codimension. This approach
is based on the analysis on the frame bundle of orthonormal frames of the normal
bundle to a submanifold and vector bundles associated with this bundle. The notion
of u–minimality comes from the variation of σu–symmetric function obtained from the
family of shape operators corresponding to all possible bases of the normal bundle. We
obtain the variation field, which gives alternative definition of u–minimality. Finally, we
give some examples of u–minimal submanifolds for some choices of u and state some
relations between generalized symmetric functions σu.

More precisely, let M be a Riemannian manifold and L a codimension q submani-
fold. For a fixed orthonormal basis e = (e1, . . . , eq) in the normal bundle to L in M let
A(e) = (A1, . . . , Aq) be family of shape operators, Aα = Aeα . We may associate with
the family A(e) symmetric functions σu, where u ∈ Nq , as follows

det(I + t1A1 + . . . , tqAq) =
∑
u

σut
u1
1 . . . tuqq .

Here σu depends on the choice of the basis e. Integrating over all such bases (with
respect to the natural measure on the orthonormal frame bundle O(T⊥L)) we get, so
called, generalized symmetric functions σ̂u : L → R. Critical points of the variation of
σ̂u are called u–minimal submanifolds.

We derive the formula for the variation field, which gives alternative definition of
u–minimality. For u = (0, . . . , 0) we get the notion of classical minimality. We show
existence of u–minimal submanifolds for u = (0, . . . , 0, 2, 0, . . . , 0).

The talk is based on the article [2] and we heavily rely on the results concerning
generalized Newton transformation, obtained in the article [1].

1. K. Andrzejewski, W. Kozłowski, K. Niedziałomski, Generalized Newton transformation and
its applications to extrinsic geometry, Asian J. Math. 20 (2016), No. 2, 293–322.

2. K. Niedziałomski, Frame bundle appriach to generalized minimal submanifolds, arXiv,
http://arxiv.org/abs/1601.02248
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Independent variation of secondary characteristic classes of Riemannian
foliations

Hiraku Nozawa
Ritsumeikan University

e-mail: hnozawa@fc.ritsumei.ac.jp

Secondary characteristic classes of Riemannian foliations with framed normal bun-
dle were introduced by Lazarov-Pasternack [4]. It is a generalization of Chern-Simons
invariants of framed Riemannian manifolds. Hurder [2] showed that all variable classes
of Lazarov-Pasternack vary independently based on a partial result due to Lazarov-
Pasternack [5]. Independent variation implies that the integral homology of the classi-
fying space FRΓq of codimension q Riemannian foliations with framed normal bundle
surjects onto certain real vector space. Later Morita [7] discovered new classes in terms
of canonical Cartan connections, and showed that these new classes vary independently.
The main result of this talk is the following.

Theorem 1. All derivable classes of Lazarov-Pasternack and Morita are indepen-
dently derivable.

This generalizes results of Hurder and Morita mentioned above. We also show
that πq+1(FRΓq) surjects to a real vector space and the universal homomorphism to
H•(FRΓq;R) is injective (Theorems 2 and 3) below are transversely Kähler analog of
these results).

We prove the above results on Riemannian foliations by its transversely Kähler ana-
log. Secondary characteristic classes of transversely Kähler foliations were introduced
by Matsuoka-Morita [6]. Consider a differential graded algebra

KWn =
∧

(u1, . . . , un)⊗
(
R[s1, . . . , sn,Φ]/ Span{sJΦk | deg J + k > n}

)
,

where

• deg Φ = 2, deg si = 2i, deg ui = 2i− 1, dΦ = 0, dsi = 0 and dui = si.

• Φ corresponds to the basic Kähler class, si corresponds to the trace of the i-th
power of the curvature of the normal bundle and ui is the transgression of si.

For a manifold M with complex codimension n transversely Kähler foliation F with
framed normal bundle, Matsuoka-Morita’s construction yields a characteristic homo-
morphism

∆F : H•(KWn) −→ H•(M ;R).

