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EXACT SIMILAR TESTS FOR THE ROOT OF A FIRST-ORDER 
AUTOREGRESSIVE REGRESSION MODEL

Abstract. A procedure is developed for testing whether or not the coef­
ficient of the lagged dependent variable in a fir.t-order autoregressive mul­
tiple regression model equals a particular value, such as zero or unity or any 
other arbitrary stable or unstable value. Under the null hypothesis the esti­
mate of this coefficient is found to be distributed as the ratio of two quadra­
tic foras in standard normal variables, when it is obtained from a particular 
auxiliary regression model where in addition to the exogenous regressors also 
some redundant transformed regressors ara included. This null distribution is 
found to be independent of any nuisance parameters. So. this estimate is easi­
ly calculated and it can directly be used as a test statistic} its type I er­
ror. can be controled exactly, whereas this test is similar and also invariant. 
Particular unit root tests developed by Dickey and Fuller appear to be simple 
examples of our test for very specific regressor matrices. He provide extended 
tables of exact critical values for these and for some other forms. Finally 
we illustrate the usefulness of our general test procedure in the dynamic spe­
cification of econometric time series models.
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1. INTRODUCTION

In dynamic regression equations where lags of the dependent va­
riable occur as explanatory variables most of the available pro­
cedures for statistical inference lack precision. The presence of 
autoregressive explanatory variables in linear regression model* 
complicates the analysis of its parameters dramatically, especial­
ly in small samples. Even the asymptotic behaviour of statistic* 
of interest i« such models is quite complex and crucially depends 
on whether all the roots of the lag polynomial of the dependent 
variable are located outside the unit circle or not. The values of 
these roots, which are determined by the lagged dependent va­
riable coefficients, also characterize key aspects of the dynamics 
of the relationship which the model purports to describe. Therefore 
tests for the actual values of these coefficients, and more par­
ticularly for the presence of unit or unstable roots, are impor­
tant and have recently received considerable attention.

In the first order autoregressive model the only root of the 
lag polynomial is simply the inverse of the coefficient of the 
lagged dependent variable (and hence here a unit root conforms to 
a unit coefficient value). In this paper we shall develop tests on 
the value of this coefficient which are exact and similar in fi­
nite samples under quite general conditions. These conditions en­
tail normality of the disturbances and strict exogeneity of the 
regressors (apart from the lagged dependent variable), and also 
that all regressors are mutually linearly independent but other­
wise arbitrary (stationarity is not required). So these assump­
tions correspond to those made in the classical static linear re­
gression model in order to achieve inference (based on t and F 
statistics) on coefficient restrictions, which is exact and simi­
lar in finite samples. Note that a test is called 'similar' if its 
null distribution is independent of the value of any of the nui­
sance parameters, and that it is called 'exact' if its critical 
values are determined precisely so that one can effectively con­
trol the actual type I errors at exactly the chosen nominal value.

The tests developed here have wide applicability, both in sing­
le econometric time series regression models and in pure time se­
ries analysis, since they yield accurate inference on dynamics in 
general, and on (unit) roots of lag polynomials in particular, in



samples of a small size. Particular well-known Dickey-Fuller tests 
for unit roots in the random walk (with drift) model are shown to 
be very specific variants of the procedure devised in this paper.

The paper is organized as follows. In section 2 we introduce 
the model and indicate some bf its complexities, and we refer to 
some recent literature. Then in section 3 we develop an exact 
test for the presence of these complications, viz. an exact test 
for the significance of the lagged dependent variable coefficient. 
The test statistic is a straightforward least-squares coefficient 
estimate in an auxiliary regression equation. In section 4 an 
exact procedure is developed to test whether the lagged dependent 
variable coefficient equals some arbitrary real value. This test 
statistic is calculated by applying generalized least-squares to 
an auxiliary regression equation with first order moving average 
disturbances, where the moving average coefficient is known. In 
section 5 we show that the test statistic can also be calculated 
directly by employing ordinary least-squares to an appropriately 
augmented regression specification. Under the null hypothesis the 
test statistic is not dependent on any of the parameter values of 
the model, and it is distributed as the ratio of two quadratic 
forms in standard normal variables. Hence, exact critical values 
can be calculated numerically, щ  section 6 we focus on testing 
for unit roots, notably on situations where upto now (non-augmen- 
ted) DF tests - [see D i c k e y  and F u l l e r  (1979, 
1981)] - are usually employed. We show that particular DF tests' 
viz. for cases where the fixed regressors are void or simply the 
constant (and possibly a linear trend), are variants of our pro­
cedure. In section 7 we present some tables of exact critical 
values for this procedure. These allow to test for a zero or for a 
unit value of . the coefficient of the lagged dependent variable in 
particular models, they have been calculated by numerical methods 
instead of Monte Carlo simulation. Finally we illustrate the use 
of our test procedure in a first-order dynamic econometric model, 
and construct exact similar confidence regions for the coefficient 
of the lagged dependent variable.



2. THE MODEL

We consider the linear first-order autoregressive model
yt * Xyt-1 + xtP + ut T (2.1)

where xt and ß are Kxl vectors. We assume that ufc ~ NID(0, o2) 
and do not make specific assumptions regarding the value of X» so 
the relationship may either be stable (|X| < 1) or unstable ([X|£ 1). 
Nor do we make, particular assumptions yet on the series of vectors 

“ •••# 0»1» • ••» T} except that they are strictly exoge­
nous, i.e. completely independent of the disturbances, so Exfcui =
- 0, vt, i S I .

We assume that observations on xfc and yt-1 are available for 
t ž 1 only. -The last T equations of (2.1) are collected in

У « Xy_x + Xß + u (2.2)
where y, y_L, and u are stochastic T x l  vectors with u ~ N(0, o2IT ), 
whereas X is a T x К matrix of regressors. These regressors are 
treated as fixed, hence we condition on the realizations of the 
possibly stochastic xfc. The elements of xt may be either statio­
nary or non-stationary, i.e. realizations of a pure deterministic 
process or of some stochastic stationary, trend-stationary or dif- 
ference-stationary process. So among the columns of X we may find 
for instance: a constant (column of unit elements), a linear trend, 
polynomial trends, sets of dummy variables etc., and also (lags 
of) other (non-artificial) variables, possibly generated by (non) 
zero mean ARIMA processes.

The standard (asymptotic) test procedure for hypotheses on X is 
based on the ordinary least-squares (OLS) estimator X. Because of 
the normality assumption this OLS estimator is equivalent to the 
maximum-likelihood estimator (conditional upon yQ). We have

л - У -1И (Х)У
x 7;iM(X)y_1 (2*3)

where M(X) = IT - X(X’X) 1X* is the well-known projection matrix 
onto the null-space of X. Substituting (2.2) in (2.3) yields

t , YljMfXJu
X X ” Yl1M(X)y_1 (2*4>



Because of the.stochastic nature of y_j the estimator X is 
biased in general. Its finite sample moments and distribution can­
not be established in a straightforward way. This hampers the de­
velopment of exact inference techniques on the value of X (and so 
for ß).

Under various sets of more specific regularity conditions than 
those we have adopted here a nondegenerate limiting distribution 
of g(X)(X - X) can be derived, where g(X) is some appropriate 
scaling factor. This limiting distribution can then be employed 
for the construction of an asymptotic test for HQ: X * XQ . Often 
such a test is based on the 'studentized' statistic

where M(y_xsX) projects onto the null-space of [y.1:X] and
У M(y_1iX)y/(T - К - 1) is the least-sguares estimator of o2 with 
degrees of freedom correction. Whether or not (2.5) is asympto­
tically standard normal under the null depends on the specific re­
gularity assumptions made, notably on the value of XQ and on the 
asymptotic behaviour of the series (xt).

For the very specific case К =» 0 (no exogenous regressors, so 
M(X) = I) the distribution of statistics such as (2.3) and (2.5) 
are examined extensively in [ E v a n s  and S a v i n  (1981)]. 
For the case К = 1 where the one and only regressor is a constant 
term the distribution of the statistics (2.3) and (2.5) are in­
vestigated in [ E v a n s  and S a v i n  (1984)] and in 
[ N a n k e r v i s  and S a v i n  (1985)] respectively. In 
these articles ’ it is 'shown that - in models with an intercept and 
y0 fixed - tests based on (2.4) or (2.5) are non-similar in gene­
ral, and that despite comforting asymptotic results their null- 
-distribution in finite samples can be very unlike the normal or 
Student's t. In [ N a n k e r v i s  and S a v i n  (1987)] 
the finite sample distribution of (2.5) is estimated by Monte 
Carlo methods for К = 2, where model (2.1) contains a constant 
term and one explanatory variable which is either stable AR(1), 
or a random walk, or a linear time trend. Again the accuracy of the

(T - К - l)y;iM(X)u
[32(y;iM(X)y.1)'1]1/2 t(y:iM(X)y.1)(u'M(y_1:X)u)]1/2

for X = Xq (2.5)



relevant asymptotic approximations is found to be extremely depen­
dent on nuisance characteristics of the data generating process.

