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COMBINING RANDOM COEFFICIENT REGRESSION 
WITH THE POTTHOFF AND ROY MODEL 

IN GROWTH CURVE ANALYSIS

Abstract. In this paper ideas when modelling growth curve data with a 
random coefficient regression model are put together with ideas from the appli
cation of the Grówth Curve model. In general, results from [L u n d b у e- 
- C h r i s t e n s e n  (1988)] are extended. It is shown that when there 
exist certain connections between the mean structure and the covariance struc
ture it is possible to obtain straightforward algorithms, leading to estimators 
without any heavy calculations.
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1. INTRODUCTION

This paper will treat some extensions of the ordinary Growth 
Curve model, (GC), which was introduced by [ P o t t h o f f  and 
R o y  (1964)], and extensions of a random coefficient regres
sion model, (RCR), both applicable to the analysis of growth cur
ves. Data which usually are to be analysed by the models consists 
of several short time series, each containing repeated measurements 
on some "individual". For example, when studying the growth rate 
of a cohort of children during puberty, body height may have been
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measured every half year from an age of 11 up to an age of 18. 
The problem with this type of data is that the repeated measure
ments for various reasons, often are correlated.

In order to apply the GC model the repeated measurements have 
to be sampled at the same "time" points. In the above example 
this condition would have been satisfied if each child would have 
been sampled at an age of 11, 11.5, . 1 8 .  Note that no missing 
values are allowed in the ordinary GC model.

Over the years several extensions of the model have been put 
forward which allow for missing values as well as data which are 
sampled at different time points. For a review of the model see 
von [ R o s e n  (1989a)]. Data with some missing values and ir
regularly dispersed sample points is also a type of data which is 
much more frequent than data suitable for the Potthoff and Roy mo
del. When studying growth curves, in order to overcome these dif
ficulties with data, one is often thinking in terms of individual 
growth curves. The methodology is then to estimate the whole bunch 
of individual growth curves, one by one, and thereafter pool to
gether the information from each single curve. In this spirit of 
estimating individual growth curves, a common approach to model 
data is by assuming that there exists a separate parameter for 
each individual but where the parameter is sampled from a popula
tion of parameters. This immediately leads us to a RCR model. Mo
reover, note that in comparison with the GC model the RCR model 
is more flexible when modelling the mean structure. On the other, 
one usually has to suppose that the measurement errors within 
each individual are independently distributed or have a known co
variance matrix, which in many applications is not realistic. For 
the ordinary GC model we do not have to suppose independence 
within individuals since an arbitrary covariance matrix is assumed 
for the repeated measurements. To clearly see the difference be
tween the RCR and GC models we define these models in the next. 
In the definitions as well as in the rest of this paper p.d. 
•stands for positive definite (p.s.d. positive semi definite), p(•) 
for the rank and | for a conditional distribution.

Definition 1.1. Growth Curve model: Let Ys p x n, A: p x q 
q < P, B: q x к, С: к * n, Ii p x p p.d., where p(C) + p < n 
holds. The columns of Y are independently p-variate normally



distributed with an unknown dispersion matrix I and E[Y] = ABC 
where A and С are known design matrices and В is an unknown para
meter matrix.

Definition 1.2. RCR model,: Let Y^i 1 x nj, 1 x it, c^'k x
x ni, a and i|i are scalars, the C^ are known, о and ф are unknown 
parameters and B^ stochastic variables i * 1, 2, ..., m. The ele
ments in YjjBi are normally distributed, E t Y ^ B ^  = BjCj, 
D[Yi IBi] « i|»I, and B^ is normally distributed with an unknown 
mean В and covariance matrix o2l.

Observe that elements in Y in both models are correlated. 
Furthermore, in general one may assume that each individual fol
lows a growth process, especially some stationary or non-stationary 
Markov process or a Wiener process with drift, which in many rea
listic situations is independent of the measurement errors. In 
these cases we have a model with the same mean as in definition 
1.2 but with a covariance structure

DfYj a J2^  + ФХ (1.1)
where is a prespecified p.s.d. matrix whose structure depends 
on the assumptions on the growth process. However, when H^ = C^C^ 
we have the RCR model. In the sequel we do not make any destinction 
between a model with covariance structure given by (1.1) and 
a model with the same covariance structure as in definition 1.2 
and we will call both RCR models. In fact, any model of the form 
D[Y^] » o2H^ + Ф1; E[Y^] = BC^ can be obtained by aid of a mixed 
linear model.

Hitherto we have supposed that correlated observations appear 
in time but we can also measure not one, but several characte
ristics at each time point. For example in the cohort of children, 
previously mentioned, body height, body weight and some hormones 
may have been sampled. Then, presumably we also have a correlation 
between body height, body weight and hormone levels. Thus, we have 
two different correlation structures which must be taken into con
sideration; (i) the repeated measurements over "time" and (ii) the 
repeated measurements within each time point.