A class α ∈ H•(KWn) is called rigid if for any manifold M with a one parameter
family {Ft} of transversely Kähler foliations, the class ∆Ft(α) is constant with respect
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to t. Otherwise, α is called derivable. For k > 0, it is easy to see that a class of the
form [uIsJΦk] is derivable by the dilatation of the Kähler form. By Heitsch’s formula,
Morita-Matsuoka proved that [uIsJ ] is rigid if min I + deg J > n + 1. Then the space
of secondary classes which are potentially derivable are spanned by the following

1. [uIsJΦk] such that min I + deg J + k = n+ 1.

2. [uIsJΦk] such that min I + deg J  n+ 1 and k > 0.

The independent variation of the classes of the form (2) is proved by computing the cha-
racteristic classes of the simple foliation on the unitary frame bundle over certain union
of products of complex tori and projective spaces considered by Hurder [3]. We show
the independent variation of the classes of the form (1) by computing the characteristic
classes of the pull back to the unitary normal frame bundle of linear deformations of
the Hopf fibration S2n+1 → CPn by using the X-connections of Baum-Bott [1]. We
show the independent variation of all derivable classes in KWn by combining these
two computations. Let FKΓn be the the classifying space of complex codimension n
transversely Kähler foliations with framed normal bundle. As a consequence of this
computation, we have that

Theorem 2. There exists a surjective homomorphism

π2n+1(FKΓn) −→ Rv(n),

where v(n) is the dimension of the vector space generated by derivable classes of
KWn of degree 2n+ 1.

Theorem 3. The canonical characteristic homomorphismH•(KWn) −→ H•(FKΓn;R)

is injective.

1. P. Baum & R. Bott, Singularities of holomorphic foliations, J. Differential Geom. 7, no. 3-4
(1972), 279–342.

2. S. Hurder, On the secondary classes of foliations with trivial normal bundles, Comment. Math.
Helv. 56 (1981), no. 2, 307–326.

3. S. Hurder, Characteristic classes for Riemannian foliations, Differential geometry, pp. 11–35,
World Sci. Publ., Hackensack, NJ, 2009

4. C. Lazarov & J. Pasternack, Secondary characteristic classes for Riemannian foliations, J.
Differential Geom. 11 (1976), 365–385.

5. C. Lazarov & J. Pasternack, Residues and characteristic classes for Riemannian foliations, J.
Differential Geom. 11 (1976), 599–612.

6. T. Matsuoka and S. Morita, On characteristic classes of Kähler foliations, Osaka J. Math. 16
(1979), no. 2, 539–550.

7. S. Morita, On characteristic classes of Riemannian foliations, Osaka J. Math. 16, no. 1 (1979),
161–172.
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On A-focal entropy points
Ryszard J. Pawlak
Uniwersytet Łódzki

e-mail: rpawlak@math.uni.lodz.pl

In my talk I will consider points focusing entropy and such that this fact is influenced
exclusively by the behaviour of the function around these points (i.e. it is independent
from the form of the function at any distance from these points).

LetX = Im (I = [0, 1] andm = 1, 2, . . .) and letA be the family of all arcs inX . By
ϑYA we will denote the family of all finite sequences of pairwise disjoint arcs contained
in Y ⊂ X . For simplicity of notation, let ϑA stand for ϑXA . Moreover, A|Y = {K ∩ Y :

K ∈ A}.
If F = (A1, . . . , Am) ∈ ϑA and f : X → X is a function then we define so called

structural matrixMf = [aij ]mi,j=1 in the following way: aij = 1 ifAi →
f
Aj and aij = 0

otherwise.
A generalized entropy of a function f (not necessarily continuous) with respect to the

sequence F ∈ ϑA is the number Hf (F ) = log σ(Mf ) if σ(Mf ) > 0 and Hf (F ) = 0

if σ(Mf ) = 0, where
σ(Mf ) = lim supn→∞ n

√
tr(Mn

f ).
Let Y ⊂ X be a nonempty open set. An entropy of f on Y with respect to the family

A is the number
Hf (Y ) = sup

{
1
n
Hfn(F ) : F ∈ ϑYA

}
.

Now, let us introduce the following notation

d(f, Y ) =


Hf (Y )
h(f) if h(f) ∈ (0,∞),

1 if Hf (Y ) =∞ or h(f) = 0,

0 if Hf (Y ) ∈ [0,∞) and h(f) =∞.