In the studies mentioned above various values of XQ are in­
vestigated, including the case XQ * 1. The research into tests for 
this particular value (unit root tests) has a somewhat longer hi­
story; it goes back to [ F u l l e r  (1976)]. For particular sim­
ple X matrices and for some specific values of particular para­
meters he derives the asymptotic distributions of (2.3) and (2.5) 
and obtains percentiles of their empirical distribution in finite 
samples from Monte Carlo simulation; see also the review in 
[ D i c k e y  et al. (1986)] and the concise summarizing table 
in [H a 1 d r u p and H y l l e b e r g  (1989)]. Exact simi­
lar tests are available for the case К * 0 with yQ = 0 or yQ 
random (there are no nuisance parameters). The nonsimilarity of 
the straightforward DF test in the К = 1 model and the poorness 
of its asymptotic approximation are illustrated patently in [H у 1- 
1 e b e r g and M i z o n (1989)]. However, when the DF test 
is applied by calculating (2.3) or (2.5) from the (overparametri­
zed) model with К = 2 (constant plus trend) a similar unit root 
test is obtained for the К * 1 model. Exact unit root tests are 
also given in [ B h a r g a v a  (1986)] for the model with yQ 
random and К = 0 or К = 1 (constant drift); these tests are lo­
cally most powerful invariant against one-sided alternatives.

In more general regression models attention has been paid in 
the literature to a possible unit root in the disturbance pro­
cess, for instance by [ B h a r g a v a  (1986)], but to the best 
of our knowledge no exact similar test procedure for a unit root 
in the dependent variable for models with К > 1 are available yet. 
Nor are there exact similar tests for arbitrary (non unit) values 
of the autoregressive coefficient X in the geometric lag model
(2.1). it is evident that practicable tools for exact statistical 
inference (hypothesis tests and confidence regions) in finite sam­
ples for such models would be extremely useful.

In what follows we shall not consider the (important) case with 
higher order dynamics (augmented DF-type tests) nor shall we dis­
cuss the approach of a nonparametric nature, see [ P h i l l i p s  
(1987)] and [ P h i l l i p s  and P e r r o n  (1988)], where 
the degree is examined to which (modifications of) simple first-



-order techniques are vindicated approximately and asymptotically 
in models with possibly higher order autoregressive terms or gene­
ral ARMA or nonnormal disturbances. Also the assessment of the ro­
bustness and of the power of our exact test procedure is deferred 
to a future paper.

3. TESTING HqS X - 0

By applying OLS to a slightly adapted specification of the mo­
del we obtain an estimator for X which has a distribution not de­
pending on any unknown parameters if X * 0; hence, an exact test 
procedure for the specific case HQ: X = 0 follows straightfor­
wardly. Consider the extended regression

yt * Xyt-1 + xtß + xt-lß* + ut (зл) 
where the lags of all the exogenous regressors have been added to 
the specification. The coefficients of (3.1) can be estimated by 
OLS in a straightforward way only if the first sample observation 
is set asif’e (assuming xQ is not available) and if the extra re­
gressors do not induce extreme multicollinearity.

A feasible extended regression model conforming to (3.1) is
ý = Xý_x + X V  + ü (3.2)

where ý, y_Ł and ü are (T-l) x 1 vectors which lack the first 
element of y, y_x and u respectively, and where X* is a (T - 1) x 
x (K + L) full-column rank matrix of regressors with (K + L) x 1 
coefficient vector ß*, whereas 0 < L < К since the matrics X* is 
such that its columns span the К + L dimensional subspace in R^-  ̂
which is spanned by .the following two sets of К columns: the 
first set consists of the X matrix upon deletion of its first
row x', which can be denoted by X = [x2..... xT ), and the second
set is composed of the columns of the matrix í 1 = [x1# ..., xT 1]'. 
So, we assume that галк (X) = K, and if x contains a column of 
unit elements, or a set of seasonal dummies, or a linear trend, 
or if it includes in addition to the j-th column X also the lag

• J
of X . ,  then these appear only once in the matrix X*.



The OLS estimator of X in model (3.2), which is not fully ef­
ficient because of the inclusion of Ł redundant regressors and
the omission of one sample observation, will be denoted by X* and
is found to be

s* \Si
(3.3)

y' M(X*)y X - — — ■■■ = \ +
íliMťX*)?^ y ^ M Í X * ) ^

where M(X*) * I - X*(X*'X*)-V' is a (T - 1) x (T - 1) matrix. 
Since the first T - 1 rows of (2.2) state that SLj, = x?_2 + X ^ ß  + 
+ u.1# we have

M(X*)y_1 * XM(X*)ý_2 + “ (X*)0-!. (3.4)
where wo used M(X*)X_1 = 0 .  So, under HQs X * 0 we find that 
M <x = M(X*)3_^ and therefore we obtain for (3.3)

aijMJX^u
— ---— — — , under Xul1M(X*)u_1 (3,5)

Now let

V = ± u - N(0, IT ),

1 0 
0 1 0

and *

0
1 0

where BQ and B^

under X = 0

oBjV and

(3.6)

P . . .  0 1 0
are (T - 1) x T matrices. Then 2( = BjU 

U-1 = B0U = oB0v ' and thus we can rewrite (3.5) as 
= У'[В0М(Х*)Вг]у 

v'[B'M(X*)B0]v
This is a ratio of two quadratic forms in the T x 1 standard nor­
mal vector v, and it does not depend on о and ß. Hence an exact 
similar test procedure for HQ: X = 0 can simply be based directly
on the OLS estimator X* of X in (3.2). Critical values can be cal­
culated by using a method such as [ I m h o  f's (1961)].



The distribution of X* cannot be tabulated once and for all, 
since it is determined by the space spanned by the regressor ma­
trix X . In section 7 we present tables of percentiles of this 
test statistic for some very special X matrices, viz. those where 
X * X since X only contains a constant and/or a linear trend, or 
X is void. If X is more general the test procedure is best
applied as follows. Instead of calculating the exact critical va­
lue for some particular significance level a less computational ef­
fort is required if for a given model and accompanying 3!* estimate, 
say X , only the Prob-value is calculated. This value equals

v'[BÓM(X*)B1]v

v -[b ;h <x *ib0 ]v > "  ? {V '8ÓM(X* > K  - * * » J v  » o} (3.7)

and it is fully (and exactly) informative on whether or not Hq.’X^O 
should be rejected against either X < О, X > 0, or X * 0 at any 
chosen significance level.

Note that regression (3.2) and the estimator of the coefficient 
of y_x conform to those which [ D u r b i n  (I960)] suggested to 
examine in the static regression model with first-order serial cor­
relation. Our manipulations show that in this way exact and simi­
lar inference on the serial correlation coefficient can be ob­
tained easily, this was noticed first by [ P h i l l i D s  
M c C a b e  (1988), p. 42].

4. TESTING HQ: X - >0

For the more general case, where X is tested against an arbi­
trary value XQt the procedure can be adapted in the following way. 
Consider the Cochrane-Orcutt type transformation of model (2.1), 
viz.

(yt " X0yt-1) = X(yt-1 ■ V t - 2 *  + [xt ‘ X0xt-l]P + (ut ■ X0ut-1)
(4.1)

where X0 is a given real value, which may differ from zero. Note 
that, although the Cochrane-Orcutt transformation was originally 
meant to remove correlation of the disturbances, here it produ­
ces moving-average errors (like the Koyck transformation usually



does). Transformation (4.1) of model (2.2) Is performed by the 
(T - 1) x T  matrix

‘Xn 1 0'0 
Э
0 0
0 -A0 1

* вх - x0b 0 .. (4.2)

We adapt our notation a bit, and from now on we have
Dy, y.j ■ °У_1 and Ц = Du (4.3)

Note that this notation is in line with the foregoing section where
we had Xq * 0 and hence D ľ

Like we did in (3.2) we now examine estimating X in model 
У B Xy_! + X*0* + ü (4.4)

where x is still the (T - 1) x (K + L) full column rank matrix 
containing the К columns BjX and also L < К columns of BQX. Note
that (4.1) can be obtained by imposing L linear coefficient re­
strictions on ß* of (4.4).

