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Abstract. The paper deals with a problem of testing the non-parametric hypothesis 
that two populations are equally distributed in the situation when the observations are 
subject to random censoring. A general metric for measuring the distance between two 
distributions is the Kolmogorov metric and the corresponding test is the Two-Sample 
Kolmogorov-Smirnov test. In the report below we present results of a simulation study 
performed for three versions of the Two-Sample Kolmogorov-Smirnov test for censored 
data. These three versions are generated by three methods of treating censored observations. 
Basic statistical properties of these tests are inspected by means of Monte Carlo simulations.
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INTRODUCTION

Censored data are fundamentally different from other types of data in 
the sense that the response of interest (the time until a specified event) is 
not always fully observed because some causes can interrupt the observation 
before the event occurs. Randomly censored data occur frequently in many 
fields of applied statistics: e.g. industrial applications and technology 
(reliability theory and life-testing), medical and biological studies (survival 
time), economic studies (e.g. when one is preparing a report on the 
duration of a phenomena and some of them are still in run) etc. References, 
especially in medical applications, are in abundance (e.g. A l t m a n  (1991), 
M a r u b  in i  and V a l s e c c h i  (1996)).

We are interested in testing the non-parametric hypothesis that two 
populations are equally distributed in the situation when the observations 
are subject to random censoring. Typically the M ann-W hitney-W ilcoxon
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test (e.g. G e h a n (1965)), the log-rank test (e.g. M a r u b i n i and V a 1 e s с - 
c h i  (1996)), or some other combinatorial tests are used. However applying 
such tests we arc not able to control their critical regions according to our 
knowledge concerning the alternative hypothesis and the tests may not 
reflect the real-life situation under consideration. For instance the 
M ann-W hitney-W ilcoxon test is constructed for alternatives formed by 
shifting the distribution specified in the null hypothesis.

A general metric for measuring the distance between two distributions is 
the Kolmogorov metric and the corresponding test is the Two-Sample 
Kolomogorov Smirnov test. It measures the distance between two empirical 
distribution functions in terms of Kolmogorov metric. In the report below 
we present results of a simulation study performed for three versions of 
the Two-Sample Kolmogorov-Smirnov test under random censoring. These 
three versions are generated by three methods of treating censored obser­
vations. As a result we are able to assess how much we lose in the effect 
of censoring.

Let X  and У be positive random variables representing failure time in 
two populations of individuals. Let F and G denote unknown continuous 
cumulative distribution functions of X  and У, respectively. The problem is 
to test the null hypothesis

Let Z  be a positive random variable (censoring variable) independent on 
X  and У, distributed according to a cumulative distribution function H.  In 
consequence, what we observe are two censored samples

II. STATEMENT OF THE PROBLEM

H 0 : F =  G

against a general alternative

H i - . F ^ G

and

where

X'k = m i n ( X k, Z k) and = I ( X k ^ Z k), for к = 1, 2, ..., m,



Y; =  min(y„ Z,) and ö\*> =  I (X,  <  Z (), for / = 1 , 2 ,  .... и,

where I denotes the indicator function. X lt X 2, X m are independent 
and identically distributed random variables with cumulative distribution 
function F, and У;, У2) Yn are independent and identically distributed 
random variables with cumulative distribution function G.

I о assess the behaviour of the I wo-Sample Kolmogorov-Smirnov test 
under random censoring we consider four statistics D, D., D , and D ru  
defined below.

First, let us consider a standard case, when the data are not subject to 
random censoring. Let Fm and Gn be empirical distribution functions from 
two uncensored samples Х 1г X 2, ..., X m and Ylf Y2, .... Yn

Fm(x) = I  X  I ( x k <  x) and Gn(x) =  -  £  I(Y, <  x)
m k=1 И j = i

thus the standard Kolmogorov metric takes the form

D =  sup |F m(x) — G„(x)| (2)
X

Now, let us consider two censored samples given in (1). Let F'm and 
Gń be empirical distribution functions calculated from these two samples

Fm(*) = ~ f l I ( X i ^ x )  and G ;( x )  =  - £  I ( Y , ^ x ) 
mk = i nl=1

then the Kolmogorov metric for censored samples will be defined as follows

0 1 = s u P | F ; ( x ) - G : ( * ) |  (3)
X

Let m and n denote numbers of uncensored observations in both 
samples (1). It is clear that

m' — Z  and ri =  £<5i2)
*=i i=x

Denote by Fm and G „ two empirical distribution functions calculated 
from these uncensored observations in both samples. Thus

P(x)=m' Z and = I  I(Ŷ x)