A density of entropy of f at a point x0 is the number

Ef (x0) = inf{d(f, V ) : V ∈ O(x0)}.

We say that x0 ∈ X is anA-focal entropy point of f (or briefly: focal entropy point)
if Ef (x0) = 1.

The first results will be connected with the fact that each continuous function map-
ping the unit interval into itself has such kind of points. Moreover, we will discuss the
basic properties of the set of all focal entropy points and the possibility of improving
functions f : Im → Im so that any fixed point of the function becomes its focal entropy
point.
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Helicity is the only integral invariant of volume-preserving
diffeomorphisms

Daniel Peralta-Salas
ICMAT, CSIC

e-mail: dperalta@icmat.es

Let M be a compact 3-dimensional manifold without boundary, endowed with a
Riemannian metric. We denote by X1ex the vector space of exact divergence-free vector
fields onM of class C1, endowed with its natural C1 norm. We recall that a divergence-
free vector field w is exact if the 2-form iwµ is exact, where µ is the Riemannian volume
form.

On exact fields, the curl operator has a well defined inverse curl−1 : X1ex → X1ex. The
inverse of curl is a generalization to compact 3-manifolds of the Biot–Savart operator,
and can also be written in terms of a (matrix-valued) integral kernel k(x, y) as

curl−1w(x) =
∫
M

k(x, y)w(y) dy , (2)

where dy stands for the Riemannian volume measure. Using this integral operator, one
can define the helicity of a vector field w on M as

H(w) :=
∫
M

w · curl−1w dx .

Here the dot denotes the scalar product of two vector fields defined by the Riemannian
metric onM . It is well known that the helicity is invariant under volume-preserving dif-
feomorphisms, that is,H(w) = H(Φ∗w) for any diffeomorphism Φ ofM that preserves
volume (and orientation).

In view of the expression (2) for the inverse of the curl operator, it is clear that the
helicity is an integral invariant, meaning that it is given by the integral of a density of
the form

H(w) =
∫
G(x, y, w(x), w(y)) dx dy .

Our objective in this talk is to show, under some natural regularity assumptions, that
the helicity is the only integral invariant under volume-preserving diffeomorphisms. To
this end, let us define a regular integral invariant as follows:

Definition Let I : X1ex → R be a C1 functional. We say that I is a regular integral
invariant if:

1. It is invariant under volume-preserving transformations, i.e., I(w) = I(Φ∗w)

for any diffeomorphism Φ of M that preserves volume (and orientation).
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2. At any point w ∈ X1ex, the (Fréchet) derivative of I is an integral operator with
continuous kernel, that is,

(DI)w(u) =
∫
M

K(w) · u ,

for any u ∈ X1ex, where K : X1ex → X1ex is a continuous map.

The following theorem shows that the helicity is essentially the only regular integral
invariant in the above sense:

Theorem Let I be a regular integral invariant. Then I is a function of the helicity,
i.e., there exists a C1 function f : R→ R such that I = f(H).

The idea of the proof is that the invariance of the functional I under volume-
preserving diffeomorphisms implies the existence of a continuous first integral for each
exact divergence-free vector field. Because a generic vector field in X1ex is not integra-
ble, we conclude that the aforementioned first integral is a constant (that depends on the
field), which in turn implies that I has the same value for all vector fields in a connected
component of the level sets of the helicity. Because these level sets are path connected,
the theorem follows.
1. A. Enciso, D. Peralta-Salas, F. Torres de Lizaur, Helicity is the only integral invariant of

volume-preserving transformations. Proc. Natl. Acad. Sci. 113 (2016) 2035–2040.