Despite the MA(1) structure of the disturbances of (4.4), we 
first consider the OLS estimator of 
We obtain

X and denote it by

y-!M tX*>y _  ̂ a yJjM(X*)Q 
y'-iMix*)^ " + yl1M(X*)y_j (4.5)

Since Bjy^j = BQy we have

У-! • Dy_i - [B1 - Х0В0]У-1 = B0[y - ХоУ-1] 
and upon using (2.2) we thus find that

?_1 = B0(Xß + u), under HQ: X = XQ (4.6)
and, since BQX lies in the column space of X*, we obtain

м <х )У.Х = M(X*)B0u, under X = Xq (4.7)
Substitution of (4.7), and of u = B,u - XQB0u and u = ov in (4.5) 
yields u u

A 11 'Q 'м/V* ifi, , u 'BqM(X*)u V'B'M(X*)B,V
0 + ' I I ' = — ------------, underu BqM(X )BqU v 'B'M(X*)B0v



Result (4.8) is completely in line with (3.6). So, whatever the 
chosen value of XQ is (zero or not), the OLS estimate of the 
coefficient of у.х in the auxiliary regression (4.4) has under 
X » XQ exactly the same distribution. This distribution does not 
involve any nuisance parameters and thus X* can be used as an exact 
and similar test statistic for HQ : X = Xq .

However, since the MA(1) structure of the disturbances in
(4.2) leads to joint-dependence with the regressor у the esti­
mator X* will - under standard regularity conditions - be incon­
sistent. Although the test for HQ s X = XQ based on 1* is exact 
this inconsistency, which arises in cases where Xq j* 0, will ad­
versely affect the power of the test. One can derive that for 
X * X(j we have plim X *=0, hence X* is consistent for X only in 
case X = X0 * 0, for X > XQ > 0 we find plim X* > 0, but for 
Xq > X > 0 the value of plim X can be either positive or nega­
tive. Hence, if the unit root hypothesis X0 = 1 is tested by X* 
then the power of this test may be quite poor if in fact X < 1; 
most probably this test is biased (power may be smaller than signi­
ficance level). Therefore it seems worthwile to examine a test 
procedure where the non-scalar covariance matrix of the distur­
bance u is properly taken into account.

Since X0 is known the coefficients of (4.4) can be estimated 
consistently by generalized least-squares (GLS). We have

Euü' = o 2V * o 2DD' gj
with V a known (T - 1) x (T - 1) matrix. If the (T - 1) x (T - 1)
matrix P is such that v’1 •-*'* then the application of GLS to
(4.4) is equivalent to OLS estimation of

Py = XPy_1‘+ P X V  ♦ Pu (4Л0)

As we shall see in due course it will not lead to confusion if we 
denote the OLS estimator of X in (4.10) and the equivalent GLS 
estimator of X in (4.4) by X \  like we did in section 3 for the 
special case XQ = 0. The estimator “X* of X is now

_ yijP'MtPX*)py _ y:iP'M(PX*)Pif
З ^ Р ' Ш Р Х * ) ^  x + i?;1p'M(px*)py_1 ' (4,11)



From (4.6) it follows that
ЩРХ*)»?.^ = M(PX*)PB0u, under X * XQ , (4.12)

Therefore we obtain
u ”B»P"M(PX*)P[B. - x0b0]u 

X = Xn + ---2------------1---- —o + — t  - :----г — (4ЛЗ)U B0P M(PX*)PBqu
v'[BqP'MJPX*)PB.]v

= -------------------, under X * Xn,
v '[B-qP'M(PX*)PB0]v u

with
P' M(PX*)P = V-1 - v"1x*(x*'v"1x*)"1x*'v'1

So the coefficient estimator K* at the same time constitutes an 
exact similar test statistic for HQs X = XQ in (2.2). This test 
procedure is also invariant with respect to linear transformations 
of the exogenous regressors; it is obvious that the distribution 
of X* is not determined by X as such, but only by the subspace 
spanned by the columns of X. If we chose Xq = 0 the test based on 
X* simplifies to the procedure presented in section 3.

It can be proved that under standard regularity assumptions the 
estimator X* is consistent for X, not only when X = XQ but for any 
XQ. Obviously the GLS estimator X* is not most efficient; afterall 
we still have a lagged dependent variable in the regression, and 
in addition we lost the first observation and have L redundant co­
efficients in (4.4). Hopefully as a test it has power characte­
ristics which are reasonable in comparison with other - usually 
approximate or nonsimilar - test procedures.

5. AN ALTERNATIVE DERIVATION AND EXPRESSION FOR THE TEST STATISTIC

We shall show now that there is an alternative and simpler 
way to derive and to express a similar test statistic for the hy­
pothesis H q:  X = Xq. It is found from an augmented regression 
equation where the Cochrane-Orcutt transformation and GLS estima­
tion are not required. We shall also prove that this test sta­
tistic can be constructed such that it is equivalent with ~k*.

Consider the augmented regression



У = Xy_Ł + Xß + ZY + U, (5Л)

where Z is a T x Н matrix of redundant regressors whereas [у ^:X ;Z3 
has full column rank. We denote the OLS estimator of X by Xz and

yljMUiZły y^HIXiZlu
= X

yl1M(X:Z)y_1 yl1M(X:Z)y_1 (5.2)

The matrix Z is chosen such that it renders Xg invariant with res­
pect to nuisance parameters. This is achieved as follows.

Upon recursive substitution of (2.1) we obtain 
yt « X(Xyt_2 + x ^ ß  + ut_1) + x 'ß + ufc

* X2(...) + Xxfc_1ß + x^ß + Xufc-1 + ufc « ... 
and this yields

У-! a Vq ^X) + C(X)Xß + C(X)u (5>3)
where

i(X) =

1
X
X2 and C{X) =

0
1 0
X 1 о 
X2

. . 0

•
• •

• • • • ♦• • • e
_ XT_1_ _XT"2 . . X 1 0

theSo, if Z is such that the K+H columns of [XsZ] span 
subspace in RT as is spanned by [X:c(X),C(X)X] then we have 

М(Х:г)у_х = M(XsZ)C(X)u

Therefore a similar test for HQ : X = Xq is obtained by collecting 
the H extra regressors from the K+l columns of [t(Xft):C(Xn )X]. 
This leads to U 0

same

(5.4)

Xz ~ X0 +
u'C(X0)'M(X:Z)u

under X = X, (5.5)u'C(XQ)'M(X:Z)C(X0)u
Note that this test statistic is similar with respect to ß and a 
but also with respect to y0, and therefore assumptions on whether 
Y0 is fixed or random are not reguired in order to assess the 
distribution of V  The critical values of (5.5) can again be 
found by Imhof's method.



We shall prove now that statistic (5.5), which results from ap­
plying OŁS to a model with К + И + 1 regressors of T observa­
tions, is equivalent with the estimator (4.13), which results 
from applying GLS to a model with К + L + 1 regressors of T - 1 
observations. We also prove that H « L + 1.

Below we shall (in line with the notation D - Bj - XqBq ) simply 
write с and С for l (Xq) and С ( )  respectively. We recall that 

is obtained by applying GLS to (4.4), or to
Dy = XDy_1 + X*ß* + Du (5.6)

and that X* spans the same К + L dimensional subspace as -is span­
ned by [B^X:BqX]. The latter space is also spanned by [(B1-X0Bq )Xs 
:BqX], which conforms to [DX:BqX] - [DXsDCX] - D[X:CX], since 
DC - BQ as* is easily verified. Now let Q* be a T x (K + L) full- 
-column rank matrix which is spanned by [X:CX], whereas DO* spans 
the same subspace as X*, then 1* can also be obtained by applying 
GLS to

Dy * XDy.j + DQ*0** + Du (5.7)
This yields

y'lD'tV-1 - V'1DQ*(0*'D'V"1DQ’‘)"10* D'V-1]Dy
= — — ---- =----- =-------;---- ------ =-- ;---- =-----  (5.8)

y'jD'tV-1 - V-aDQ*(Q* D'V~íDQ*)~íQ* D'V_1]Dy_1

where V-1 = (DD')”1. Note that D'V_1D = D'(DD')_1D is a peculiar 
matrix; it projects onto the (T - 1) dimensional subspace of RT 
spanned by the columns of D'. Since M U )  projects onto the (T-l) 
dimensional null-space of u, whereas Dt. = 0, we have

D'(DD')-1D = M(l ) (5.9)
Hence, we may write the matrix of the quadratic forms in the nume­
rator and in the denominator of (5.8) as

M(c)[I - Q*(Q*'m U)Q*)-1Q*']MU) = M( к )м(м( i> )Q*) (5.10)
Since Di = 0 and DQ* has full column rank the T x (K + L + 1) 
matrix U:Q*] has full column rank too, whereas Н * L + 1. From 
straightforward application of the inversion rules for partitioned 
matrices one can derive that

M(l :Q*)'= I - CnQ*]([nO*]’[l»0*] ”1[isO*]) (5.11)
= m (m ( i )Q*) + M U  ) - I



and hence
M( t )M(M( к )Q*) *M(i)MU:Q*) - MU:Q*) (5.12)

So (5.8) can be written as 
Yl i M U . Q M y

* '* - ---  (5.13)
. t

This conforms to Xz of (5.S) which also results from the regres­
sion of у on y_x and regressors which are spanned by [itQ*] or 
[nXtCX].