These two correlation structures have simultaneously been mo-



delled successfully by [L u n d b y e-C h r l s t e n s e n  (1988) 
and the main purpose with this note is to show some immediate 
extensions which all have natural applications. As an example sup
pose that for the above mentioned children every half year a cir
cadian rhythm is measured, for instance, ten times during a 24 
hours period. Then we have to combine information from a long- 
-range time serie with a short-range time serie. This can be done 
with the help of the extensions in section 3.

2. A MODEL WITH A UNIVARIAT GROWTH FACTOR

In this section we will see how Lundbye-Christensen modelled 
the correlation structures (i) and (ii) 'in the previous section 
and we restate some of his results. The idea put forward by Lund
bye-Christensen was to use a hybrid between the GC and RCR mo
dels. It will be supposed that the growth process can be described 
with the help of a linear model. Let 1 stand for the column vec
tor of ones and let Z.(•) signify a column vector space. Further
more, as a convention in this paper, Y: p x n is said to be 
matrix normally distributed if vec(Y) - Npn(E[vec(Y)], I «> t) and 
denoted Y ~ N _(E[Y], I <® I) where vec(*) is the vec opera-P t П
tor and <» the right Kronecker product.

Definition 2.1. A univariate growth factor: Lundbye-Christensen.
Let Ya: p x  n^, В: 1 x k, C^: k x nL, H^: n^ x n^ p.s.d., 

Z: p x p p.d. and a a scalar, i = 1, 2, ..., m. C^ and Hi are 
known and В, о and I are unknown parameters. The elements in 
Y^ are matrix normally distributed with Е[У^] ■ lBC^ D[Y^] = 
o2H^e>ll' + I «• I and Yjl is independent of Yj i ý j.

From a view of applications this formulation with a separate 
model for each individual is the natural one. However, we will 
estimate the parameters simultaneously and as a basis for our dis
cussion we will in the subsequent utilize an equivalent formula
tion of the model. Define partitioned matrices Y = Y1: ...: Ym , 
С = C^: Cm and H = diagiHj^, ..., Hjn), ¥ * E/a2 and then we
get (n =



Y -  J1BC, o2(H •  11' + I •  f)).p, n
From now on we are going to derive a canonical version of this 

model. Without loss of generality we assume that
Y - Np n (lBC, o2(I •  11' + 0 •  V)) (2.1) 

where D is a diagonal matrix. Let Г * (Г^г Г2) be an orthogonal 
matrix where ТЗ(Г^) * C(l) and £(Г2) * B(l)1» and set Z = Г'У. 
The equation (2.1) is equivalent to (set к = Г^11'Г1# П « Г'¥Г)

2 ■ U'Ł. Ijl1 -  »p ,„((n“). .2(l -  (* °) * D .  n))

where n stands for the new parameters after reparametrization. Sin
ce E[Z2] * 0 we condition with respect to Z2> Hence, as an 
inference basis we take

*ll*2 ~ H1<n(nc + «’Z2, o2(kI + Dr)) (2.2)

Z2 ~ V l . n 10' °2° *  Л) (2-3)
where the parameters x, Д and í are defined through

/x + б'Лб 6'Л\ 
fl _ \ Л4 Л /

Note that the reparametrization is one to one. Set ß = (n : 5') and
2T = (C' s Z2)'. Now о A is estimated marginally from (2.3) and 

from (2.2) follows that (suppose that T is of full rank)
ß ( T ) = Z^kl + TD)_1T(T(kI + xD) ” Т̂*) ”1 (2.4)

no2(x) *> ŁZj_ - $<x)T)(kI + TD)"1(Z1 - ß (x )T)' (2.5)
and x(ß, о) is obtained by maximizing

a2(x)'n/2|kl + tD|”1/2exp (-1/2 l/a2(x)(Z1 - $(x)T)(kI +

•f x D r 1(Z1 - I(T)T)') (2.6)
л2 лwhere о (т) and ß (т) are regarded as fixed. Hence, by aid of

(2.4) - (2.6) we have constructed an iteration scheme including 
fairly simple calculations. In (2.6) we are searching for an one
dimensional parameter estimator and since kl + xD is a diagonal 
matrix there will be no numeric problems. At least as far as we



have relevant data, which do not imply that estimators are found on 
the boundary of the parameter space, e.g. o2 = 0, or that data 
indicates that their is no clear maximum.

