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ON GENERATING CORRELATED PSEUDO-RANDOM  

BINARY NUMBERS 

 
Abstract. The paper is devoted to the problem of generating sequences of binary vectors 

having joint distribution allowing for correlation between individual elements. A procedure for 

generating such a distribution from uncorrelated binary and multinomial pseudo-random data is 

proposed. Certain properties of the proposed procedure are examined in the simulation study. 
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I. INTRODUCTION 

 

Pseudo-random data having multivariate binary (two-point in {0,1}) 

distribution find applications in various fields of study. One of such fields is 

survey sampling where such pseudo-random vectors may be used to simulate the 

non-controllable stochastic nonresponse mechanism which governs if sampled 

units provide valid answers in the survey or not. In such a context it is often 

assumed that events representing the participation or non-participation in the 

survey are independent. In practice, this assumption does not have to be true, 

which leads to a growing interest in establishing the properties of estimators 

under non-independent data missingness. As a result, a need appears to generate 

pseudo-random multivariate binary data that allow for correlation between 

individual binary components. This problem has already been considered by 

many authors including Emrich and Piedmonte (1991), Lee (1993), Gange 

(1995), Park et al (1996) and Leisch et al (1998). In this paper another approach 

to this problem is studied. 

 

II. PROPOSED PROCEDURE 

 

Let x = [x1,...,xk]’ {0,1}
k
 be a random vector with the expected value E(x) = 

m where m = [m1,...,mk]’ and E(xx’) = M = [Mij]. The covariance matrix 

V(x)=E((x–m)(x–m)’) of x may be expressed in the form: 
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V(x) = M–mm’ 

 

For k>2 the knowledge of M and m does not determine completely the 

distribution of x. Nevertheless, it is desired to generate a sequence of pseudo-

random vectors: 

x1,...,xn 

imitating as accurately as possible independent realizations of a random vector x 

with the expected value m and the covariance matrix M-mm’. The proposed 

procedure starts with generating a vector of independent pseudo-random binary 

variables:  

g = [g1,...,gk]’ {0,1}
k
 

with the expectation  

E(g) =  = [ 1,..., k]’ 

Then additional independent pseudo-random vectors f1,...,fk are generated, 

each of them having multinomial distribution so that 

fi ~ mult( i,k) 

with 1,..., k  <0,1>
k
  being constant vectors of multinomial parameters. 

Hence, the vectors f1,...,fk may be arranged in a matrix:  

F = [f1,...,fk]’ 

with the expectation 

E(F) =  = [ 1,..., k]’ 

where 

 J = J 

and J = [1,...,1]’ is the vector of the size k x 1 having each element equal to 

unity. The binary vector x imitating an individual realization of the multivariate 

random variable x is then obtained according to the formula:  

x = Fg 

As individual components of g are independent, the matrix of their second 

raw moments may be expressed in the form: 

E(gg’) =  

where 
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with I representing an identity matrix of the size k x k. As a result one may 

express the expectation and the covariance matrix of x in the form: 

E(x) = h1( , ) 

where 

h1( , ) =  

One may also derive: 

E(xx’) = ’ – diag( ’) + diag( ) 

and as a consequence 

V(x) = ’ – diag( ’) + diag( ) – ’ ’ 

or equivalently 

V(x) = (diag( )(I– diag( ))) ’ – diag( ’) + diag( ) 

Assuming  to be nonsingular, one may express the covariance matrix in 

the form  

V(x) = h2( , ) 

where 

 

h2( , ) = (diag( )(I– diag( ))) ’ – diag( diag( )(I– diag( )) ’) + 

– diag( mm’) + diag(m) 

so that only two terms in h2(.) depend on  and . Hence, in order to assure that 

moments of the generated sequence of vectors correctly imitate realizations of x, 

one may attempt to find the values of  and  satisfying conditions: 
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To eliminate equality constraints associated with elements of the matrix  

one may introduce another matrix Z = [zij] of the size k x k and zij R for 
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i,j=1,...,k. The elements of  may then be expressed as a transformation of 

corresponding elements of Z according to the formula: 
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Under assumption that zij are not simultaneously equal to zero in any row of 