Note that for Xq * 0 the vector i constitutes the dummy re­
gressor which annihilates the first observation, whereas CX produ­
ces X lagged one period. The equivalence with the procedure of 
Section 3 is obvious. For XQ Ф 0 the correspondence with the pro­
cedure of Section 4 is not all that straightforward, but applica­
tion of the test via the augmented OLS regression is much more 
attractive indeed.

6. TESTING FOR UNIT ROOTS

We recall that the test procedure based on V  or X is exactz '
invariant with respect to yQ, and similar with respect to 3 and 
a, provided that the regressors are exogenous and the disturbances 
in (2.1) are uncorrelated and identically normally distributed. No 
restrictive assumptions concerning the actual value of X and the 
behaviour of (xfc) had to be made, and therefore our procedure is 
also suitable for unit root testing. Unit root tests are impor­
tant in time-series -analysis in general, but have recently become 
very popular in econometrics too. Following [ N e l s o n  and 
P 1 o s s e r (1982)] many papers have examined whether particu­
lar economic series can be described as stationary changes around 
a deterministic trend, or as random walks with drift, i.e. as dy­
namic stochastic processes with a unit root, in the context of 
cointegration analysis, see [ E n g l e  and G r a n g e r  (1987fl, 
it is also very important to test for unit roots in autoregressive 

_ processes describing either individual time-series or residuals 
from cointegrating regressions.



Many recent studies on unit root tests - see section 2 - deal 
with test procedures for HQ: X ■ 1 in our model (2.2) for some 
particular X matrices and under particular assumptions on the star- 
ting value yQ (viz. being zero, arbitrary but fixed, or sto­
chastic) and they often highlight the fact that serious small sam­
ple problems may arise. This will not be the case for our test 
procedure. If the assumptions underlying (2.2) are correct then it 
provides an exact test which is invariant with respect to yQ and 
also similar &nd therefore easy to carry out in practice.

Some popular variants of the unit root tests suggested by 
Dickey and Fuller are calculated from regressions with very speci­
fic forms of the xfc vector (viz. xfc is empty, or contains a con­
stant and possibly a linear trend) and they also may lead to simi­
lar tests; 'so it seems worthwhile to make a comparison with our 
procedure for these particular situations. To that end we consider 
the following three different specific forms of model (2.1), viz.

't = xyt-i + ut t = 1. ..., T (6.1a)
XYfi + ßl + ut t = 1, ..., T (6.1b)

't= Xyt-1 + ßx + ß2t + ut t = 1, ..., T (6.1c)

Upon using reparametrization 6 = X - 1 these regressions can be 
rewritten as respectively. The test for a unit root X = 1 in (6.1) 

Ayt = 6Yt_2. + ut t ■ 1, ..., T (6.2a)
üYt = fiy^ + + ut t = 1, ..., T (6.2b)
iyt = + ßj + ß2t + ut t = 1/ •••« T (6.2c)

conforms now to testing 6 = 0  in (6.2). We focus on two types 
of tests examined by Dickey and Fuller, viz. the test based di­
rectly on the least-squares estimate of X or 6 (which differ 
by one and are distributed according to (2.4)), and the test based 
on the studentized test statistic of either X or 6 (note that 
these two are equivalent) given in (2.5). [ F u l l e r  (1976)] 
has considered only two particular situations concerning the DGP 
(data generating process), viz. (A) the situation where the data 
are generated according to (6.1a) with yQ = 0, and (B) the situa­
tion where the DGP is represented by (6.1b) with yQ = 0 and ßj ar­
bitrary. Apart from limiting distributions he presents critical 
values (percentiles for a, 1 - a = 0.01, 0.025, 0.05, 0.10 at



T = 25, 50, 100, 250, 500) which have been found from Monte Carlo 
simulations. His Table 8.5.1. see [ F u l l e r  (1976), p. 371] 
refers to the least-squares estimate of 6 (multiplied by T), and 
his Table 8.5.2 (p. 373) refers to the t-ratlo of 6.

The upper parts of Fuller1's tables contain critical values 
for the unit root test for DGP (A) whereas the test statistics 
are calculated from the consonant regression equation (6.2a). 
Since there are no nuisance parameters, it is quite obvious that 
these particular DF tests are similar. See also [ E v a n s  and 
S a v i n  (1981, p. 762)], who indicate various methods to calcu­
late numerically the exact critical values for the test statistic 
based on the estimate of X.

The middle parts of both Fuller's tables refer to the case 
where the DGP is again (A), but the test statistics are calculated 
from the extended regression (6.2b). Hence, under the null both 
yt_i and the constant are redundant. We shall show now that this 
conforms exactly to our general test procedure.

From (5.3) we find for X = 1
■ 1 'o • . . o' 0
1 1 0 1
1 1 1 0 • 2
• . С = • • • • • , and 1 = Cu • ' (6.3)
« • • • • • •
• • • • • •
1 .1 • . . 1 0 . T"1 .

and T are T X 1 vectors and С is T x T (lagged) cumulating
matrix, and

У-l = Yq 1- + Cu (for case (6.1a) with X = 1) (6.4)
Hence, if 6 is estimated using auxiliary regression (6.2b), we find 
that

y \ M ( O u  u'r'Mf i tu6 + ---i------  = u_C ...M(t)u  ̂ fQr
u'C'MUJCu X = 1 (6.5)

Since a cancels, (6.5) does not depend on any nuisance parame­
ters, nor on y0, and so we see that the middle part of Fuller's 
Table 8.5.1 provides estimates of the exact critical values for 
the similar test for the unit root hypothesis in model (6.1a)



with arbitrary yQ, The same holds for the t-ratio test since the 
ratio of 6 and its estimated standard deviation does not depend 
on nuisance parameters either. This is seen from (2.5) upon noting 
that due to (6.4) we have u'M(y_1,i,lu « u'M(icu,0 u, and so о 
cancels again.

If the DGP is given by (6.1b) with X = 1 and yQ arbitrary we
have

yt * y0 + .P1t + uL t ■ 1, ..., T (6.6)
so, instead of (6.4) we then find

y_j = yQi + ßjT + Cu (for case (6.1b) with X = 1) ' (6.7)
where т is defined in (6.3). If 6 is estimated now from auxiliary 
regression (6.2c), we then obtain

a y ^ i M i l »  ( T ) U  u ' r ' M r i  • T ł u5 a ---1--------  = ’^ U , for X = 1 (6.8)
y'jMU sT)y , u'C'M(i:T)Cu

The lower parts of both Fuller's tables contain the percentiles 
for the situation where the DGP conforms to situation (B), whe­
reas the test statistics are calculated from regression (6.2c) j so 
both yfc-1 and t are redundant. Since 6 of (6.8) and its t-ratio 
are distributed independently from yQ, and o, they yield simi­
lar tests. Note that due to the independence with respect to y^ 
the middle and lower parts of the Fuller tables have not been af­
fected by taking y^ = 0 in the Monte Carlo experiments.

[ H y l l e b e r g  and M i z o n (1989)] examine the si­
tuation where the DGP is represented by (B) and the unit root 
test is baącd on the estimate of 6 in the parsimoneous specifi­
cation (6.2b). They present critical values (found through Monte 
Carlo simulation where they fix о = 1 and y^ = 0) which depend 
on the value of ßj illustrating the nonsimilarity of this test. 
It is easily seen that here again the results are not affected by 
taking Уд = 0, since adoption of DGP (6.6) with arbitrary yQ 
leads to

-yliM(u)u (u'C' + ß.T'lMIHu
« = 6 +  ±------------ , for X = 1

'У-iM( ь )y . (u'C' + ß1T 1 )M( i.) (Cu + ß.T)A x 1 1 (6.9)



This estimate of 6 obtained from (6.2b) is not determined by the 
nature of yQ, but it does depend on the ratio ßj/a.

Note that the simulated critical values for the tests based on 
estimates of 6 given in Table 8.5.1 in [ F u l l e r  (1976)] and 
in Tab. 1 in [H у 1 1 e b e r g and M i z o n (1989)] could 
also be calculated directly by numerical methods for the evalua­
tion of the cumulative distribution function of a ratio of qua­
dratic forms in normal variables. The relevant ratios are given 
by u'C'u/u'C'Cu and by the right-hand sides of (6.5), (6.8) and 
(6.9) respectively, in the next section we present various of 
these tables. From (2.5) it is obvious that the finite sample 
distribution of the t ratio for A or Í is much more complex.