3. USEPUL EXTENSIONS

In this section we will consider some very natural extensions 
of the model given in section 2. The first which we are thinking 
of, is that in definition 2.1 there is one growth factor which in- , 
fluences, in the same manner, each at the different time points 
observed variables (remember the vector 1). Before presenting va
rious extensions we will fix a terminology which we hope will 
illuminate the extensions. In principle we will discuss three dif
ferent mean'structures!

E[X] = 1BC called a univariate model and presented in section 2
(3.1)

E[X] = ABC called a multivariate model (3.2)
E[X] = A1B1C1 + A2B2C2, C(A2) С Г(Ах) or Г(С2) с Г(С^) (3.3) 

called a multivariate modal with different responses.
The mean structure in (3.2) is identical to the mean structure 

in the GC model given by definition 1.1. The extension in (3.3) 
is inspired by a straightforward extension of the GC model pre
sented by [ v o n  R o s e n  (1989b)]. One drawback with the 
ordinary GC model is that each individual is supposed to have a 
growth response of the same type, e.g. the means follow a polyno
mial of the same order. The extension in (3.3) is designed to 
handle situations where individuals, to some extent, have different 
growth responses, e.g. follow polynomials of different orders. Ob
serve that in this paper it means that the repeated measurements 
within each time point follow, for example, different polynomials. 
Especially the model may be useful when considering the combina
tion of short-range time series with long-range time series, men
tioned in the introduction.

Extension 1. A multivariate model.
Let Y: p x n, A; p x q, Bs q x k, Cs k x n, E: p x m , Hs n x n 

p.s.d., V: p x p p.d. and a a scalar where А, С, E and H 
are known and В, о and У are unknown parameters.



У —  N „(ABC, 02(H ®  ЕЕ' + I •  H1)) p # n
where Г(Е) С Г (A).

In comparison with definition 2.1 we have a more general mean

served above the moan is identical to the mean in the GC model 
given by definition 1. The extended covariance structure is moti
vated since the effects on the covariance structure from the 
growth process may differ between those variables observed at each 
time point.

By aid of some matrix manipulations we describe now how to re
duce extension 1 to a similar model as the model in (2.2) and
( 2 . 3 ) .  First note that the extension is equivalent to

У ~ Np n<ABC, a2(I ®  EE' + D «> t ))

where D as before is diagonal and then we set Z = (Z’̂r Z^)' = r'Y 
where Г = (I^s Г2) is orthogonal and t ď j )  =Г(А), Г(Г2) = t(A)1. 
Hence we get

where К * Г^ЕЕ'Г^ and new parameters n and Я = Г'УГ.
Now we have reduced the model to be of the same form as in 

section 2 and obviously we obtain, similarly to (2.4)- (2.5), equa
tions which give estimators. However, instead of an one-dimensio
nal maximization procedure, as for (2.6), we have to work with a 
p(A)-dimensional. In practice p(A ) is fairly small and from a 
view of computations the model is still not too difficult. The 
equations which correspond to (2.4) - (2.6) are obtained by con
ditioning Z1 with respect to Z2, i.e.

ZllZ2 -  " p t A ^ . n ^ '  °2(I ®  K + D ®  T)) 

where В = (п : 6'), T = (C'i Zj)' and

structure, as well as a more general covariance structure. As ob-

T + 6'4i 6'Д 
Д6 A

Thus



vec (В ( т)) = ((T*I)(X<»K + D«»T)“1(Te>I)r1(T'<»I)(I«»K +
+ D<»T)"1vec(Z1),

nô2(r) » (vec(Z^ - B(t )T) ) ’ (I«*>K + D»x ) " 1vec(Z1 - B(x)T)

and t (B, o ) is obtained by maximizing

ô2(r)"n/2|l«a»K + D « i | " 1/2exp (-1/2 l/o2(i)(vec(Z1 ♦
- B(x)T))' (I e>x + D ® T ) ~ 1vec(Z1 - Ô(x)T)).

Extension 2. A multivariate model with different responses 
Let Ys p x n, AiS p X q1# BiS qA X к£, С ^  k£ x n , i = 1, 2, 

E: p x m, H: p x p p.s.d., ¥: p x p p,d. and o a scalar where 
A^, CL, E and H are known and В^, o and Ý are unknown parameters.

Y ~ Np,n(AlBlCl + A2B2C2' °2(h ® E E ’ + I®Y)), Г(А2) С Г  (Aj ) 
Case (i)j Г (E) c t (Aj)
Case (ii): Г(Е) с Г(АХ) but t(A2) jfe c(E ).