Z this assures that all the elements of  are in the <0,1> range, and their row 

sums are equal to unity. Moreover, for any possible value of  there exists some 

value of Z that transforms to it. Consequently, instead of finding  and  

 satisfying (1) one may attempt to find such Z and  that: 
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A solution to this problem may be found by minimizing the following 

criterion function: 

Q(Z, ) = ’ + tr( ’) + ( ) 

where 

 = h1( (Z), ) – m 

 = h1( (Z), ) – (M–mm’) 

while 

ki

i

,...,1

2 )25.0)5.0(,0max()(  

The first two terms of the function Q are equivalent to the sum of squared 

differences between desired and actual components of the expectation vector and 

covariance matrix while ( ) is an additional penalty term that forces the 

elements of the vector  to fall into the <0,1> interval. The minimum possible 

value for Q is equal to zero. It may be achieved for various combinations of  

 and Z values and, if achieved, it guarantees that a solution to the problem (2) is 

found, although in general Q does not have to be convex. The ‘creeping simplex’ 

algorithm of Nelder and Mead (1965) is particularly useful for finding the 

minimum of Q as it does not require the knowledge of the gradient for Q. The 

quasi-Newton procedures using finite-difference gradient estimates also seemed 

to work well in experiments (this was especially true for Broyden-Fletcher-
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Goldfarb-Shanno (1970) method implemented in R). In any case when zero 

value is not achieved for Q, it appears reasonable to restart the procedure from 

other randomly chosen starting point. The failure to achieve zero after carrying 

out a prescribed number of restarts may be treated as evidence that for given 

values of M and m the criterion function does not have a global minimum 

yielding the value of Q equal to zero. In such a case the proposed procedure may 

be restarted with increased length of vectors g and f1,...,fk.  

 

III. SIMULATION RESULTS 

 

A simulation study was conducted to compare the proposed procedure (in 

the sequel denoted by the abbreviation: ‘PRO’) to the well-known algorithm of 

Leisch et al (1998) and to the procedure of Park et al (1996) – respectively 

abbreviated by ‘LWH’ and ‘PPS’. The procedures PRO and PPS were 

implemented in R for this study while for LWH an implementation from the R 

package bindata was used. The simulation experiment was carried out for 

desired parameters of the distribution given by the expectation vector: 

 

'75.0,65.0,55.0,45.0m  

 

and the correlation matrix  

110.015.020.0

10.0125.030.0

15.025.0135.0

20.030.035.01

R  

which corresponds to a desired matrix of second moments: 

 

0.75000000.50815340.44481320.3805842

0.50815340.65000000.41682230.3636868

0.44481320.41682230.55000000.3341250

0.38058420.36368680.33412500.4500000

M  

 

A simulation was carried out by generating 10
7
 realizations of random 

vectors with each procedure. Second moments registered during simulation 

(equivalent to empirical frequencies of joint occurrence of ones for each pair of 

variables) for each procedure are as follows: 
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0.74997870.50820690.44482440.3808378

0.50820690.64993710.41684630.3637991

0.44482440.41684630.54995820.3342347

0.38083780.36379910.33423470.4501784

PROW  

0.75022620.50823090.44533880.3801617

0.50823090.64979300.41752990.3634486

0.44533880.41752990.54999830.3339403

0.38016170.36344860.33394030.4499538

LWHW  

0.74985850.50800160.44461680.3803358

0.50800160.64996340.41683190.3635074

0.44461680.41683190.54987680.3339032

0.38033580.36350740.33390320.4498139

PPSW  

All these frequencies are reported with 7 significant digits so actual counts 

may be re-computed via multiplying them by 10
7
. The null hypothesis stating the 

equality of respective second moments of generated distributions to desired ones 

was tested using the Clopper-Pearson (1934) exact test. Two-sided significances 

(p-values) corresponding to all registered frequencies given above are as 

follows: 