Minimal laminations in R3 and the Hoffman-Meeks conjecture
Joaqúın Pérez Muñoz
Universidad de Granada

e-mail: jperez@ugr.es

The Hoffman–Meeks conjecture is one of the basic open problems in classical mini-
mal surface theory, and states that if M is a minimal surface with finite total curvature
in R3 with genus g and k ends, then k ¬ g+ 2. This open problem motivates the study
of the possible limits of a sequence of embedded minimal surfaces Mn ⊂ R3 with fixed
genus. Typically, minimal laminations with singularities appear as such limits. By using
Colding–Minicozzi theory, we will give a convergence result for (a subsequence of) the
Mn if we assume a uniform bound for the injectivity radius of the Mn outside a closed
countable set of R3. We will also show how one can use this convergence result to obtain
a (non-explicit) bound k ¬ C(g) only depending on the genus, for the Hoffman–Meeks
conjecture.
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A short story on the ellipticity of the Stein-Weiss gradients

Antoni Pierzchalski
Uniwersytet Łódzki

e-mail: antoni@math.uni.lodz.pl

The main thesis of some three publications will be presented in a historical context.
1. J. Kalina, A. Pierzchalski & P. Walczak, Only one of the generalized gradients can be elliptic

Ann. Polon. Math. 67 (1997) 111–120.
2. J. Kalina, B. Ørsted, A. Pierzchalski, P.Walczak & G. Zhang, Elliptic gradients and highest

weights, Bull. Polon. Acad. Sci. Ser. Math. 44 (1996), 511–519.
3. T. Branson, Stein Weiss operators and ellipticity J. Funct. Anal. 151 (1997), 334383.

Integral formulae for codimension-one foliated Finsler manifolds

Vladimir Rovenski
University of Haifa

e-mail: rovenski@math.haifa.ac.il

The talk is based on our joint with P.Walczak works [2,3] about a codimension-one
foliated Finsler space (M,F ), in particular, a Randers space (i.e., F = α+β, α being the
norm of a Riemannian structure on M and β a 1-form of α-norm smaller than 1 on M ).
Using a unit vector field orthogonal (in the Finsler sense) to the leaves we define a new
Riemannian metric g on M . For that g we calculate several geometric invariants of F ,
express them in terms of invariants arising from α and some quantities related to β, and
then, using the approach of [1], we obtain the integral formulae for closed (M,F ) and
(M,α + β). On this way, we generalize Reeb’s formula (that the total mean curvature
of the leaves is zero) and its companion (that twice total second mean curvature of the
leaves equals to the total Ricci curvature in the normal direction). We also extend result
by Brito-Langevin-Rosenberg (1981) (that total mean curvatures of arbitrary order for a
codimension-one foliated Riemannian manifold of constant curvature don’t depend on
a foliation).
1. V. R. & P. Walczak, Integral formulae on foliated symmetric spaces, Math. Ann. 352, (2012)

223–237.
2. V. R. & P. Walczak, Integral formulae for codimension-one foliated Finsler spaces, Balkan J.

Geom. & Appl. 2016 (see ArXiv:1602.00610).
3. V. R. & P. Walczak, Integral formulae for codimension-one foliated Randers spaces, preprint,

ArXiv:1604.04069.

55



i
i

“booklet”  2016/6/30  9:28  page 56  #56 i
i

i
i

i
i

Exotic open 4-manifolds which are non-leaves

Paul A. Schweitzer, S.J.

PUC - Rio de Janeiro

e-mail: paul37sj@gmail.com

We study the possibility of realizing exotic smooth structures on punctured simply
connected 4-manifolds as leaves of a codimension one foliation on a smooth compact
manifold. In particular, we show the existence of an uncountable set of smooth open 4-
manifolds which are not diffeomorphic to any leaf of a codimension one transverselyC2

foliation on a compact manifold. These examples include some exotic R4’s and exotic
cylinders S3 × R. See [10] for the complete paper.

Our results involve a set Y of smooth open 4-manifolds which we define below.
Theorem 1. If Y ∈ Y is a leaf in a C1,0 codimension one foliation of a closed

5-manifold, then it is a proper leaf and each connected component of the union of
the leaves diffeomorphic to Y fibers over the circle with the leaves as fibers.

Theorem 2. For any manifold Y ∈ Y there exists an uncountable subset YY ⊂
Y of manifolds homeomorphic to Y that are not diffeomorphic to any leaf of a C2

codimension one foliation of a compact manifold.
The following result of independent interest, which uses the theory of levels and

depth, will be used in the proof of Theorem 2.
Theorem 3. The set of diffeomorphism classes of smooth manifolds of arbitrary

dimension which are diffeomorphic to leaves of finite depth in C2 codimension one
foliations of compact manifolds is countable.