The Kolmogorov metric based on reduced samples takes the form

D2 = sup\Pm(x ) -G „(x ) \  (4)
X

Let F*M, G*M be the non-parametric Kaplan-M eier estimators (sec 
K a p l a n  and M e i e r  (1958)) of the respective cumulative distribution 
functions F and G

( m-k Vi"
F ™  (x) =  1 -  П  ( ) * where *u> <*»><•••<**■>

X(k) < * J

(  71 I
=  1 -  П  ( ” , ) '  - where -Vd) <  У(2) <  -  <  Ум

The Kolmogorov metric based on the Kaplan-Meier estimators will be 
defined as follows

DKM = s u p \F ™ ( x ) - G ™ ( x ) \  (5)

III. S IM U IA TIO N S

The aim was to study power performance of the presented test procedures 
based on statistics D, Dt , D2 and DKM given in (2), (3), (4) and (5), 
respectively. In order to determine achieved significance levels and powers 
as the distribution G and H  were varied, we performed a M onte Carlo 
study for test statistics: D, D, and D2. Power performance of DKU has to 
be considered separately. To control the size of tests D, D{ and Dz the 
randomised tests were employed.

For variables X  and Y exponential distributions F and G were considered, 
i.e. F ~  E(0, 1), G ~  E(0, c), where pdf E(0, c)cce~xlc. For censoring variable 
Z  a gamma distribution H  was assumed i.e. H  ~  Gamma (a, 1), where pdf 
Gamma (a, b)acxa~ 1e~x/b.

To measure the degree of censoring the following probabilities p y and 
p2 were evaluated

Pl = P ( X > Z \ X ~ F ,  Z ~ Я)  = (6)



p, = P ( Y > Z \ Y ~ G ,  Z ~ H )  = -  '  (7)

Ю
For some combinations of parameters a and с  two censored samples of 

size m = n = 10 were generated. Based on these data it was determined 
whether D, D, and D2 tests reject H 0 at significance level 0.1. The 
percentages of rejections out of the 10 000 replicates (i.e. their simulated 
powers) were computed. Table 1 summarises the simulated powers. The first 
block of Table I comprises results obtained for various values of parameter 
с  and for a — 1, while the second one comprises results obtained for 
various values of parameter с  and for a =  3. Notice, that when с =  1 the 
distribution functions F and G are equal. Thus in this case the simulated 
rate of rejections of H 0 reflects a simulated significance level which agrees 
with the nominal one equal to 0.1.

T a b l e  1

Simulated powers of the 10%-level tests D, £>, and D2, sample sizes m =  n =  10 
F ~ E ( 0, 1), G ~ E (0 , c), H ~ G am m a(a , 1)

10 000 replications for each combination of parameters a and с

Values of scale 
parameter с

Power values of tests Simulated and exact fractions of 
censoring

D ß . d 2 P\ Pi Рг Vi
a =  1

1.0000 0.1002 0.1002 0.1040 0.499 0.500 0.502 0.500
1.5000 0.4713 0.1154 0.1063 0.499 0.500 0.601 0.600
2.0000 0.6205 0.1374 0.1120 0.499 0.500 0.669 0.667
2.5000 0.7311 0.1586 0.1181 0.499 0.500 0.716 0.714
3.0000 0.8121 0.1730 0.1215 0.499 0.500 0.751 0.750
3.5000 0.8645 0.1876 0.1246 0.499 0.500 0.779 0.778
4.0000 0.9005 0.1999 0.1228 0.499 0.500 0.801 0.800
4.5000 0.9283 0.2076 0.1202 0.499 0.500 0.819 0.818
5.0000 0.9453 0.2148 0.1169 0.499 0.500 0.834 0.833
5.5000 0.9580 0.2216 0.1123 0.499 0.500 0.847 0.846
6.0000 0.9686 0.2284 0.1097 0.499 0.500 0.857 0.857
7.0000 0.9782 0.2349 0.1012 0.499 0.500 0.876 0.875
8.0000 0.9851 0.2422 0.0942 0.499 0.500 0.889 0.889

a == 3
1.0000 0.1016 0.1017 0.1015 0.125 0.125 0.126 0.125
1.5000 0.1898 0.1604 0.1310 0.125 0.125 0.217 0.216
2.0000 0.3307 0.2639 0.1704 0.125 0.125 0.298 0.296



Tabic 1 (contd.)