The derivation of the estimators is similar to the one for ex
tension 1. We are going to utilize the decomposition 

m L) = Г(А2) ffl "C(Ax) П C(A2)A,

which is valid since £(A2) c "C (Â )̂, and construct an orthogonal 
matrix Г * (Г^: Г2: Г3) with the following property? ¥(1^) =
= Г(А2), Г(г2) = r(Ax) n Z (A2)X and Z(ľ2) =* 13( A ^ ) Now, as
previously we reformulate the model. Let Z = (2^: Z'2: Z-)1 = P Y  
implying that

. » >  -  (j| ?) ß )  
and in case (i)

/К 0 0\
D[Z] = a (I® 0 0 0 I + D®ft)

\0 0 0/
whereas in Case (ii)



where D is diagonal the r)'s and 0 ■ are new parameters and К “
* r'jEE'ľj in case (i) and in case (ii) К * (T^j Г'2)EE' ( :  Г^)'. 
Now, for case (i)

E[V  Z2|Z3) = (Jj I2) (*») * 4Zj , ,) («‘) + ( ? ) С1
(3.4)

DtZj! Z2 |Z3] = o2(I® (í) o) + D <»t ) (3.5)
where as before

/т + 6'Ai 6 >A\ 
\ AS A J

and the conditional distribution is of course belonging to the 
class of normal distributions, in order to obtain a computational 
feasible estimating procedure we will present estimators which are 
based on a marginal likelihood. The approach is identical to an 
approach Lundby-Christensen put forward when discussing a univa
riate model with an intercept. Let Q be aby matrix spanning
E(C^: Z'j)1 such that Q'Q * I and Q'PQ =* d x (Dj is another diago
nal matrix). Then set R * (Z^i Zjl'O and

Rl23 -  ».(»j I .d' C V ) '  »2U « ( S  Ü) * » 1 - 0 1 .  0.61

The distribution in (3.6) is of the same form as the one in ex
tension 1 and thus we can obtain estimators in the same manner as 
for extension 1. In order to obtain estimators for n,, n3 and S we
maximize the likelihood after having inserted the estimators for

2 242> ° and т. Hence, since a and т are estimated it follows from
(3.5) that the variance now is completely specified (denote the
estimated variance V) and we can immediately write down the esti
mators;

veci(jj «)) = ((Tl®i)v-1(T«i)r1(r.r)0-1vec((z,1* z,2)’-(T12q2)).
For case (ii) we obtain instead of (3.6)

i ?
R lz3 ~  Hp(A1),n,\ o /' ° < I ® K  + D1 ®T))



but unfortunately wo can then not rely on extension 1 since there 
is no nice structure in the covariance matrix (the К matrix).

' 4. DISCUSSION

In the previous sections we have indicated how to extend a mo
del for handling a univariate growth process. The emphasizes have 
been to simplify the models so that algorithms can be constructed 
which do not include too heavy calculations. However, before ap
plying the results we need to derive some statistical properties 
for the estimators. This task is difficult if we just assume that 
the number of individuals is increasing. Already in the RCR model 
there exist great difficulties [see J o h a n s e n  1982]. A very 
crude approach is to use the inverse, information matrix but to 
show some correct asymptotic or/and approximative results is not 
easy, if we have many observations within each individual the pro
blem is not too difficult, but unfortunately this is a rare event.

Many of the results in this paper are fairly straightforward 
to extend. For example, instead of dealing with the mean structu
re in (3.3) we could have obtained results for

E[Y] = w  W i '  'B(A1) C Z(A2> S ...... * < V
and then the estimating procedure in principle consists of maxi
mizing likelihoods and marginal likelihoods. The difficulties 
with the model depend on how s i A ^  is related to the covariance 
structure.

Hitherto we have only modelled situations where we have one
growth process. If there exist several growth processes it is pos
sible to discuss

Y ~ Np,n (ABC, а2(Н«ЕПЕ' + 1*4'))

where В, П and ¥ are unknown parameters. It is, however, dif
ficult to derive any nice algorithms for this general situation. 
On the other hand, if the growth processes are independent П is 
diagonal and then it is possible to copy the arguments presented 
in sections 2 and 3. A still more general covariance structure is 
the multivariate variance components structure where
H'i is unknown and Hj_ is known.
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Dietrich von Hosen

ŁĄCZENIE HODELU REGRESJI Z LOSOWYMI WSPÓŁCZYNNIKAMI 
Z MODELEM POTTHOFFA I ROYA W ANALIZIE KRZYWEJ WZROSTU

W pracy tej połączono koncepcje modelowania danych generowanych wg krzywej 
wzrostu z modelami regresji o losowych współczynnikach. Zasadniczo, zostają 
rozszerzone wynik'1 pracy dyplomowej (L u n d b у e-C h r i s t i a n s e n a  
(1988)). Pokazano, że kiedy występują pewne powiązania pomiędzy strukturą 
średniej i strukturą kowariancji, możliwe jest uzyskanie prostych algorytmów, 
prowadzących do estymatorów bez żadnych uciążliwych obliczeń.