Let us recall some important steps in the history of leaves and non-leaves. Cantwell
and Conlon [3] showed that every open surface is diffeomorphic to a leaf of a foliation
on every closed 3-manifold. The first examples of topological non-leaves were due to
Ghys [5] and Inaba, Nishimori, Takamura, and Tsuchiya [7]. Later on, Attie and Hur-
der [1] constructed simply connected 6-dimensional non-leaves, among other results.

To define the set Y we need the concept of “end sum”. Given two open smooth
oriented 4-manifolds M and N with proper smooth embedded paths c1 : [0,∞)→M

and c2 : [0,∞)→ N defining ends ofM andN , let V1 and V2 be tubular neighborhoods
of c1([0,∞)) and c2([0,∞)). Then the end sum is M\N = (M \ V1)

⋃
∂(N \ V2),

where the boundaries, both diffeomorphic to R3, are identified so as to preserve the
orientation. If N is homeomorphic to R4 then M\N is homeomorphic to M . The end
sum, up to diffeomorphism, depends only on the smooth proper isotopy classes of the
curves. End sum was the first technique which made it possible to find infinitely many
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exotic structures on R4 [6] and it is an important tool for dealing with the problem of
generating infinitely many smooth structures on open 4-manifolds [2,4].

An end of a smooth 4-manifold is smoothly periodic if there exists an unbounded
domain V ⊂M homeomorphic to S3× (0,∞) and a diffeomorphism h : V → V such
that hn(V ) defines the given end (i.e., {hn(V )} is a neighborhood base for the end).

It is well known that by removing a closed set carrying the 2-homology of the Kum-
mer complex surface K3 it is possible to obtain a smooth 4-manifold R homeomorphic
to R4 with an exotic end. For a homeomorphism ψ : R4 → R, we let Kt denote
ψ(D(t)), where D(t) is the standard closed 4-disk of radius t centered at the origin, so
that its interior K̊t has a smooth structure induced from R by ψ. Let \R∞ = \∞i=1R be
the infinite end sum. Then we have the following special case of Theorem 1.4 of Taubes
[10].

Theorem (Taubes, [10]) Let M be an open smooth simply connected 4-manifold with
definite intersection form and exactly one end. If the end of M is homeomorphic
to S3 × (0,∞) and smoothly periodic, then the intersection form is isomorphic to a
diagonal form. As a consequence, for any homeomorphism ψ : R4 → R, there exists
r0 > 0 such that, for any t, s > r0, t 6= s, K̊t is not diffeomorphic to K̊s.

Now we defineY to be the set of smooth manifolds Y (up to diffeomorphism) that are
homeomorphic to simply connected compact 4-manifolds with finitely many punctures
satisfying the following conditions:

1. Y has an end diffeomorphic to the end of a non-trivial finite end sum \ki=1R, to
\ki=1K̊t or to K̊t\R∞ with t > r0, and

2. if H2(Y ) = 0, then Y has only one exotic end and the other ends (if there are
any) are standard.

3. In the particular case where Y is homeomorphic to R4 we only consider smooth
structures with finite Taylor-index (See [11].)

This is joint work with Carlos Meniño Cotón (Universidade Federal do Rio de Jane-
iro).

1. O. Attie & S. Hurder, Manifolds which cannot be leaves of foliations. Topology 35-2, 335–353
(1996).

2. Ž. Bižaca, J. Etnyre, Smooth structures on collarable ends of 4-manifolds. Topology 37-3,
461–467 (1998).

3. J. Cantwell & L. Conlon, Every surface is a leaf. Topology 25-3, 265–285 (1987).

4. S. Ganzell, End of 4-manifolds. Topology Proceedings 30-1, 223-236 (2006).

5. É. Ghys, Une variete qui n’est pas une feuille. Topology 24-1, 67–73 (1985).
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6. R.E. Gompf, An exotic menagerie. J. Diff. Geom. 37, 199–223 (1993).