Summarizing we note that our similar test for a unit root boils 
down to running an auxiliary regression where у is regressed on 
У- ľ  and on regressors which span the space spanned by: (i) the 
original regressors X> (ii) the constant (possibly already contai­
ned in X), which induces invariance with respect to yQ> and (ill) 
the 'lagged cumulated regressors'. The latter involve a linear 
trend when X contains the constant, and they involve the augmen­
tation of the regression by the trend squared if x contains the 
linear trend, etc.

In [ D i c k e y ,  H a s z a  and F u l l e r  (1984)] unit 
root tests are developed for seasonal time series models for the 
special case where the lag polynomial for the dependent variable 
may be of order 2, 4 or 12, but is such that it only has one 
unknown coefficient which is tested for being unity, obviously 
such tests can be inbedded in our general procedure and can be 
extended easily to the multiple dynamic seasonal regression model.

7. EMPLOYING THE TESTS IN PRACTICE

Although we made the calculation of the test statistic con­
siderably more simple by indicating how it can be obtained from a 
Properly extended auxiliary ordinary least-squares regression, the 
calculation of its critical values or of its Prob-values remains 
a bit cumbersome. To produce tables of critical values for once 
and for all is impossible, because these values depend on XQ and on



the matrix X. Only for specific cases it is worthwhile to present 
tables. Since in general first-order autoregressive models are 
relevant in econometrics only when annual data are used (the dyna­
mics of quarterly relationships is usually more complex) and since 
samples on annual data have a size well below 50 in general, we 
will produce critical values for T = 11, ..., 50 for HQ: X = 0 
and Hq : X =■ 1 when X is either empty, or contains a constant, and pos­
sibly a linear trend. In our computations we used the algorithm gi­
ven in Davies (1980). The tables in [F u 1 1 e r (1976)] only concern 
the test for unit roots in data generating processes which have no 
deterministic trend. Moreover, these tables contain estimated cri­
tical values and they lack detail with respect to the sample size; 
they only cover T => 25, 50, 100, 250, 500, ». (In fact a sample 
described by,Fuller as being of size T is actually a sample of 
size T - 1, see [ E v a n s  and S a v i n  (1984), p. 1256]).

For the special case Xq = 0 our test procedure boils down to 
the regression of у on y_L and the regressors X, X_x and the 
dummy variable (1, 0, 0, ..., 0)'. The effect of the latter va­
riable is that in fact the first observation is annihilated. If, 
apart from yQ, also Xq is available (which is the case if X 
simply contains the constant and/or the linear trend), then the 
full set of T observations can be used in this regression.

The Tables 1A, IB and 1C deal with the test of X = 0, i.e. in­
finite roots or uncorrelatedness of the observations on the de­
pendent variable in very simple models. In Table 1A the null hy­
pothesis of normal zero-mean white-noise is tested against the 
alternative of a first-order (possibly non-stationary) auto­
regressive scheme. The test statistic (X estimate) is symmetric 
around zero. In Table IB a constant is allowed for, and in Table 
1C a trend is added too. In the latter two tables the X estimate 
is clearly biased, especially for small sample sizes.

The Tables 2A, 2B and 2C concern unit root tests. In Table 2A 
the random walk hypothesis is tested in the simple first-order 
autoregressive model without drift. The table corresponds to the 
middle part of Fuller s Table 8.5.1 where the critical valuesA *<--—
for T(X2 - 1) are presented. From our table the strong negative 
bias in the ' X2 estimate is apparent. In Table 2B a drift is in­
cluded; these percentiles correspond with the lower part of



T a b l e  1A
Percentiles for the teat for H.s X - 0 Ini yt - X y ^  + и<., with yQ arbitrary 

and ut~NID(0, cr), performed by the OLS estimator
of X int yt - X yt-i + V t -1, . .. T

1
T Probabilltlea of a smaller value

0.05 0.10 0.25 0.50 0.75 0.90 0.95
11 -0.486 -0.386 -0.207 0.000 0.207 0.386 0.48612 -0.465 -0.369 -0.198 0.000 0.198 0.369 0.46513 -0.447 -0.354 -0.190 ' 0.000 0.190 0.354 0.44714 -0.431 -0.341 -0.183 0.000 0.183 0.341 0.43115 -0.417 -0.330 -0.176 0.000 0.176 0.329 0.41716 -0.404 -0.319 -0.171 0.000 0.171 0.319 0.40417 -0.392 -0.309 -0.165 0.000 0.165 0.309 0.39218 -0.381 -0.301 -0.161 0.000 0.161 0.301 0.38119 -0.371 -0.293 -0.156 0.000 0.156 0.293 0.37120 -0.362 -0.285 -0.152 0.000 0.152 0.285 0.362
21 -0.353 - -0.278 -0.148 0.000 0.148 0.278 0.35322 -0.345 -0.272 -0.145 0.000 0.145 0.272 0.34523 -0.338 -0.266 -0.142 0.000 0.142 0.266 0.33824 -0.331 -0.260 -0.139 0.000 0.139 0.260 0.33125 -0.324 -0.255 -0.136 0.000 0.136 0.255 0.32426 -0.318 -0.250 -0.133 o.ooc 0.133 0.250 0.31827 -0.312 -0.246 -0.131 o.ooc 0.131 0.246 0.31228 -0.307 -0.241 -0.128 0.000 0.128 0.241 0.30729 -0.302 -0.237 -0.126 0.000 0.126 0.237 0.30230 -0.297 -0.233 -0.124 0.000 0.124 0.233 0.297
31 -0.292 -0.229 -0.122 0.000 0.122 0.229 0.29232 -0.207 -0.226 -0.120 0.000 0.120 0.226 0.28733 -0.283 -0.222 -0.118 0.000 0.118 0.222 0.28334 -0.279 -0.219 -0.116 0.000 0.116 0.219 0.27935 -0.275 -0.216 -0.115 0.000 0.115 0.216 0.27536 -0.271 -0-213 -0.113 0.000 0.113 0.213 0.27137 -0.268 -0.210 -0.111 0.000 0.111 0.210 0.26838 -0.264 -0.207 -0.110 0.000 0.110 0.207 0.26439 -0.261 -0.205 -0.108 0.000 0.108 0.205 0.26140 -0.258 -0.202 -0.107 0.000 0.107 0.202 0.258
41 -0.254 .-0.200 -0.106 0.000 0.106 0.200 0.25442 -0.251 -0.197 -0.104 0.000 0.104 0.197 0.25143 -0.249 -0.195 -0.103 0.000 0.103 0.195 0.24944 -0.246 -0.193 -0.102 0.000 0.102 0.193 0.24645 -0.243 -0.190 -0.101 0.000 0.101 0.190 0.24346 -0.240 -0.188 -0.100 0.000 0.100 0.188 0.24047 -0.238 -0.186 -0.099 0.000 0.099 0.186 0.23848 -0.235 -0.184 -0.098 0.000 0.098 0.184 0.23549 -0.233 -0.183 -0.097 0.000 0.097 0.183 0.23350 -0.231 -0.181 -0.096 0.000 0.096 0.181 0.231



Percentiles for the test for Hqí X ■ 0 in: yfc ■ Xyt_̂  + ßj + ut> 
with y0 arbitrary and ut ~ NXD(0, a 2), performed by the OLS estimator