0.87638520.73505520.94318250.0986609

0.73505520.67666160.87791440.4605860

0.94318250.87791440.79047160.4620628

0.09866090.46058600.46206280.2568009

PROP  

0.09862300.62397950.00082390.0059276

0.62397950.16994000.00000560.1173901

0.00082390.00000560.99137830.2157394

0.00592760.11739020.21573950.7692556

LWHP  

0.30143080.33711620.21149670.1056975

0.33711620.80827220.95115770.2382799

0.21149670.95115770.43356220.1371036

0.10569750.23827990.13710360.2369632

PPSP  
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Hence, extremely low significances were observed only for the LWH 

procedure which makes corresponding null hypotheses highly questionable for 

this procedure. The significances for two other procedures were consistent with 

respective null hypotheses. In addition, the properties of generated pseudo-

random sequences are presented graphically, in the form of correlation 

coefficients between individual variables computed repeatedly for each iteration 

of the simulation process. Subsequent values of these coefficients are shown as 

individual points on picture 1 for the PRO, picture 2 for LWH and on picture 3 

for the PPS procedure. The first point for each pair of variables represents their 

correlation coefficient computed for pseudo-random data from iterations 1 to 5, 

second for iterations 1 to 6 and so on up to the last point representing iterations 1 

to 23·105
. Desired values of correlation coefficients for each pair of variables are 

shown as horizontal lines. 

 

 

Pic. 1. Correlation coefficients for the PRO procedure 

 

 

Visual inspection of all three pictures leads to the conclusion that moments 

of the pseudo-random multivariate data series produced using PRO and PPS 

procedures are more consistent with specification than in the case of LWH 

procedure, where subsequent correlation coefficients apparently stabilize at 

values which differ from desired ones. This supports the results of Clopper-

Pearson tests mentioned above. 
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Pic.2. Correlation coefficients for the LWH procedure. 

 

 

Pic. 3. Correlation coefficients for the PPS procedure. 
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IV. CONCLUSIONS 

 

The proposed procedure works in two phases. In the first phase its 

parameters are calculated numerically. In the second phase correlated pseudo-

random binary vectors are produced by transforming uncorrelated binary and 

multinomial pseudo-random data. Known generators of these distributions are 

extremely fast, reliable and implemented in most statistical packages. The 

transformation used in the second phase is extremely simple as well. Hence, it 

might be expected that the examination of other important properties for the 

proposed generator (like period length, lack of autocorrelation, reduction of the 

Marsaglia effect) should also be feasible. The accordance of generated moments 

with desired ones as shown in this paper constitutes a promising starting point 

for further analyses. Also, the proposed procedure appears to work quite 

efficiently when random vectors are to be repeatedly generated for the same 

desired distribution. During simulation experiments it worked significantly faster 

than the PPS procedure although not as fast as the LWH. This observation 

should be interpreted with care as it depends on technical details associated with 

the implementation as well as operating environment. Anyway, the amount of 

random access memory used by the proposed procedure is negligible, as 

opposed to the LWH which allocates large tables.  

The range of applications of the proposed procedure is restricted by the fact 

that it cannot generate negatively correlated binary variables. This limitation 

might possibly be overcome through merging the vector g with its negation. 

However, such an issue exceeds the scope of this paper.  
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O GENEROWANIU SKORELOWANYCH BINARNYCH LICZB  

PSEUDOLOSOWYCH 

 

Niniejszy artyku  po wi cony jest problemowi generowania ci gów wektorów binarnych 

liczb pseudolosowych dla zadanego wektora prawdopodobie stw brzegowych oraz macierzy 

korelacji. Zaproponowano procedur  generuj c  takie wektory na podstawie danych 

pseudolosowych o rozk adzie zerojedynkowym i wyk adniczym. Zbadano wybrane w asno ci 

zaproponowanej procedury. 