7. T. Inaba, T. Nishimori, M. Takamura & N. Tsuchiya, Open manifolds which are non-realizable
as leaves. Kodai Math. J., 8, 112–119 (1985).

8. C. Meniño Cotón, P.A. Schweitzer, S.J., Exotic open 4-manifolds which are non-leaves Arxiv:1410.8182.

9. P.A. Schweitzer, S.J., Riemannian manifolds not quasi-isometric to leaves in codimension
one foliations Ann. Inst. Fourier (Grenoble) 61 (2011), 1599–1631, DOI 10.5802/aif.2653.

10. C.H. Taubes, Gauge theory on asymptotically periodic 4-manifolds. J. Diff. Geom. 25, 363–430
(1987).

11. L. Taylor, An invariant of smooth 4-manifolds. Geom. Topol. 1, 71–89, (1997).

Vaisman manifolds, canonical foliations and the associated spectral
sequence

Vladimir Slesar

University of Craiova

e-mail: slesar.vladimir@ucv.ro

Vaisman manifolds are classical examples of locally conformally Kähler manifolds.
These spaces are known to admit local Kähler structures that cannot be extended global-
ly. Any Vaisman manifold induces a canonical foliated structure that turn the manifold
into a Riemannian foliation. For any foliation of this type it is possible to construct a
spectral sequence such that the terms of this cohomological object stand as topological
invariants. We investigate the terms of the spectral sequence using a Hodge approach.
In the attempt to associated a Vaisman structure to an arbitrary foliation we show that
these invariants offer us topological obstructions. Several examples are presented.
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Smale-Barden manifolds with K-contact and Sasakian structures

Aleksy Tralle

Uniwersytet Warmińsko–Mazurski w Olsztynie

e-mail: tralle@matman.uwm.edu.pl

We show that under some mild restrictions, there exists a closed 5-dimensional
manifold with vanishing first integral homology which carries K-contact structures but
does not carry any Sasakian structure. This yields a partial answer to a question posed
by Boyer and Galicki. In the talk, I present an overview of this result together with a
more general research program. This is a joint work with Vicente Munoz and Juan
Angel Rojo.

Geometric structures on foliated manifolds.
Tangentially g-foliations revisited

Robert Wolak

Uniwersytet Jagielloński

e-mail: robert.wolak@im.uj.edu.pl

A tangentially g-foliation is a regular foliation whose tangent subbundle is trivial and
the trivialisation is given by a set global vector fields forming a Lie algebra isomorphic
to g. Such foliations appear in many a geometrical context. Let us just mention Sasakian
manifolds, 3-Sasakian manifolds, or totally geodesic foliations. The topics investigated
include the existence of such foliations with rich tranverse structures à Sasaki and the
fatness condition.

The lecture is based on recent joint research with A. Tralle, M. Bocheński, and M.
Sroka.
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Variations of total mixed scalar curvature

Tomasz Zawadzki

University of Haifa

e-mail: zawadzki@math.uni.lodz.pl

In [1] authors considered variations of total mixed scalar curvature (of the Levi-
Civita connection) as a functional on the space of pseudoriemannian metrics preserving
a fixed almost product structure. The Euler-Lagrange equations were obtained and some
examples of their solutions were given.

These results will be presented and generalised  by considering the total mixed
scalar curvature of a fixed distribution and varying it with respect to all pseudorieman-
nian metrics, as well as connections.

1. V. Rovenski, T. Zawadzki, The Einstein-Hilbert type action on foliated pseudo-Riemannian
manifolds, ArXiv:1604.00985
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USEFUL INFORMATION

Registration desk

Registration desk is located at the main lecture hall. It is open on Monday (July 11)
at 5-7 pm and on Tuesday (July 13) at 8:30 – 11 am. Anyway, the organizing committee
memmbers help you in any case.

Meeting Venue

The conference takes place in the main lecture hall equipped with a computer, pro-
jectors and blackboards. You can also use a small lecture room and the common room
for some individual meetings. Będlewo Palace provides full-board accommodation for
participants of the conference. Hotel rooms are in the same building as lecture halls and
the restaurant is located in the neighbouring palace.

Social events

The conference banquet starts on Wednesday (July 13) at 8 pm. It is included in the
registration fee.