• О м» >• Э • yt - *yt-! + ßj •+ ut. t - 1, i«.i T

T Probabilities of a smaller value
0.05 0.10 0.25 0.50 0.75 0.90 0.95

11 -0.572 . -0.477 -0.306 -0.105 0.102 0.283 0.387
12 -0.544 -0.452 -0.288 -0.095 0.103 0.276 0.376
13 -0.520 -0.431 -0.273 -0.087 0.103 0.269 0.365
14 -0.499 -0.413 -0.259 -0.080 0.103 0.263 0.356
15 -0.480 -0.397 -0.248 -0.074 0.102 0.257 '0.347
16 -0.464 -0.382 -0.237 -0.069 0.101 0.252 0.338
17 -0.448 -0.369 -0.228 -0.065 0.101 0.246 0.33118 -0.434 -0.357 -0.219 -0.061 0.100 0.241 0.32319 -0.422 , -0.346 -0.212 -0.057 ' 0.099 0.237 0.31620 -0.410 -0.336 -0.205 -0.054 0.098 0.232 0.310
21 -0.399 -0.326 -0.199 -0.051 0.097 0.228 0.304
22 -0.389 -0.318 -0.193 -0.049 0.096 0.224 0.299
23 -0.380 -0.310 -0.187 -0.047 0.095 0.220 0.29324 -0.371 -0.302 -0.182 -0.045 0.094 0.217 0.288
25 -0.363 -0.295 -0.178 -0.043 0.093 0.213 0.283
26 -0.356 -0.289 -0.173 -0.041 0.092 0.210 0.279
27 -0.349 -0.283 -0.169 -0.039 0.091 0.207 0.275
28 -0.342 -0.277 -0.165 -0.038 0.090 0.204 0.270
29 -0.335 -0.272 -0.162 -0.036 0.090 0.201 0.267
30 -0.329 -0.267 -0.158 -0.035 0.089 0.199 0.263
31 -0.324 -0.262 -0.155 -0.034 0.088 0.196 0.259
32 -0.318 -0.257 -0.152 -0.033 0.087 0.193 0.25633 -0.313 -0.253 -0.149 -0.032 0.086 0.191 0.25234 -0.308 -0.249 -0.147 -0.031 0.085 0.189 0.249
35 -0.303 -0.245 -0.144 -0.030 0.085 0.186 0.246
36 -0.299 -0.241 -0.142 -0.029 0.084 0.184 0.24337 -0.294 -0.237 -0.139 -0.028 0.083 0.182 0.24038 -0.290 -0.234 -0.137 -0.027 0.082 0.180 0.23839 -0.286 -0.230 -0.135 -0.027 0.082 0.178 0.23540 -0.282 -0.227 -0.133 -0.026 0.081 0.176 0.232
41 -0.278 -0.224 -0.131 -0.025 0.080 , 0.175 0.230
42 -0.275 -0.221 -0.129 -0.025 0.080 0.173 0.22743 -0.271 -0.218 -0.127 -0.024 0.079 0.171 0.22544 -0.268 -0.215 -0.125 -0.024 0.079 0.169 0.22345 -0.265 -0.213 -0.124 -0.023 0.078 0.168 0.22146 -0.262 -0.210 -0.122 -0.023 0.077 0.166 0.21947 -0.259 -0.208 -0.121 -0.022 0.077 0.165 0.21748 -0.256 -0.205 -0.119 -0.022 0.076 0.163 0.21549 -0.253 -0.203 -0.118 -0.021 0.076 0.162 0.21350 1 -0.251 -0.201 -0.116 -0.021 0.075 0.160 0.211



T a b l e  1C
Percentile* for the teat for HQi X - 0 in: yt - X yfc_y + ßj + ß2t + ut, 

with yfl arbitrary and u£ - NID(0, a 2), performed by the OLS
estimator of X in: yt - X .ft-1 + Pi + &2L + ut* t e 11 ...» T

T Probabilities of a smaller value
0.05 0.10 0.25 0.50 0.75 0.90 0.95

11 -0.647 -0.558 -0.398 -0.205 -0.003 0.178 0.28412 -0.615 -0.529 -0.373 -0.186 0.007 0.181 0.28213 -0.586 -0.502 -0.351 -0.171 0.016 0.183 0.28014 -0.562 -0.480 -0.332 -0.158 0.022 0.183 0.27715 -0.539 -0.459 -0.316 -0.146 0.028 0.183 0.27416 -0.519 -0.441 -0.301 -0.137 0.032 0.183 0.27017 -0.501 -0.425 -0.288 -0.128 0.036 0.182 0.26718 -0.485 -0.410 -0.276 -0.120 0.039 0.181 0.26419 -0.470 -0.396 -0.266 -0.114 0.041 0.180 0.26020 -0.456 -0.384 -0.256 -0.108 0.044 0.178 0.257
21 -0.444 -0.372 -0.247 -0.102 0.045 0.177 0.25422 -0.432 -0.362 -0.239 -0.097 0.047 0.176 0.25123 -0.421 -0.352 -0.232 -0.093 0.048 0.174 0.24824 -0.411 -0.343 -0.225 -0.089 0.049 0.173 0.24525 -0.401 -0.335 -0.219 -0.085 0.050 0.171 0.24226 -0.392 -0.327 -0.213 -0.082 0.051 0,170 0.23927 -0.384 -0.319 -0.207 -0.078 0.052 0.168 0.23628 -0.376 -0.312 -0.202 -0.075 0.053 0.167 0.23329 -0.368 -0.306 -0.197 -0.073 0.053 0.165 0.23130 -0.361 -0.299 -0.193 -0.070 0.053 0.164 0.228
31 -0.354 -0.294 -0.188 -0.068 0.054 0.162 0.22632 -0.348 -0.288 -0.184 -0.066 0.054 0.161 0.22433 -0.342 -0.283 -0.180 -0.064 0.054 0.159 0.22134 -0.336 -0.278 -0.177 -0.062 0.055 0.158 0.21935 -0.331 -0.273 -0.173 -0.060 0.055 0.157 0.21736 -0.325 -0.268 -0.170 -0.058 0.0S5 0.155 0.21537 -0.320 -0.264 -0.167 -0.056 0.055 0.154 0.21338 -0.316 -0.260 -0.164 -0.055 0.055 0.153 0.21139 -0.311 -0.256 -0.161 -0.053 0.055 0.152 0,20940 -0.306 -0.252 -0.158 -0.052 0.055 0.151 0.207
41 -0.302 -0.248 - -0.156 -0.051 0.055 0.149 0.20542 -0.298 -0.245 -0.153 -0.049 0.055 0.148 0.20343 -0.294 -0.241 -0.151 -0.048 0.055 0.147 0.20144 -0.290 -0.238 -0.149 -0.047 0.055 0.146 0.20045 -0.287 -0.235 -0.146 -0.046 0.055 0.145 0.19846 -0.283 -0.232 -0.144 -0.045 0.055 0.144 0.19647 -0.280 -0.229 -0.142 -0.044 0.055 0.143 0.19548 -0.276 -0.226 -0.140 -0.043 0.055 0.142 0.19349 -0.273 -0.223 -0.138 -0.042 0.054 0.141 0.19250 -0.270 -0.221 -0.137 -0.041 0.054 0.140 0.190



T a b l e  2A
Percentiles for the test for HqI X ■ 1 ini yfc "  ̂У[-1 + ut' 
with yQ arbitrary and ut - N1D(0, a 2), performed by the OLS 
estimator of X ini yfc - X yt_j j- ßj + ut, t ■ 1, .... T

T Probabilities of a smaller value
0.05 0.10 0.25 0.50 0.75 0.90 -0.95

11 0.078 0.224 0.448 0.656 0.822 0.949 1.019
12 0.134 • 0.274 0.486 0.681 0.835 0.951 1.015
13 0.184 0.318 0.520 0.703 0.846 0.953 1.012
14 0.228 0.357 0.549 0.722 0.856 0.955 1.009
15 0.268 0.391 0.575 0.738 0.864 0.957 - 1.007
16 0.304 0.423 0.598 0.753 0.872 0.959 1.006
17 0.337 0.451 0.618 0.767 0.879 0.961 1.004
IB 0.367 0.476 0.637 0.778 0.885 0.962 1.003
19 0.394 0.499 0.654 0.789 • 0.891 0.964 1.003
20 0.419' 0.521 0.669 0.799 0.896 0.965 1.002
21 0.442 0.540 0.683 0.808 0.900 0.967 1.001
22 0.463 0.558 0.696 0.816 0.905 0.968 1.001
23 0.482 0.575 0.708 0.823 0.908 0.969 1.001
24 0.501 0.590 0.719 0.830 0.912 0.970 1.000
25 0.518 0.605 0.730 0.837 0.915 0.971 1.000
26 0.534 0.618 0.739 0.843 0.918 0.972 1.000
27 0.548 0.631 0.748 0.848 0.921 0.973 1.000
28 0.562 0.642 0.756 0.853 0.924 0.974 0.999
29 0.576 0.653 0.764 0.858 0.926 0.974 0.999
30 0.588 0.664 0.771 0.862 0.929 0.975 0.999
31 0.600 0.673 0.778 0.867 0.931 0.976 0.999
32 0.611 0.683 0.785 0.871 0.933 0.976 0.999
33 0.621 0.691 0.791 0.874 0.935 0.977 0.999
34 0.631 0.700 0.796 0.878 0.937 0.978 0.999
35 0.640 0.707 0.802 0.881 0.938 0.978 0.999
36 0.649 0.715 0.807 0.884 0.940 0.979 0.999
37 0.658 0.722 0.812 0.887 0.942 0.979 0.999
38 0.666 0.728 0.816 0.890 0.943 0.980 0.999
39 0.674 0.735 0.821 0.893 0.945 0.980 0.999
40 0.681 0.741 0.825 0.895 0.946 0.981 0.999
41 0.688 0.747 0.829 0.898 0.947 0.981 0.999
42 0.695 0.752 0.833 0.900 0.948 0.982 0.999
43 0.701 0.758 0.837 0.902 0.950 0.982 0.99944 0.708 0.763 0.840 0.905 0.951 0.982 0.999
45 0.713 0.768 0.844 0.907 0.952 0.983 0.99946 0.719 0.772 0.847 0.909 0.953 0.983 0.99947 0.725 0.777 0.850 0.910 0.954 0.983 0.99948 0.730 0.781 0.853 0.912 0.955 0.984 0.99949 0.735 0.785 0.856 0.914 0.956 0.984 0.99950 0.740 0.789 0.858 0.916 0.956 0.984 0.999