Values of scale 
parameter с

Power values of tests Simulated and exact fractions of 
censoring

D D. Pi Pi Pi Pi
a = 3

2.5000 0.4783 0.3643 0.2057 0.125 0.125 0.367 0.364
3.0000 0.5918 0.4438 0.2299 0.125 0.125 0.424 0.422
3.5000 0.6870 0.5115 0.2479 0.125 0.125 0.472 0.471
4.0000 0.7616 0.5681 0.2589 0.125 0.125 0.514 0.512
4.5000 0.8154 0.6139 0.2636 0.125 0.125 0.551 0.548
5.0000 0.8575 0.6494 0.2649 0.125 0.125 0.581 0.579
5.5000 0.8865 0.6788 0.2697 0.125 0.125 0.608 0.606
6.0000 0.9103 0.7040 0.2719 0.125 0.125 0.633 0.630

50.0000 1.0000 0.9210 0.1150 0.125 0.125 0.940 0.942
80.0000 1.0000 0.9320 0.0740 0.125 0.125 0.967 0.963

IV. RESULTS AND CONCLUSIONS

The standard Two-Sample Kolmogorov-Smirnov test based on statistic 
D was considered as a benchmark for our study of Dl and D2 for censored 
data. It is obvious that the loss of power for statistics D x and D2 is due 
to censoring. However, the influence of censoring on and D2 differs 
markedly. The loss of power for Dy is caused by the fact that the 
Kolmogorov distance between F ’ and G' is smaller than the distance 
between F and G. On the other hand, it can be seen that the power 
performance for the second statistic D2 is very sensitive to the sample sizes. 
We can notice, that the statistic D2 was calculated for reduced samples, 
obtained by elimination of censored observations. Thus the sample sizes 
were random in this case. What is more, the power values obtained for 
£>! are greater than these ones obtained for D2. This seems to be true for 
different alternative hypotheses. Thus statistic D2 is markedly less powerful 
than statistic Dl .

It is also worth noting, that D2 exhibits non-monotone change in its 
power. We can observe that the power values of D2 decrease when the 
censoring fraction increases. For heavy censoring the power of D2 drops 
even beneath the assumed significance level, so the test appears to be biased 
in such cases. Due to a serious loss of power for D2 the Kolmogorov-Smirnov 
test for random reduced samples cannot be recommended when censoring is 
present. The M onte Carlo study has clearly shown that test is much 
better than D2.



V. RKMARKS ON DISTRIBUTION OF STATISTIC Díu

The main problem in applying the statistic DKM lies in finding its exact 
or approximate distribution under the null hypothesis. Unfortunately, the 
distribution of DKM depends in a very complicated way on the censoring 
distribution II. As yet, we are able to derive the distribution of statistic 
DKM under rather strong hypothesis: F =  G =  H. For instance for m = n =  10 
and for the assumed pattern of censoring in both ordered samples given by 
the assumed order of ones and zeros in the sequence of <5-values i.e. for 
<5(,) =  (1, 0, 1, 0, 1, 0, 1, 0, 0, 1) and <5(2) =  (1, 0, 0, 1, 0, 1, 0, 1, 0, 1) 
we obtained the distribution of statistic DKM, given in Table 2.

T a b l e  2

The exact and simulated distribution of statistic DKU 
for <5m =  (l, 0, 1, 0, 1, 0, 1, 0, 0, 1) and 6m  -  (1, 0, 0, 1, 0, 1, 0, 1, 0, 1)

m =  n =  10

d> 0.411 0.489 0.492 0.508 0.617 0.656 0.771 0.788 0.900

Exact probabilities 
Pi =  P(DKH = 0.392 0.002 0.456 0.001 0.089 0.038 0.015 0.005 0.002

Simulated pro­
babilities p, 0.389 0.002 0.458 0.002 0.092 0.036 0.014 0.005 0.002

This distribution differs from the distribution of statistic D given in 
Table 3.

T a b l e  3

The exact distribution of statistic D 
m = n =  10

d> 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Probabilities 
P(D =  d<) 0.006 0.207 0.369 0.250 0.115 0.040 0.011 0.002 0.000 0.000

W hat is more the distribution of statistic DKM changes when the pattern 
of censoring in one or both samples is changed. Thus DKM can hardly be 
applied for testing the equality F = G without referring to the pattern of 
censoring.
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Agnieszka Rossa

TEST ZGODNOŚCI KOLMOGOROWA^SMIRNOWA 
DLA DANYCH LOSOW O CENZUROWANYCH

-  ANALIZA SYMULACYJNA

(Streszczenie)

W artykule przedstawione są trzy wersje testu zgodności Kołmogorowa-Smimowa dla 
danych prawostronnie cenzurowanych. Poszczególne testy różnią się sposobem podejścia do 
obserwacji cenzurowanych. Moc testów została zbadana i porównana za pomocą symulacji 
Monte Carlo.