On Thursday (July 14) afternoon we plan (depending on weather) an excursion
around Wielkopolski National Park in two ways : draisines (less effort) or bikes (more
effort).
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Addresses

www: http://foliations2016.math.uni.lodz.pl
e-mail: foliations2016@math.uni.lodz.pl
Phone: +48 42 635 5881
Fax: +48 42 635 4266
Mobile: +48 603 591 076

Mailing address:
Foliations 2016
Wydział Matematyki i Informatyki
Uniwersytet Łódzki
ul. Banacha 22
90-238 Łódź, Poland

Venue address:
ul. Parkowa 1
Będlewo
62-060 Stęszew, Poland
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PARTICIPANTS

1. Álvarez López Jesús A., Universidade de Santiago de Compostela, Spain
jesus.alvarez@usc.es

2. Andrzejczak Grzegorz, Politechnika Łódzka, Poland
gandrzejczak99@wp.pl

3. Asuke Taro, University of Tokyo, Japan
asuke@ms.u-tokyo.ac.jp

4. Badura Marek, Uniwersytet Łódzki, Poland
marekbad@math.uni.lodz.pl

5. Barral Ramón, University of Santiago de Compostela, Spain
ramonbarrallijo@gmail.com

6. Bartoszek Adam, Uniwersytet Łódzki, Poland
mak@math.uni.lodz.pl

7. Bavard Juliette, UPMC, France
juliette.bavard@imj-prg.fr

8. Biś Andrzej, Uniwersytet Łódzki, Poland
andbis@math.uni.lodz.pl

9. Bojanowska-Jackowska Agnieszka, Uniwersytet Warszawski, Poland
A.Bojanowska@mimuw.edu.pl

10. Bowden Jonathan, LMU, Germany
Jonathan.Bowden@mathematik.uni-muenchen.de

11. Brito Fabiano, Universidade Federal do ABC, Brazil
fabiano.brito@ufabc.edu.br

12. Calegari Danny, University of Chicago, USA
dannyc@math.uchicago.edu

13. Czarnecki Maciej, Uniwersytet Łódzki, Poland
maczar@math.uni.lodz.pl

14. Eynard-Bontemps Hélène, Université Pierre et Marie Curie, France
helene.eynard-bontemps@imj-prg.fr
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15. Fenley Sergio, Princeton University and Florida State University , USA
fenley@math.princeton.edu

16. Frankel Steven, Yale University, USA
steven.frankel@yale.edu

17. Frydrych Mariusz , Uniwersytet Łódzki, Poland
frydrych@math.uni.lodz.pl

18. Gonçalves Icaro, IME-USP, Brazil
icarog@ime.usp.br

19. Hajduk Bogusław, Uniwersytet Warmińsko-Mazurski , Poland
bhmath@interia.pl

20. Hector Gilbert, Université C. Bernard (Lyon 1) , France
gilberthector@orange.fr

21. Hurder Steven, University of Illinois at Chicago, USA
hurder@uic.edu

22. Hurtado Salazar Sebastian, University of Chicago, USA
shurtados@math.uchicago.edu

23. Inaba Takashi, Chiba University, Japan
inaba@math.s.chiba-u.ac.jp

24. Ingebretson Daniel, University of Illinois at Chicago, USA
dingeb2@uic.edu

25. Jackowski Stefan, Uniwersytet Warszawski, Poland
sjack@mimuw.edu.pl

26. Jóźwicka Maria, Ericsson Ericpol, Poland
mariawal@wp.pl

27. Kaźmierczak Anna, Uniwersytet Łódzki, Poland
akaz@math.uni.lodz.pl

28. Kimaczyńska Anna, Uniwersytet Łódzki, Poland
kimaczynska@math.uni.lodz.pl

29. Kordyukov Yuri, Russian Academy of Sciences, Russia
ykordyukov@yahoo.com

30. Kozłowski Wojciech, Uniwersytet Łódzki, Poland
wojciech@math.uni.lodz.pl

31. Langevin Remi, Universite de Bourgogne, France
Remi.Langevin@u-bourgogne.fr
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32. Le Roux Frederic, Universite Pierre et Marie Curie, France
frederic.le-roux@imj-prg.fr