Percentiles for the teat for Hg« X - 1 ini yt - Xyfc_1 + ßj + и<;, 
with y0 arbitrary and ut ~ NID(0, a 2). performed by the OLS 
estimator of X ini yt - ^  + ut. t - 1.... T

_____________Probabilities of a «maller value _______
°-05 °-*° 0-25 0.30 0.75 Ö.90 0.95

11 -0.252 -0.116 0.10812 -0.185 -0.052 0.16413 -0.124 0.005 0.21314 -0.069 0.056 0.257IS -0.020 0.102 0.29616 0.025 0.144 0.33117 0.066 0.182 0.36318 0.105 0.217 0.39219 0.140 0.249 0.41820 0.173 0.279 0.442
21 0.203 0.306 0.46522 0.231 0.331 0.48523 0.257 0.355 0.50424 0.281 0.377 0.52225 0.304 0.397 0.53826 0.326 0.416 0.55427 0.34o 0.434 0.56828 0.365 0.451 0.58229 0.383 0.467 0.59430 0.400 0.482 0.606
31 0.416 0.497 0.618
32 0.431 0.510 0.628
33 0.446 0.523 0.638
34 0.460 0.535 0.648
35 0.473 0.546 0.657
36 0.485 0.557 0.665
37 0.497 0.568 0.67438 0.508 0.578 0.681
39 0.519 0.587 0.68940 0.530 0.596 0.696
41 0.540 0.605 0.703
42 0.549 0.614 0.70943 0.558 0.622 0.71544 0.567 0.629 0.72145 0.575 0.637 0.72746 0.584 0.644 0.73247 0.591 0.650 0.73848 0.599 0.657 0.74349 0.606 0.663 0.74850 0.613 0.669 0.752

0.338 0.540 0.712 0.8160.383 0.573 0.731 0.8260.422 0.602 0.748 0.8350.457 0.627 0.763 0.8440.487 0.649 0.777 0.8520.515 0.669 0.789 0.8590.539 0.686 0.800 0.8660.561 0.702 0.810 0.8720.581 0.716 0.819 0.8770.600 0.729 0.827 0.882
0.617 0.741 0.835 0.8870.632 0.752 0.842 0.8920.646 0.762 0.848 0.8960.660 0.771 0.854 0.9000.672 0.780 0.859 0.9030.683 0.788 0.864 0.9060.694 0.795 0.869 0.9090.704 0.802 0.873 0.9120.713 0.808 0.878 0.9150.722 0.814 0.881 0.918
0.730 0.820 0.885 0.9200.738 0.825 0.888 0.9220.745 0.830 0.892 0,9250.752 0.835 0.895 0.9270.759 0.839 0.897 0.9290.765 0.844 0.900 0.9300.771 0.848 0.903 0.9320.777 0.851 0.905 0.9340.782 0.855 0.907 0.9350.787 0.858 0.910 0.937
0.792 0.862 0.912 0.9380.797 0.865 0.914 0.9400.801 0.868 0.916 0.9410.805 0.871 0.918 0.9420.809 0.874 0.919 0.9440.813 0.876 0.921 0.9450.817 0.879 0.923 0.9460.821 0.881 0.924 0.9470.824 0.884 0.926 0.9480.827 0.886 0.927 0.949



T a b l e  2C
Porcentiles for the tost for H.! X - 1 Ins у - X y., + ß, + ß_t + u ,« t 1 2 t 

with y0 arbitrary and ut ~ NID(0, o z), performed by the OLS
ostimator of X ini yt - x V i + ^  +. 02t+ ß3t2 + ufcf t - 1# •••t T

T Probabilities of a smaller value
0.05 0.10 0.25 0.50 0.75 0.90 0.45

11 -0.478 -0.351 -0.136 0.095 0.309 0.496 0.61712 -0.405 ' -0.280 -0.071 0.152 0.356 0.529 0.63813 -0.338 -0.216 -0.012 0.203 0.397 0.559 0.65914 -0,279 -0.159 0.040 0.248 0.433 0.586 0.67815 -0.224 -0.106 0.087 0.287 0.465 0.610 '0.69516 -0.173 -0.058 0.130 0.323 0.494 0.631 0.71217 -0.127 -0.014 0.169 0.356 0.520 0.650 0.72618 -0.084 0.027 0.204 0.385 0.543 0.667 0.74019 -0.045 0.064 0.237 0.412 0.564 0.684 0.75220 -0.008* 0.099 0.267 1 0.437 0.583 0.698 0.763
21 0.027 0.131 0.295 0.459 0.601 0.711 0.77322 0.060 0.161 0.321 0.480 0.617 0.723 0.78223 0.090 0.189 0.345 0.499 0.632 0.734 0.79124 0.118 0.215 0.367 0.517 0.646 0.745 0.79925 0.145 0.240 0.388 0.534 0.659 0.754 0.80626 0.170 0.263 0.407 0.550 0.671 0.763 0.81327 0.194 0.284 0.425 0.564 0.682 0.771 0.81928 0.216 0.305 0.443 0.578 0.692 0.779 0.82529 0.237 0.324 0.459 0.591 0.702 0.786 0.83130 0.257 0.342 0.474 0.603 0.711 0.793 0.836
31 0.276 0.360 0.489 0.614 0.720 0.799 0.84132 0.294 0.376 0.502 0.625 0.728 0.805 0.84633 0.312 0.392 0.515 0.635 0.736 0.810 0.85034 0.328 0.407 0.528 0.645 0.743 0.815 0.85435 0.344 0.421 0.539 0.654 0.750 0.820 0.85836 0.359 0.434 0.551 0.663 0.756 0.825 0.86237 0.373 0.447 0.561 0.671 0.762 0.830 0.86538 0.386 0.459 0.571 0.679 0.768 0.834 0.86939 0.400 0.471 0.581 0.686 0.774 0.838 0.87240 0.412 0.482 0.590 0.694 0.779 0.842 0.875
41 0.424 0.493 0.599 0.701 0.784 0.845 0.87842 0.435 0.504 0.608 0.707 0.789 0.849 0.88043 0.447 0.514 0.616 0.713 0.794 0.852 0.88344 0.457 0.523 0.624 0.719 0.798 0.856 0.88645 0.467 0.532 0.631 0.725 0.802 0.859 0.88846 0.477 0.541 0.638 0.731 0.806 0.862 0.89047 0.487 0.550 0.645 0.736 0.810 0.864 0.89348 0.496 0.558 0.652 0.741 0.814 0.867 0.8^49 0.505 0.566 0.658 0.746 0.817 0.870 0.89750 0.513 0.574 0.664 0.751 0.821 0.872 0.899



Fuller's table. Now the negative bias Is much stronger, even 
under the null a X estimate exceeding unity is found to be most 
unlikely. Table 2C concerns a test which is advised against in 
[ D i c k e y  et al. (1984), p. 16] for non-obvious reasons. This 
table (which does not correspond to any of the Fuller tables) 
enables to test exactly whether a series appears to be trend sta­
tionary or difference stationary, therefore it ie in our opinion 
also relevant in the context of the (asymptotic) problems indica­
ted in [D u r 1 a u f and P h i l l i p s  (1988), section 4]. 
Yet, in the presence of (polynomial) trends the similar unit root 
teste suggested by [ S c h m i d t  and P h i l l i p s  (1989)] 
may be more powerful, since these do not involve a redundant re­
gressor.

However, models with a lagged dependent variable and merely 
polynomial trends are rather sterile, in our opinion. We shall1 
show now how our results can be used also in real empirical eco­
nometric modelling. Just for illustrative purposes we consider a 
model for aggregate UK consumption of non-durables which origina­
tes from [ H e n d r y  (1983)]. This model is based on annual 
data published in Economic Trends Annual Supplement (1983). The 
sample ranges from 1954 through 1983 and concerns:
' c = consumer's expenditure on non-durables and services in 

constant prices,
I = real personal disposable income,
P = implicit deflator of C.