33. Lech Jacek, AGH Kraków, Poland
lechjace@agh.edu.pl

34. Lukina Olga, University of Illinois at Chicago, USA
ollukina940@gmail.com

35. Lużyńczyk Magdalena, Uniwersytet Łódzki, Poland
luzynczyk@math.uni.lodz.pl

36. Maksymenko Sergiy, NAS of Ukraine, Ukraine
maks@imath.kiev.ua

37. Mann Kathryn, UC Berkeley, USA
kpmann@math.berkeley.edu

38. Maruhashi Hirokazu, Max-Planck-Institut für Mathematik, Germany
h-maruha@math.kyoto-u.ac.jp

39. Marzantowicz Wacław, Uniwersytet Adama Mickiewicza, Poland
marzan@amu.edu.pl

40. Matsuda Yoshifumi, Aoyama Gakuin University, Japan
ymatsuda@gem.aoyama.ac.jp

41. Matsumoto Shigenori , Nihon University, College of Science and Technology, Japan
matsumo@math.cst.nihon-u.ac.jp

42. Michalik Ilona, AGH Kraków, Poland
imichali@wms.mat.agh.edu.pl

43. Militon Emmanuel, Universite Nice, France
emmanuel.militon@unice.fr

44. Mitsumatsu Yoshihiko, Chuo University, Japan
yoshi@math.chuo-u.ac.jp

45. Mohammed Sizar, University of Duhok, Iraq
sizar@uod.ac

46. Najberg Agnieszka, Uniwersytet Łódzki, Poland
najbergagnieszka@gmail.com

47. Namiecińska Agnieszka, Uniwersytet Łódzki, Poland
a.namiecinska@wp.pl

48. Nariman Sam, University of Muenster, Germany
nariman@wwu.de
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49. Niedziałomski Kamil, Uniwersytet Łódzki, Poland
kamiln@math.uni.lodz.pl

50. Nozawa Hiraku, Ritsumeikan University, Japan
hnozawa@fc.ritsumei.ac.jp

51. Ouakkas Seddik, Université de Saida, Algeria
souakkas@yahoo.fr

52. Pawlak Helena, Uniwersytet Łódzki, Poland
helpaw@math.uni.lodz.pl

53. Pawlak Ryszard, Uniwersytet Łódzki, Poland
rpawlak@math.uni.lodz.pl

54. Peralta-Salas Daniel, ICMAT, Spain
dperalta@icmat.es

55. Pérez Muñoz, Joaqúın, Universidad de Granada, Spain
jperez@ugr.es

56. Pierzchalski Antoni, Uniwersytet Łódzki, Poland
antoni@math.uni.lodz.pl

57. Przytycki Feliks, Instytut Matematyczny PAN, Poland
f.przytycki@impan.pl

58. Rogowski Jacek, Politechnika Łódzka, Poland
jacekrog@p.lodz.pl

59. Rovenski Vladimir, University of Haifa, Israel
rovenski@math.haifa.ac.il

60. Rybicki Tomasz, AGH Kraków, Poland
tomasz@agh.edu.pl

61. Schweitzer Paul A., PUC - Rio de Janeiro, Brasil
paul37sj@gmail.com

62. Slesar Vladimir, University of Craiova, Romania
slesar.vlslesar@ucv.ro

63. Tarchała Katarzyna, Uniwersytet Łódzki, Poland
k.tarchala@vp.pl

64. Tralle Aleksy, Uniwersytet Warmińsko–Mazurski w Olsztynie, Poland
tralle@matman.uwm.edu.pl

65. Tsuboi Takashi, University of Tokyo, Japan
tsuboi@ms.u-tokyo.ac.jp
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pawelwal@math.uni.lodz.pl

68. Walczak Szymon, Narodowe Centrum Nauki , Poland
szymonwal@gmail.com

69. Walczak Zofia, Uniwersytet Łódzki, Poland
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70. Wolak Robert, Uniwersytet Jagielloński, Poland
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71. Zawadzki Tomasz, University of Haifa, Israel
zawadzki@math.uni.lodz.pl
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