Lower case letters denote natural logarithms. Employing OLS (like 
Hendry did) we find (asymptotic standard errors in parentheses): 

cfc = 0.861 ct_1 + 0.501 i't - 0.383 i ^  - 0.115 Apfc + 0.231 
(0.120) (0.048) (0.091) (0.035) (0.288)

' , (7.1)
T = 27 R = 0.9993 s = 0.00499

SC(4, 18) = 0.529 PF(3, 22) = 0.937 H(4) = 1.016 N(2) = 1.652 
No form of misspecifiaation is detected by the four mentioned 
asymptotic diagnostics. The SC statistic is the Lagrange multi­
plier test for serial correlation which under the null of white- 
-noise disturbances is compared with the F(4, 18) distribution. 
The PF statistic is Chow's F-test for predictive failure. The H 
statistic is the Breusch-Pagan Lagrange multiplier test for hetero-



scedasticity; here this test is used against the alternative that
the disturbance variance is functionally dependent on the four re-

2gressors, so under the null it is asymptotically x (4). The N(2)
statistic tests the normality of the disturbances by checking the
skewness and the excess curtosis of the residuals; under the null

2it is asymptotically x (2).
Relying on blunt standard asymptotic procedures a 95% con­

fidence interval for X, the coefficient of the lagged dependent
variable ct_1 ‘in (7.1), is given by 0.861 t t°27-5) * 0.120, yiel­
ding [0.61, 1.11]. This seems pretty wide, and it is not known 
how accurate this result is for this particular small sample on 
these particular data.

T a b l e  ЗА
Percentiles of Xz and test findings for Hq ! X s Xq in model (7.1)

x o
Probabilities of c. smaller value Actual estimate

0.05 0.10 0.25 0.50 0.75 0.90 0.95 \ P-value

0.00 -0.463 -0.394 -0.275 -0.136 0.007 0.135 0.211 0.886 1.000
0.50 -0.188 -0.101 0.044 0.200 0.347 0.470 0.539 0.915 1.000
0.75 -0.100 -0.005 0.149 0.310 0.459 0.582 0.652 0.688 0.966
1.00 -0.076 0.024 0.183 0.346 0.49.5 0.620 0.692 0.303 0.426
1.05 -0.078 0.022 0.182 0.346 0.494 0.618 0.690 0.306 0.432
1.10 -0.080 0.019 0.179 0.343 0.491 0.615 0.687 0.327 0.473
1.20 -0.094 0.006 0.169 0.333 0.480 0.602 0.673 0.391 0.601
1.40 -0.131 -0.026 0.137 0.304 0.452 0.566 0.631 0.502 0.826

The findings of this paper enable to produce exact inference 
on X assuming that the disturbances are normal and that we can 
condition on the other regressors (which is rash since the con­
sumption function is usually seen as a structural equation of a 
simultaneous system). In Table ЗА results are given on statisticЛ
*z for vari°us values of X0; percentiles of the exact distribu-

A _tion of X are presented, but also the actual estimate X_ of the
A *estimator Xz is given. This is obtained in the regression of у

°n y_2 and the space spanned by [X: (XQ):С (XQ )X]. Also the Prob-
-value, i.e. the value of the cumulative distribution function of
X for the actual estimate X„ is mentioned.* z



From the first two lines of the table we see that HQ: X = 0 
and Hq : X * 0.5 are rejected in favour of X > 0 and X >0.5 
respectively. From the third line we see that HQ: X = 0.75 is 
rejected against X > 0.75 at the 5% level, but not at the 2.5% 
level. It follows from the fourth line that the unit root hypo­
thesis X = 1 cannot be rejected at any reasonable significance 
level. The inaccuracy and the discontinuity (at X = 1) of the 
classical asymptotic approach stem Sims (1988) skeptical about unit 
root econometrics, we see here that a much more satisfying analy­
tic and exact classical approach is feasible. So, from a sta­
tistical point of view we find that it seems acceptable to model 
the consumption function in first differences. However, from the 
bottom lines of the table we see that neither X * 1.05 nor X *
* 1.20 have to be rejected. Since these values are not acceptable 
at all from any reasonable economic point of view we tentatively 
conclude that the test procedure - although exact - seems to have a 
very moderate power with respect to explosive alternatives, with 
respect to one-sided stable alternatives we can establish that the 
intervals [X > 0.738], [X > 0.766] and [X > 0.797] have confiden­
ce coefficients of 0.975, 0.95 and 0.90 respectively. Hence, with 
respect to the left-hand side of the confidence interval for X 
we can improve considerably in comparison to the standard asympto­
tic result. It seems noteworthy that the asymptotic procedure ap­
parently leads to conservative inference here, the actual confi­
dence coefficient of the interval [X > 0.61] must be well above 
97.5%.

However, we must realize that the above findings are based on 
only one actual sample of this particular model. We also have to 
recognise that this illustration is hampered because income will 
in fact be jointly dependent with consumption, and hence strong- 
-exogeneity and even weak-exogeneity is not the case here. Purely 
for illustrative purposes we shall therefore also construct a case 
which does meet all the requirements exactly. This is achieved by 
employing the real income and inflation data, and by generating 
artificial consumption data according to the following (stylized) 
scheme:

ct = 0.9 ct_1 + 0.5 it - 0.4 ifc_1 - 0.1 Apfc + 0.0 + OEt , (7.2) 

with cQ = 11.112, a = 0.005, and ~ IIN(0,1) for t = 1, ..., 27.



The starting value Cq is the actual 1953 figure. We produced only 
one random series, and used the resulting (exactly normal) ct 
series in a regression (where it, it-1 and Дpfc are genuinly fixed 
now), which yielded:

Ct » 0.853 ct_1 + 0.529 it - 0.388 i ^  - 0.066 Дpfc + 0.068 
(0.084) (0,051) (0.076) " (0.039) (0.155)
T = 27 R2 = 0.9994 s = 0.00547

SC(4, 18).= 0.764 H (4) = 3.625 N(2) = 1.199
Next we applied the X. based procedures again in order to test hy- 
potheses and to construct confidence intervals for X. Application 
of the crude asymptotic procedure leads now to a confidence inter­
val 0.853 t *^27-5) * C.084 which amounts to [0.68, 1.03], whereas
we find that the intervals [X > 0.621], [X > 0.668] and [X > 0.719] 
have confidence coefficients of 0.975, 0.95 and 0.90 respectively. 
Hence, for this single realisation of the stochastic generating 
mechanism we find that the exact left-hand confidence boundary is 
smaller then the asymptotic value, and thus the asymptotic interval 
seems too liberal now. Note that the percentiles of аз given in 
Table ЗА are also valid for model (7.3) since the distribution of 
Xz is invariant with respect to ß and o; it is determined merely 
by X and Xq. The actual estimates Xz and the confidence intervals 
are of course different for (7.3), since these are based on the ct

T a b l e  3B 
Findings in model (7.3)

xo
Actual estimate

X z P-value
0.00 0.818 1.000
0.50 0.728 0.996
0.75 0.534 0.851
1.00 0.214 0.291
1.05 0.261 0.362
1.20 0.584 0.883
1.40 0.819 0.9S5

series as well. In Table 3D some results are given. For values of 
Xq above unity the same anomalous P-values are found which indi­
cate that these high values of Xq cannot be rejected. From these



(pseudo-)e:»pirical results we have to conclude that an investiga­
tion into the power of the exact and similar test procedure is 
needful.
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Jan F. Klviet, Garry D. A. Phillips

DOKŁADNE PODOBNE TESTY D U  PIERWIASTKA PIERWSZEGO RZĘDU 
AUTOREGRESYJNEGO MODELU REGRESJI

Opisano procedurę testu dla zbadania czy współczynnik zmiennej zależnej
opóźnionej w autoregresyjnym modelu regresji wielokrotnej pierwszego rzędu rów­
na się pewnej konkretnej wartości, np. zeru lub jedności lub innej dowolnej



stabilnej lub niestabilnej wartości. Przy hipotezie zerowej estymator tego 
współczynnika ma rozkład jak rozkład ilorazu dwóch kwadratowych form w stan­
dardowych zmiennych normalnych, gdy prócz regreaorów egzogenlcznych, włóczono 
takie niektóre zbędne zmienne objaśniające. Rozkład związany z hipotezą zerową 
Jest wolny od .Jakichkolwiek kłopotliwych parametrów. Zatem estymatory te są 
łatwo policzalne i mogą być uiytc Jako statystyka testu; Jej błędy typu I mogą 
być dokładni« kontrolowane, podczas gdy teat ten jest podobny a takže nie­
zmienniczy. Poszczególne testy pierwiastków jednostkowych stworzone przez Dic- 
keya 1 Fullera wydają się być prostymi przykładami naszego testu dla bardzo 
specyficznych macierzy planu. Podane zostają rozszerzone tablice dokładnych war­
tości krytycznych dla tych i niektórych innych form. W końcu ilustrujemy przy­
datność naszej ogólnej procedury testu przy dynamicznej specyfikacji ekonome­
trycznych modeli szeregów czasowych.

\


